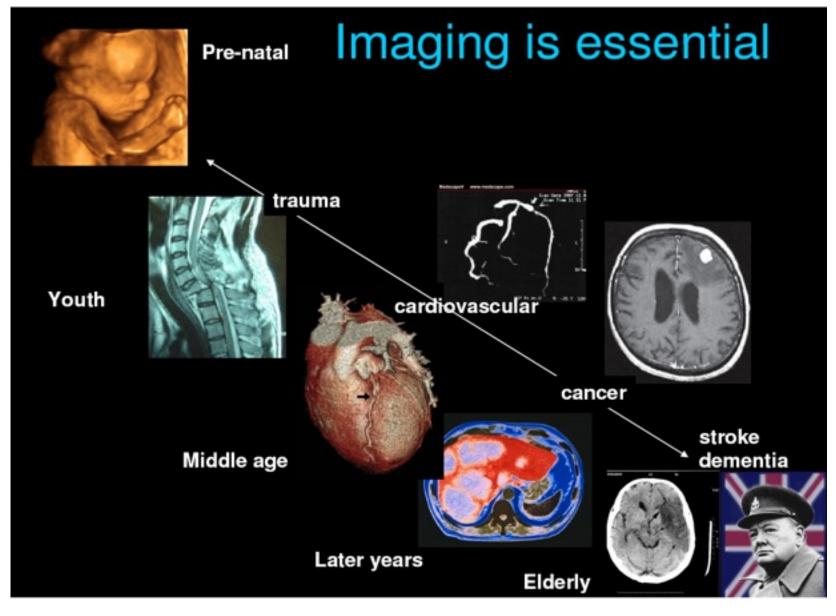
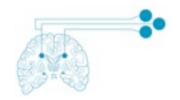


eScience Activities Overview

David Rodriguez Gonzalez (Edinburgh DIR/SBIRC)

The following Universities are charitable bodies, registered in Scotland, with registration numbers as below

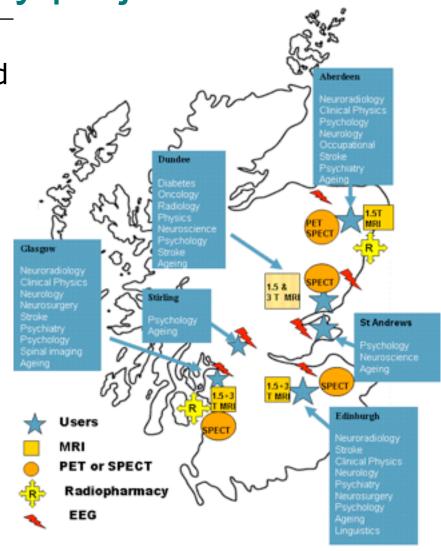




Slide by J. Wardlaw

Massive expansion in research imaging

- All branches of medicine particularly brain
- Not just medicine psychology, linguistics, engineering, parapsychology, etc.
- In Scotland too!!!
 - 8% UK population
 - 12.5% of all highest rated departments.
 - Highest concentration of biotech in Europe
- Neuroscience much larger than NIH
 - But in 2006 there were machines, pockets of excellence, but little cohesion



The SINAPSE Project

- Stands for Scottish Imaging Network: a Platform for Scientific Excellence.
- Pooling initiative of six Scottish universities: Aberdeen, Dundee, Edinburgh, Glasgow, St. Andrews and Stirling.
- Main objectives:
 - develop imaging expertise,
 - support multi-centre clinical research in conjunction with the Clinical Research Networks,
 - improve the ability of neuroscientists to collaborate on clinical trials,
 - have a direct impact on patient health.

SINAPSE priority projects

- Stroke, the brain and the blood-brain interface
- Ageing brain to dementia
- Novel molecular imaging markers for major psychiatric disorders
- Innovative radiotracers for CNS inflammation

e-Science for SINAPSE

- Sharing of research data and applications between centres is an important part of the SINAPSE project's objectives
 - The increasing amount of data acquired in modern imaging facilities and the distributed nature of SINAPSE require a proper data management strategy
- National e-Science Centre actively involved in the SINAPSE collaboration
 - Mainly through the IT & Image Analysis Committee

eScience project activities

- Information governance & data deidentification
 - Networking
 - Development of de-identification tool
- Data sharing infrastructure
 - Facilitating multi-centre studies
- Portal for brain imaging
 - Improving usability
- Other
 - Analysis methods

Data Sharing e-Infrastructure

- Enabling multi-centre clinical research through data sharing
- Some features of the proposed of the SINAPSE einfrastructure are:
 - Privacy protection, automatic compliance with data protection policies;
 - Security, advanced authentication and authorisation within projects;
 - Usability, providing a user friendly environment to access data and applications;
 - Modularity, conforming to relevant standards and use of existing components;
 - **Centralisation**, leveraging existing compute clusters and storage.

Centralised Architecture (pros & cons)

- Simpler Deployment
- Easier middleware release control
- Lesser impact in participant centres
- Easier to manage and use
- No default resilience
 - A second centre would be needed
 - But this is only necessary for critical services
 - With a good support a reasonable service can be provided using a single centre

Deployment

- ECDF (Edinburgh Compute and Data Facilities)
 - http://www.is.ed.ac.uk/ecdf/)
 - A singular facility along Scotland
- Disk space and CPU time can be rented
 - 1456 CPU cores
 - 275 TB of disk
- A dedicated server hosted by ECDF:
 - For SINAPSE specific services
 - ECDF provides basic hardware + software support

Data Formats

- Raw data
 - Imaging data usually in standard data format (DICOM)
 - EEG & spectroscopy format is manufacturer dependent
- Processed data
 - Varies from project to project

Digital Imaging and Communications in Medicine (DICOM)

- Standard for handling, storing, printing and transmitting medical imaging information
 - Supports CT, MRI, PET, Nuclear medicine, ultrasound,...
 - Several types of objects: Images, Presentation States, Structured Reports, Encapsulated Objects
- Data format:
 - "Header": includes metadata
 - Pixel data
- Also defines communications, confidentiality profiles, ...

DICOM Files

- Enhanced Multi-frame DICOM CT & MR objects support storing a whole series in a single file
- Unfortunately this is still not widely adopted/supported
 - Thousands of very small files (even of 20KB)
 - Performance problems

Data Protection Act

- UK's Data Protection Act (1998). Implements the European Community Data Protection Directive 1995.
- Establish individuals' rights on data held about them and obligations for organisations or people processing personal data.
- Personal data must be processed in a fair and lawful manner.
 - 8 DPA principles.
- Other legislation pieces apply to medical data.
 - Common law: duty of confidentiality.
 - Human Rights Act 1998 (article 8).

DPA in research

- The DPA does not define the term "research purposes" apart from clarifying that it includes statistical or historical purposes.
- Data processing for research should be 'compatible' with the purpose for which the data were originally obtained.
- The data subjects should be aware that their personal information will be used for research purposes.

Anonymous Data

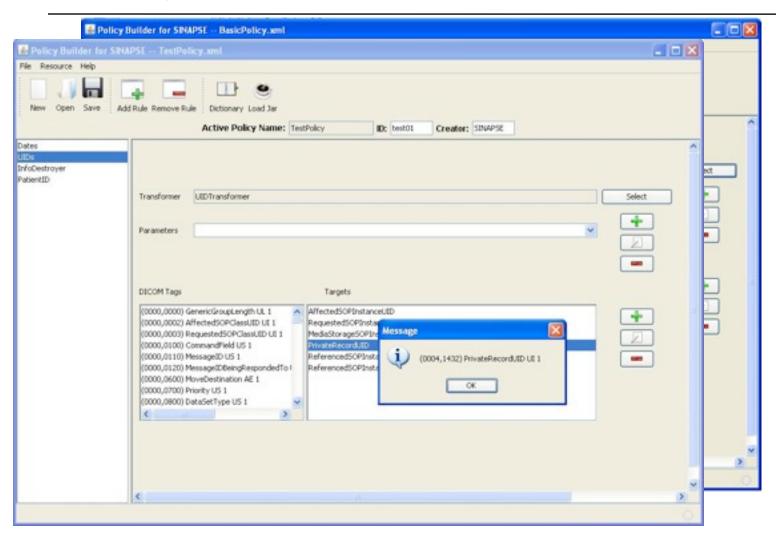
- Coded (pseudonymised or linked anonymised) data:
 - the identifiable information has been substituted by alphanumerical sequences with no plain meaning.
 - The data is anonymous to the research team.
 - The key to reverse the transformation shall be held securely by a third party to avoid falling into the DPA.
- (Fully) Anonymised data:
 - all personal identifiers or codes have been irreversibly removed.

Personal Data in DICOM

- As they are used in clinical workflows DICOM objects include many attributes with personal information
 - Some times personal data is found also "burned in" the pixel data
 - There is a potential risk for face recognition in 3D reconstructions (MRI)
- Considerable number of de-identification tools, but
 - Some do not do the job
 - Lack of flexibility
 - Bad performance
 - Linked to specific suites or frameworks

PrivacyGuard

- A DICOM de-identification toolkit
 - Implemented in Java
 - Highly configurable
 - Users can define their own de-identification methods
 - Mechanism for chaining different operations
- Privacy Policies expressed in XML documents
 - PolicyEditor: Privacy Policies authoring tool
- DICOM read/write through an interface that allows using different libraries
 - o dcm4che2
 - pixelmed


Privacy Policies

- XML documents containing the rules for anonymising the data
- A rule specifies:
 - The target fields
 - The class used for the transformation including:
 - Version
 - Digest
 - Resource (jar file)
 - Parameters

Policy Editor

- A Privacy Policies authoring tool
- Includes a DICOM dictionary
- Can look for de-identification classes in jar files
- Can sign and check the signatures of policies

Policy Editor

Pending: Face de-identification

- This is done by independent applications after volume reconstruction (Analyze or Nifti format)
 - So it is done once the data has already been passed to the researchers
- Would it be possible to do it before directly in DICOM?

Future problems: Data Publishing

- Data Publication increasing due to:
 - Regulators
 - Funding agencies
 - Collaboration spirit
- This also applies to the imaging data
- Even after the removal of personal data items there is risk of disclosure through linkage with other published data
 - The unknown background knowledge about the victim complicates the problem

Privacy-Preserving Data Publishing

- See survey by Fung, Wang, Chen and Yu:
 - Privacy-Preserving Data Publishing: A Survey of Recent Developments (ACM Computing surveys, vol 42, 4, June 2010)
- Demand for publication of microdata
 - Publish data not the data-mining result
- Current practices lead to excessive distortion or insufficient protection
 - Truthfulness at the record level required in some scenarios
 - Unknown background knowledge

Privacy Protection

- When publishing data the attacker should not learn anything about the target (victim) compared with not publishing the data
 - Practical approach: assume limited background knowledge
- Two types of attacks:
 - Linkage (record, attribute or table)
 - Probabilistic
- Minimality attack on Anonymous data

Privacy Models

(c,t)-Isolation

(a,k)-

MultiRelational k-

Confidence Bounding IIV DISTRIBUTED TO THE PROPERTY OF THE PRO

Pal Palacy Fzercymity

delta-Presence X, Y Differential Privacy

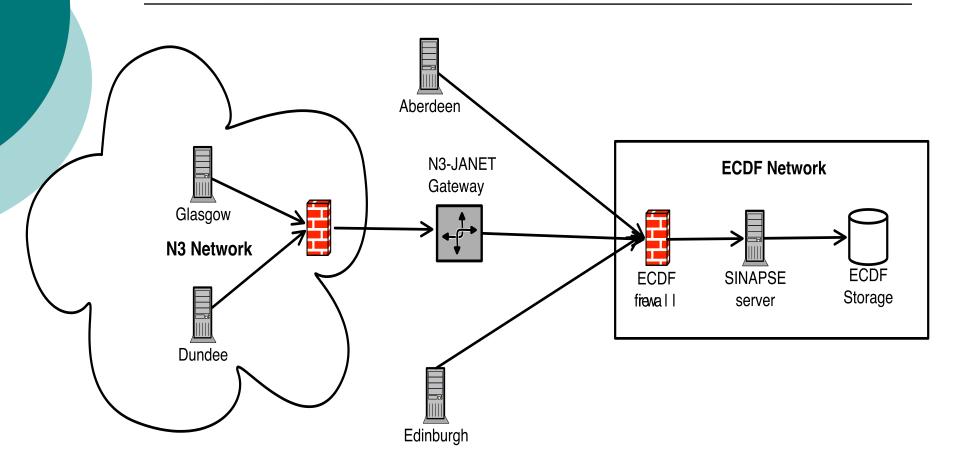
Drivo CV

Anonymisation Operations

- Generalisation: replace a value with more general one
- Suppression: remove a value or record
- Anatomization: deassociates the relationship between the quasi-identifier and the sensitive attribute by grouping
- Permutation: the same by partitioning and shuffling the sensitive values
- Perturbation: preserve statistical information by replacing the original data with synthetic

Minimality Attack

- Most privacy models assume that the attacker knows the QID and/or the presence of the target in the table
- The attacker can possibly determine also
 - The privacy requirements
 - The anonymisation methods
 - The algorithm used
- This additional information can facilitate attacks
 - Many anonymisation algorithms follow an implicit minimality principle
 - This can be exploited to reverse the anonymisation


MRI QA in SINAPSE

- QA is used to monitor the performance of MRI scanners
 - particularly important in multicentre imaging studies
- Previous work in SINAPSE towards establishing a common QA protocol
 - 7 participant MR scanners in 4 centres
 - Framework for monitoring the quality of the data
 - It will facilitate the combination of data between centres

Motivation for an automatic system

- Remove the burden of some manual tasks currently being done in the centres
- Allow checking the correctness of the sequence parameters used
- Ensure the consistency of the software used for the analysis and
- Facilitate the reanalysis of the data
- Enforce (pseudo-)anonymisation policies across collaborations

Network Configuration

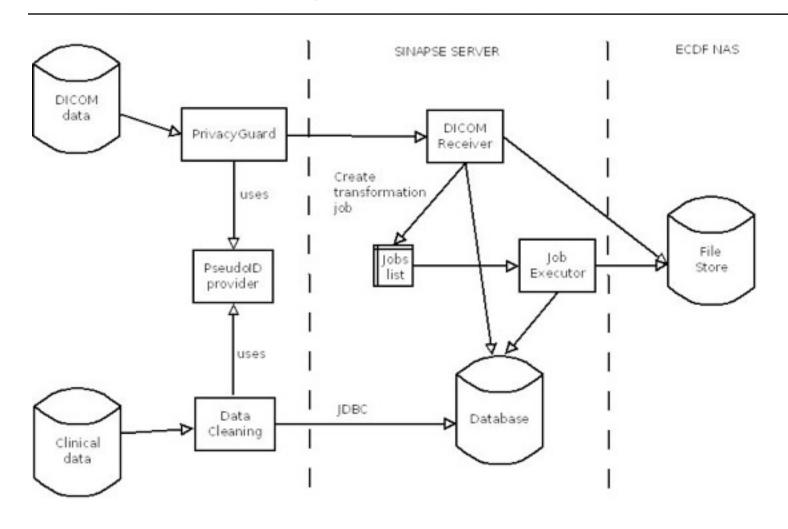
Networking Issues

- MRI scanners are connected to N3 (NHS network) in some SINAPSE centres
 - Glasgow & Dundee
 - Application included in the N3-JANET gateway
 - Gateway already configured
- And port open in ECDF firewall
 - For the gateway?
 - Limited number of machines from the Universities
 - But still some connectivity issues

MRI QA flowchart & PrivacyGuard

Data storage and Analysis

- After checking the sequence
 - DICOM data is stored in ECDF
 - An entry is inserted in SINAPSE catalogue
- Predefined information is extracted from the header and inserted in the QA database
- An analysis job is created
 - Executed asynchronously
 - The results are also inserted in the QA database
- A web application is used to monitor the QA parameters evolution
 - Accessible from all SINAPSE centres
 - Uses the QA database as backend


Extending PrivacyGuard

- PrivacyGuard provides a mechanism for adding new functionalities
- We are using it to:
 - Check the sequence correctness
 - Extract metadata from the DICOM header and insert it into the QA database
 - Create the analysis jobs

Image Bank

- Pilot project for a Normative Brain Imaging Bank using SINAPSE infrastructure
 - Server for databases
 - ECDF storage space
 - Portal
- Includes clinical and cognitive data along with imaging data
 - Cleaning process required before importing it to the centralised system

Data cleaning and import process

Other eScience activities in SINAPSE

RapidBrain Portal:

- Using Rapid a portlets building technology developed at NeSC
- Proof-of-concept prototype last summer
- A production portal to be deployed at ECDF is being built now
 - ECDF and EPCC collaborating
 - A general solution for portal single signon authentication to the cluster in place

GPGPUs

 Implementation of deconvolution algorithms for brain perfusion imaging (Fan Zhu, SINAPSE PhD student)