

Semantic Web & related technologies

Carlos Buil Aranda

Ontology Engineering Group Facultad de Informática Universidad Politécnica de Madrid cbuil@fi.upm.es NeSC 25th September 2009

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

What is the Semantic Web?

- An extension of the current Web...
 - ... where information and services are given well-defined and explicitly represented meaning, ...
 - ... so that it can be shared and used by humans and machines, ...
 - ... better enabling them to work in cooperation
- How?
 - Promoting information exchange by tagging web content with machine processable descriptions of its meaning.
 - And technologies and infrastructure to do this

Ontology Languages

- Work on Semantic Web has concentrated on the definition of a collection or "stack" of languages.
 - Used to support the representation and use of metadata
 - Basic machinery that we can use to represent the extra semantic information needed for the Semantic Web

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

RDF

- RDF stands for Resource Description Framework
 - It is a W3C Recommendation (http://www.w3.org/RDF)
- "RDF is to data what HTML is to documents"
- RDF is a graphical formalism (+ XML syntax + semantics)
 - for representing metadata
 - for describing the semantics of information in a machineaccessible way
- Provides a simple data model based on triples.

The RDF Data Model

- Statements are <subject, predicate, object> triples:
 - <sqlService01,hasInput,sqlQueryInput01>,
 <sqlService01,hasOutput,sqlQueryOutput01>

- Statements describe properties of resources
- A resource is any object that can be pointed to by a URI
 - a document, a picture, a paragraph on the Web, http:// www.epcc.ed.ac.uk/~ally, a book in the library, a real person, isbn://0141184280
- Properties themselves are also resources (URIs)

The RDF data model

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:CRISP-DMIOntology="http://www.admire-project.eu/ontologies/CRISP-DMIOntology.owl#"

Linking Statements

- The subject of one statement can be the object of another
- Such collections of statements form a directed, labeled graph

The object of a triple can also be a "literal" (a string)

- Goal: to have a simple method that can express any fact
- RDF applications can put together RDF files and learn things from all of them
 - by linking documents together by the common vocabularies they use
 - by allowing any document to use any vocabulary
- Use cases
 - You want to integrate data from different sources without custom programming.
 - You want to offer your data for re-use by other parties

Querying RDF: SPARQL

- SPARQL is the query language for RDF
- SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
 - Pattern matching: optional, union, nesting, filtering.
 - Solution modifiers: projection, distinct, order, limit, offset.
 - Output part: construction of new triples, ...

```
{ P1 P2 }
                                                    {P1} UNION
SFI FCT ?Name ?Fmail.
                          { P3 P4 }
                                                    { P9 }
WHERE
                          { P1
?X ·hasName ?Name
                                                    { P9
?X:hasEmail?Email
                                                    FILTER (R)
                          OPTIONAL { P5 } }
} LIMIT 10
                          { P3
                          P4
                          OPTIONAL { P7
                          OPTIONAL { P8 } }
```

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

RDFS: RDF Schema

- RDF Schema is another W3C Recommendation
 - http://www.w3.org/TR/rdf-schema/
- It extends RDF with a schema vocabulary that allows you to define basic vocabulary terms and the relations between those terms
 - Class, type, subClassOf,
 - Property, subPropertyOf, range, domain
 - it gives "extra meaning" to particular RDF predicates and resources
 - this "extra meaning", or semantics, specifies how a term should be interpreted
- The combination of RDF and RDF Schema is normally known as RDF(S)

RDF(S) Inference

rdfs:subClassOf

RDF(S) Inference

The RDF data model

```
<owl:Class rdf:about="#SQLQueryService">
    <rdfs:subClassOf rdf:resource="&CRISP-DMIOntology;StructuralType"/> </owl:Class>
```


Related Technologies (RDF(S))

- RDF(S) Gives
 - Ability to use simple schema/vocabularies to describe our resources
 - Consistent vocabulary use and sharing
 - Simple inference
 - Query mechanisms
- RDF(S) does not give
 - No localised range and domain constraints
 - No existence/cardinality constraints
 - No transitive, inverse or symmetrical properties

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

OWL Basics (on top of RDF and RDFS)

- Set of constructors for concept expressions
 - Booleans: and/or/not
 - A DataResource is a RelationalResource or a RDFResource
 - Quantification: some/all
 - RDFDataResources can only have RDFData that has data format XML-RDF or N-Triples
- Axioms for expressing constraints
 - Necessary and Sufficient conditions on classes
 - A DataResource that hasDataFormat XML-RDF is a RDFRepository.
 - Disjointness
 - XML-RDF is disjoint with N-Triples
 - Property characteristics: transitivity, inverse

Reasoning Tasks

- OWL DL based on a well understood Description Logic (SHOIN(D_n))
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)
- Because of this, we can reason about OWL ontologies
 - Subsumption reasoning
 - Allows us to infer when one class is a subclass of another
 - Can then build concept hierarchies representing the taxonomy.
 - Satisfiability reasoning
 - Tells us when a concept is unsatisfiable
 - i.e. when it is impossible to have instances of the class.
 - Allows us to check whether our model is consistent.
 - Instance Retrieval/Instantiation
 - What are the instances of a particular class C?
 - What are the classes that x is an instance of?

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

ADMIRE Ontology: CRISP-DMI Ontology

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

Consistency Checking

Consistency Checking

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

Linked Data

- "Linked Data is about using the Web to connect related data that wasn't previously linked"
- Linked Data design principles:
 - Use URIs to identify things that you expose to the Web as resources.
 - Use HTTP URIs so that people can locate and look up (dereference) these things.
 - Provide useful information about the resource when its URI is dereferenced.
 - Include links to other, related URIs in the exposed data as a means of improving information discovery on the Web.

Linked Data

Linked Data Example

Example D2R:

- http://www4.wiwiss.fu-berlin.de/factbook/resource/Russia (URI identifying the non-information resource Russia)
- http://www4.wiwiss.fu-berlin.de/factbook/data/Russia (information resource with an RDF/XML representation describing Russia)
- http://www4.wiwiss.fu-berlin.de/factbook/page/Russia (information resource with an HTML representation describing Russia)

DBPedia

- http://dbpedia.org/page/Berlin
- http://dbpedia.org/resource/Berlin
- http://dbpedia.org/data/Berlin

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

Extensions to OGSA-DAI & DQP

OGSA-DQP

Extensions to OGSA-DAI & DQP

- Currently very poor (or no existing) federation and optimization methods to RDF repositories
 - DARQ [1]
 - Networked Graphs [2]
- Proposal:
 - Extend OGSA-DQP with a new query language: SPARQL
 - SPARQL is "similar" to Relational Algebra
 - Both have the same expressive power
 - Current status: optimising simple SPARQL queries locally

[1] Querying Distributed RDF Data Sources with SPARQL Export, Bastian Quilitz, Ulf Leser. The Semantic Web: Research and Applications (2008), pp. 524-538

[2] Networked graphs: a declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the web. Simon Schenk and Steffen Staab. WWW '08

- What is the Semantic Web?
- Related Technologies
 - RDF
 - RDF(S)
 - OWL
 - Inference Examples
 - Consistency Checking Examples
- Linked Data
- OGSA-DAI & DQP Extensions
- Conclusions

Conclusions

- The Semantic Web is a set of technologies for
 - Adding metadata to resources
 - Data resources, services
 - Integration of data from different sources
 - These technologies allow to reason about data in different levels
 - Basic taxonomy
 - Inference, consistency checking
 - Makes computers more "intelligent"
- Based on standards
- Current hot topic in the community:
 - Linked data
 - SPARQL
- Semantic Web community does not pay much attention to:
 - Distributed Processing problems
 - Database problems
 - Proposal: bring together all

Future Work

- Continue upgrading DQP
- Workflows using all the possible data resources from OGSA-DAI (RDF and Relational mainly)
- Use of relational optimisers in SPARQL
- Study the possibility of using RDF in scientific workflows?
 - Use RDF for scientific data is currently not possible [3]
 - RDF query mechanisms still not optimised
 - RDF stores are significantly slower than databases
- The use of RDF and semantic technologies might be useful for annotating Processing Elements

[3] Gray, Alasdair J. G.; Gray, Norman & Ounis, Iadh: Can RDB2RDF Tools Feasibly Expose Large Science Archives for Data Integration?, ESWC 2009, S. 491-505

Semantic Web & related technologies

Carlos Buil Aranda

Ontology Engineering Group Facultad de Informática Universidad Politécnica de Madrid cbuil@fi.upm.es NeSC, 25th September 2009