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ABSTRACT

In this paper, we will present the implementation of a
deconvolution algorithm for brain perfusion quantification
on GPGPU (General Purpose Graphics Processor Units)
using the CUDA programming model. GPUs originated as
graphics generation dedicated co-processors, but the modern
GPUs have evolved to become a more general processor
capable of executing scientific computations. It provides
a highly parallel computing environment due to its huge
number of computing cores and constitutes an affordable
high performance computing method. The objective of brain
perfusion quantification is to generate parametric maps of
relevant haemodynamic quantities such as Cerebral Blood
Flow (CBF), Cerebral Blood Volume (CBV) and Mean Tran-
sit Time (MTT) that can be used in diagnosis of conditions
such as stroke or brain tumors. These calculations involve
deconvolution operations that in the case of using local
Arterial Input Functions (AIF) can be very expensive compu-
tationally. We present the serial and parallel implementations
of such algorithm and the evaluation of the performance
gains using GPUs.

Keywords-Perfusion Imaging; Deconvolution; Parallelization;
GPGPU;

I. INTRODUCTION

With the development of computed tomography (CT)
and magnetic resonance (MR) imaging, perfusion imaging
becomes a very powerful clinical tool for evaluation of brain
anatomy. They can be used to evaluate brain function via
assessment of cerebral perfusion parameters.

The main applications of brain perfusion imaging are
acute stroke and brain tumors. In the case of acute stroke, the
information obtained from brain perfusion imaging can be
used to evaluate the appropriateness of administering throm-
bolytic treatment, which can help to reduce the final volume
of dead tissue, but has some risks such as hemorrhages. The
results are used to evaluate the possible benefits. In the case
of tumors, they are used to distinguish tumor characteristics
and follow tumor development, possibly also after treatment
to see whether it has been effective.

Evaluating tissue time-concentration curve of a contrast
agent intensity after its injection, has become possible on
time scales comparable with the mean transit time (MTT).
To achieve this, deconvolution is used in perfusion imaging
to obtain the Impulse Response Function (IRF) that is then
used to create parametric maps of relevant haemodynamic
quantities such as Cerebral Blood Flow (CBF), Cerebral
Blood Volume (CBV) and Mean Transmit Time[1], [2], [3].
Cerebral blood flow indicates the volume of blood flowing
through a given voxel in a given time. Cerebral blood volume
refers to the volume of blood in a given voxel of brain
tissue. Mean transit time designates the average time blood
takes to flow through a given voxel of brain tissue, it is
commonly measured in seconds. Time To Peak (TTP) and
Time of Arrival (TA) are two other parameters offen be
measured [4]. TA refers to the time of arrival of the contrast
agent in the voxel after injecting contrast agent. TTP refers
to corresponding time of the maximum contrast variation.
In previous studies, Singular Value Decomposition (SVD)
and its variants were proved to be applicable to perform
deconvolution in perfusion imaging [5]. As the raw data
obtained from CT or MR scanners is not noise free and as
deconvolution is very sensitive to noise, truncated SVD is
used to minimize the noise impact [6], [7], [8], [9].

Using voxel based different local Arterial Input Functions
(AIF), instead of a single global one, was introduced and
showed its advantages to improve the accuracy of parametric
maps [10], [11]. However, using local AIFs leads to fairly
slow performance as it becomes necessary to decompose
many thousands of different AIFs. The running time for the
perfusion imaging analysis can be more than half an hour.
As time is crucial in clinical diagnosis, there is pressing
demand to speed up the analysis.

General-purpose computing on graphics processing units
(GPGPU) [12] are state-of-the-art approaches to many com-
puting applications. They provide a highly parallel comput-
ing environment due to their huge number of computing
cores and constitute an affordable, high-performance com-
puting platform.

In this paper, we present a GPGPU-based brain perfusion
imaging analysis implementation using the CUDA program-



ming model. We also compared the performance of the serial
and parallel perfusion imaging analysis methods.

II. ALGORITHM FOR PERFUSION IMAGING

From a CT or MR scanner, we get a series of brain images
at different sampling times. For each voxel, we collect data
at specific time intervals to build a tissue time-concentration
curve of contrast agent intensity, which is also called volume
of fluid (VOF) curve. This curve will be referred to as Ct.

The other input is the local AIF matrix, which is referred
to as Ca. First of all, a local AIF vector is generated by
measuring a small set of vessels in a specified area near the
voxel of interest. Then a local AIF matrix is created from
the local AIF vector as follows:

Ca = ∆t


Ca(t1) 0 · · · 0
Ca(t2) Ca(t1) · · · 0

...
...

. . .
...

Ca(tN ) Ca(tN−1) · · · Ca(t1)

 (1)

where (t1, t2, · · · , tN ) is the sampling time,
(Ca(t1), Ca(t2), · · · , Ca(tN )) is an arterial input function
given as an input and ∆t is time scale.

In perfusion imaging, the output we want to obtain is
Impulse Response Function (IRF), which is referred to as h.

The volume of fluid, Ct, the Ca, and IRF h satisfies the
following equation:

Ct = Ca ⊗ h+ ε (2)

where ⊗ denotes convolution and ε is the noise.
Finally, the CBF, CBV and MTT for each voxel are

calculated as follows:

CBF = Max(h) (3)

CBV =

∫ ∞
0

h(t) dt (4)

MTT = CBF/CBV (5)

Singular Value Decomposition (SVD) is one of the most
popular techniques to solve deconvolution problems in per-
fusion imaging. Suppose Ca from Equation (1) is an m-by-m
matrix, there exists a factorization such that:

Ca = U ·W · V T (6)

where U is an m×m unitary matrix, W is m× n diagonal
matrix and V ∗ is the transpose of an n×n unitary matrix V.
A common convention is to order the diagonal matrix W in
a decreasing order and this diagonal entries of W are known
as the singular values of original matrix Ca.

The C−1a can then be written as:

C−1a = V ·W−1 · (UT ) (7)

To solve the deconvolution problem in Equation (2), The
solution can be simply delivered after applying SVD:

h = V ·W−1 · (UT · Ct) (8)

Figure 1. CUDA Data and Control Flow

Furthermore, as rows in Ca in Equation (2) are close
to linear combinations, the deconvolution is an ill-posed
problem, hence, it is very sensitive to noise. Truncated SVD
is introduced to minimize the noise. In truncated SVD, a
threshold is added and elements of the diagonal matrix W
whose value is smaller than this threshold will be set to zero
[7], [8].

III. CUDA FOR GPGPU

A. What is CUDA

Compute Unified Device Architecture (CUDA) is a par-
allel computing architecture developed by NVIDIA in 2006
[13] with an associated software toolkit. It is the entry point
for developers who prefer high-level computer program-
ming, compared with Open Computing Language (OpenCL),
which is the entry point for developers who want low-level
Application Programming Interfaces (APIs).

C for CUDA offers programmers a simple way to write C-
like programs for GPGPUs. It consists of a set of extensions
to the C language for code running on CPUs and a runtime
library for code running on GPUs. In addition, it allows
programmers to access GPUs via low level APIs to avoid
the overhead graphics APIs common with. It significantly
reduces the runtime overhead of GPGPU applications. As
a result, CUDA has become one of the most popular
programming languages for GPU programming.

B. CUDA Data and Control Flow

Figure 1 is a typical example of CUDA processing:
1. Copy data from main memory to GPU memory.
2. CPU instructs the GPU to start processing.
3. GPU executes in parallel on each core.
4. Wait for completion.
5. Copy the result from GPU memory to main memory.
6. CPU acts on result, and return to step 1.

IV. ALGORITHM

Truncated Singular Value Decomposition mentioned
above is used to calculate the IRF. The following defines
the variables in the pseudo code.
Input: 4D MR or CT image data stored in Nifti format [14]
file.
Output: A set of CBF, CBV and MTT colored maps.
Time: the number of time intervals.



ALGORITHM 1 - SERIAL PERFUSION IMAGING ANALYSIS

1 A(1 : Time, 1 : Size)← 4D MR or CT image data
2 if DoImageDenoising = true
3 then A′(1 : Size, 1 : Time)← reorganise A(1 : Time, 1 : Size)
4 else A′′(1 : Size, 1 : Time)← Denoise and reorganise A′(1 : Size, 1 : Time)
5 for i← 1 to dim
6 do Generate localAIF (1 : Time)
7 IRF (1 : Time)← Deconvolution result (A”(i,1:Time) & localAIF(1:Time))
8 CBF (i)←Max(IRF (1 : Time))
9 CBV (i)← Sum(IRF (1 : Time))

10 MTT (i)← CBV (i)/CBF (i)
11 CBF colored map ← CBF(1:Size)
12 CBV colored map ← CBV(1:Size)
13 MTT colored map ← MTT(1:Size)

ALGORITHM 2 - PARALLEL PERFUSION IMAGING ANALYSIS

1 CPU.A(1 : Time, 1 : Size)← 4D MR or CT image data
2 GPU.A(1 : Time, 1 : Size)← CPU.A(1 : Time, 1 : Size)
3 GPU: Parallel do, shared(A, A’, A”)
4 if DoImageDenoising = true
5 then GPU.A′(1 : Size, 1 : Time)← reorganise GPU.A(1 : Time, 1 : Size)
6 GPU.A′′(1 : Size, 1 : Time) = GPU.A′(1 : Size, 1 : Time)
7 else GPU.A′′(1 : Size, 1 : Time)← Denoise and reorganise GPU.A(1 : Time, 1 : Size)
8 GPU: Parallel do, private(localAIF, i, IRF ), shared(A,CBF,CBV,MTT )
9 for n← 1 to Dim3

10 do for i← 1 to Dim1×Dim2
11 do Generate localAIF (1 : Time)
12 IRF ← Deconvolution result (GPU.A”(i+n × Dim1 × Dim2,1:Time) & localAIF(1:Time))
13 GPU.CBF (i+ n×Dim1×Dim2)←Max(IRF )
14 GPU.CBV (i+ n×Dim1×Dim2)← Sum(IRF )
15 GPU.MTT (i+ n×Dim1×Dim2)← GPU.CBV/GPU.CBF
16 CPU.CBF (slice n)← GPU.CBF (slice n)
17 CPU.CBV (slice n)← GPU.CBV (slice n)
18 CPU.MTT (slice n)← GPU.MTT (slice n)
19 CBF colored map ← CPU.CBF (slice n)
20 CBV colored map ← CPU.CBV (slice n)
21 MTT colored map ← CPU.MTT (slice n)

Dim1, Dim2, Dim3: the size of each dimension.
Size: the size of each 3D brain image which equals to
Dim1×Dim2×Dim3.
A(): a 4D array used to store data directly read from brain
images.
A’(): a 4D array used to store data after reorganization.
A”(): a 4D array used to store data after denoising.
IRF: a 1D array used to temporary store the result of
deconvolution.
CBF(),CBV(),MTT(): 3D arrays used to store the analyzed

result.
CPU.A: Parameter A is stored on the CPU.
GPU.A: Parameter A is stored on the GPU.
GPU A← B: Operation A← B is executed on the GPU.
GPU.A ← CPU.A: Copy data from CPU to GPU.
CPU.A ← GPU.A: Copy data from GPU to CPU.



A. Serial Perfusion Imaging Analysis

The algorithm for perfusion imaging analysis without
parallelization can then be written as Algorithm 1.

The first step (Line 1) is to load MR or CT imaging data
stored in NIfTI format file. The computational complexity
of step one is O(time ∗Dim1 ∗Dim2 ∗Dim3).

As in deconvoluting step (Line 3), we always read the
intensity value of one voxel along all of the time intervals
together, we can optimise the data localization and reduce
the cache swap cost if data is organized in the form of
Dim1 ∗ Dim2 ∗ Dim3 ∗ time. So the second step is to
reorganize data into this form. The computational complex-
ity of this step is O(time ∗Dim1 ∗Dim2 ∗Dim3).

As blood always flows from one cell to its neighbors, the
intensity values should be continuous. This allow us to use
an image level denoising method (Line 4) such as applying
2D, 3D and 4D weighted mean filters. The computational
complexity of this step is also O(time ∗ Dim1 ∗ Dim2 ∗
Dim3).

Line 6 to 10 is the deconvolution. This operation runs
voxel by voxel. The most expensive part in the deconvolution
is to decompose local AIF matrices using singular value de-
composition whose computational complexity is O(time2)
for each time ∗ time matrix. The computational complexity
of deconvolution can be roughly considered as the same as
decomposition: O(time2). Using SVD, three time2 local
arrays and one time array is required for each voxel. So
the space complexity of each deconvolution is (3 ∗ time2).
Note that all of these arrays are local data and will be freed
immediately after deconvolution calculation completes.

Furthermore, as voxel based deconvolution in Line 5 to
Line 10 needs to be repeated Dim1 ∗Dim2 ∗Dim3 times,
the overall computational complexity is O(Dim1 ∗Dim2 ∗
Dim3∗time2). This is the most expensive part of the whole
workflow, more details can also be found in Section V-B.

B. Parallel Perfusion Imaging Analysis

As GPGPUs is an ideal solution for matrix operations;
it can be expected to improve the performance of Data
reorganization and Denoising steps. In the deconvolution
step, the deconvolution of different voxels are pleasingly
parallel tasks, so that there is little effort required to separate
the problem into parallel tasks and there is no dependency
or communication between those parallel tasks, parallel im-
plementation can be easily achieved. The parallel algorithm
for the whole workflow can then be written as Algorithm 2.

For the serial algorithm, the first step in the parallel
implementation is to load images into CPU memory (Line
1). The implementation of this step is exactly as before,
so its computational complexity remains O(time ∗Dim1 ∗
Dim2 ∗Dim3).

Line 2 is an extra step, as mentioned in section III-B,
we need to copy data from CPU memory to GPU memory
first. Furthermore, we also need to copy results from GPU

Table I
COMPUTATION TIME FOR SVD (IN SECONDS)

Matrix Size MATLAB MKL GPU
64 x 64 0.01 0.003 0.054

128 x 128 0.03 0.014 0.077
256 x 256 0.210 0.082 0.265
1K x 1K 72 11.255 3.725
2K x 2K 758.6 114.625 19.6
4K x 4K 6780 898.23 133.68

memory back to CPU memory before we can write them
into parametric maps (Lines 16 to 18).

The Data reorganization (Line 5) and Denoising (Line
7) steps are matrix operations. As GPGPUs are good at
matrix operations, these two steps can be simply optimized
by assigning one GPU thread to each matrix element.

Lines 7 to 15 are the most expensive part of the whole
workflow. Decomposition of each local AIF matrix (the
dominant part of deconvolution), whose size is 80 × 80, is
not large enough to be parallelised (Section IV-C). Con-
sequently, we assign each decomposition to different GPU
threads. Synchronization and result colletcion is performed
as a sequence of operation on slice. The reason of doing
this is that it reduces the total local memory requirement
and enables users to access some results before the whole
workflow finishes.

The last step, Drawing parametric maps, is also the same
as in the serial version. The computational complexity is
also O(time×Dim1×Dim2×Dim3).

C. Using GPGPU in SVD

Lahabar [15] compared the performance in terms of speed
of SVD in MATLAB, SVD in Intel Math Kernel Library
(MKL) 10.0.4 LAPACK and his implementation on GPU
using CUDA. The test environment is an Intel Dual Core
2.66GHz PC and NVIDIA GTX 280 graphics processor. Their
study focuses on evaluating the performance of parallel and
serial versions of the SVD algorithms rather than some
specified application of SVD.

As the largest data set in our case was a 80× 80 matrix,
using GPGPU for individual matrix decomposition is not
suitable according to the results in Table I from [15]. From
this table, SVD using GPU will improve the performance
only if the matrices are larger than 1K×1K but will impair
the performance for small matrices. In our case, the matrices
we want to decompose range from 44 × 44 to 80 × 80
which are too small to obtain improvement. As a result,
using GPGPU for individual matrix decomposition will not
gain performance improvement.



Table II
PERFORMANCE OF EACH STEP

Step Serial Running Time (s) Parallel Running Time (s) Speedup Factor
Brain data load 0.10 0.10 Not Applied

Data copying (CPU to GPU) Not Applied 0.17 Not Applied
Data reorganization 1.1 0.01 110

Reorganization & denoising 4.3 0.01 430
Deconvolution 2.1×103 8.2×102 2.5

Data copying (GPU to CPU) Not Applied 0.01 Not Applied
Draw parametric maps 0.20 0.20 Not Applied

Overall 2.1×103 8.2×102 2.5

Table III
OVERALL PERFORMANCE

Data Size (Dim1 ×
Dim2×Dim3× time)

Serial Running Time (min) Parallel Running Time (min) Speedup Factor

128*128*11*44 6.0 1.25 4.8
128*128*22*80 35 13.5 2.6

V. PERFORMANCE

A. Experimental Environment

The performance tests run on ECDF (The Edinburgh
Compute and Data Facility) 1. In our experiment, the worker
node we use contains 4 Intel(R)Xeon(R) CPU cores and
connects to two Tesla C1060 GPUs which provide 480
GPU cores in total. The frequency of each CPU core is
3.0 GHz and the frequency of GPU core is 1.44 GHz. Its
single precision floating point performance (peak) is 2.073
TFLOPS. It has 2.0 GB of global memory and 8 KB of
shared memory. The parametric maps produced by serial and
parallel implementations are identical. In the other word, the
quality of the results is not changed. The test data we used
are simulated images contains 128 × 128 × 22 voxels and
the number of time intervals is 80, which is the same as MR
images. The results showed below are the arithmetic mean
of ten repeated tests.

B. Performance for Each Step

Table II indicates our measurement of the performance
for each step in the whole workflow.

The steps Brain data load and Draw parametric maps
are not suitable for parallelization and their running time
in parallel version can be considered as the same as in the
serial version.

In parallel deconvolution, the first step of parallel work-
flow is to copy data from CPU memory to GPU memory.
The input data is about 55 MB, which is mainly an array
with 128×128×22×80 short elements. The copying takes
0.17 seconds. The result size to be moved back from GPU
memory to CPU memory is much smaller and only takes
0.01 second to perform the copy back operation.

In serial deconvolution, the Reorganization & Denoising
step, which performs the reorganization and denoising prior

1ECDF: https://www.wiki.ed.ac.uk/display/ecdfwiki/Home

to deconvolution, takes 4.3 seconds compared to the 1.1 sec-
onds for reorganization only. After applying parallelization
to these steps, the performance dramatically reduced to 0.01
seconds. The speedup factors are 430 and 110, respectively.

The running time of the Deconvolution step, the most
expensive one, reduced from 2100 seconds to 820 seconds
after applying parallelization. The speedup factor is 2.6.

This result supports the computational complexity analy-
sis mentioned in section IV-A and section IV-B.

C. Overall Performance

As the running time is dominated by Deconvolution step,
the overall running time can be roughly considered as the
same as the running time of deconvolution step which is also
showed in Table II. In other words, the final performance
depends on Deconvolution step and the overall speedup
factor is also 2.6.

D. Comparison with Previous Approach

C. Lorenz [10] did experiments on deconvolution using
local AIFs. They did performance experiments on a small
data set size level, which was 128 × 128 voxels per slice,
11 slices and the number of time intervals was 44. The
overall running time (Table III) to finish their deconvolution
is six minutes with speedup factor of 4.8. This is reduced to
one and a quarter minutes after applying GPGPU approach.
However, in our research, the data size has increased to
128×128 voxels per slice, 22 slices and the number of time
intervals is now 80, approximately four times as much data.
The serial running time for such a data set would expand
to around 35 minutes (estimated) using their approach. This
is close to the results from our experiments. After using
GPGPUs, the running time reduced to 12 minutes, with a
speedup factor of 2.6.



VI. CONCLUSION

In this paper, we introduced an implementation of per-
fusion imaging analysis which provides considerable speed
improvement and equivalent quality of results than current
serial implementations. The Deconvolution step is the bot-
tleneck for perfusion imaging analysis, although the speedup
factor is more than a hundred for both the Data reorganiza-
tion and Denoising steps, the overall performance speedup
is 2.6. The estimated improvement over previous methods
on similar data is a facter of 4.8. The speedup depends on
data size and as resolution and number of time steps used
for brain imaging increases, this approach will show great
benefits. In clinical diagnosis, time is vitally important espe-
cially for acute stroke cases, the earlier we deliver the result
for diagnosis, the higher the possibility that patients will be
cured. Therefore, performance is as important as accuracy
in perfusion imaging and our implementation can be used
to help clinical diagnosis. In conclusion, using GPGPU is a
desirable approach in perfusion imaging analysis.
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