OpenEnsemble System and Its
Reputation Mechanism
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Traditional ensemble learning

Fixed set of base classifiers
Fixed set of original data set
Simple aggregation mechanism

— Focus on more diverse and accurate base
classifiers

Classification
Eg) Boosting, Bagging and Random Forest



Environment changed

* We live in the open world

— Unbounded set of classifiers - simple sensors or
even humans

— Someone appears and someone disappears.

e Data is changing over time.



Service Choreography System

* Under the changed environment
* OpenKnowledge project
* We can program interaction models (workflows)
to be aggregation methods.
— IMO: accuracy (general interaction model)
— IM1: F-measure
— IM2: AUC
— IM3: quick classification
— IM4: microRNA classification
— M5 ...



Contact Problem
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 When apply an IM, we cannot expect a good
classification results from classifiers that
attend to the IM.



The missing link — Reputation
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Higher score and avaiable
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Research hypothesis

* Traditional ensemble learning >

OpenEnsemble system without the reputation
mechanism (OE_null)

* Traditional ensemble learning == (<)

OpenEnsemble system with the reputation
mechanism (OE_R)

 We can define a general and automatic
reputation mechanism for ensemble
classification.



Reputation mechanism should statisfy

 {OE} R’s performances approaches TE
— Mo, IMs, IMy, ..

 {OE} R approahces TE in practical time
— IMq

 {OE} R applicable to realistic problems
— [Mp, IM

* R needs minimal or no parameterisation
—R
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Experiments

* |Interaction models: LCC
* Classifiers: Weka machine learning framework



Table 1. Datasets. The sizes of examples are for one fold from total five folds of a dataset.

Dataset Examples Training Query Test Attr. Ratio of Class
spambase 4601 2761 920 920 58 2788:1813
sick 3772 2264 754 754 30 3541:231
kr-vs-kp 3196 1918 639 639 37 1669:1527
credit-g 1000 600 200 200 21 700:300
tic-tac-toe 958 576 191 191 10 332:626
diabetes 768 468 153 153 9 500:268

Ensemble pool size: 50 base classifiers

Ensemble size: 3
Accuracy, F-measure and AUC
IMO (general for accuracy)
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Figure 9, Accuracy comparison
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Figure 10. F-measure comparison
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Comparison Using ROC Area
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Figure 11. Accuracy comparison



Thank you, DIR group



