## Use of parallelism on MSA tools

#### Miquel Orobitg Cortada

September 9, 2011



・ロト ・回ト ・ヨト ・ヨト

1/46

## Index



#### 2 MSA Tools

- T-Coffee
- Parallel-TCoffee

#### Proposed Solutions

- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

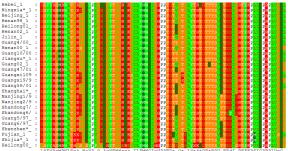
## Index



#### 2 MSA Tools

- T-Coffee
- Parallel-TCoffee

#### Proposed Solutions


- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

## Sequence Alignment

#### Definition

A sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences.



1SFYRsMRWLTqk NaYP Q AqYTNNrgk ILFMWGInHPPTDt Qt LYt4tDTtTSV TEdI RTFKP6IGPRPLVng

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

# Sequence Alignment

#### Types

- Pairwise Alignments.
- Multiple Sequence Alignments (MSA)

Multiple Sequence Alignment Global Optimization Methods

#### Dynamic programming

- Is a technique to identify the globally optimal alignment solution.
- Exists different algorithms (global, local, glocal).

#### Problems

• Computationally difficult to produce the alignment (NP-complete problem).

#### Sequence Alignment Heuristics (1/2)

#### Progressive Alignment (PA)

- The alignment is produced by a successive construction of pair-wise alignments.
- Advantages:
  - Good compromise between time spend and accuracy.
- Disadvantages:
  - Heavy dependence on the initial alignment.
  - It is not guaranteed to converge to a global optimum.
- Common methods: T-Coffee and ClustalW

#### Sequence Alignment Heuristics (2/2)

#### Iterative methods

- Tries to reduce the errors made in progressive methods.
- Works similarly to progressive methods but repeatedly realign the initial sequences as well as adding new sequences to the growing MSA.

<ロ> (四) (四) (三) (三) (三) 三

8/46

• Common methods: Dialign and Muscle

**T-Coffee** Parallel-TCoffee

## Index





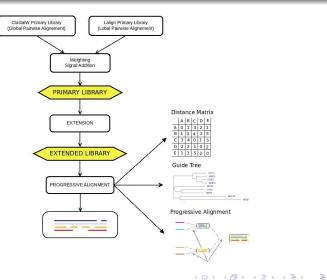
- T-Coffee
- Parallel-TCoffee

#### Operation Proposed Solutions

- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

**T-Coffee** Parallel-TCoffee


## T-Coffee

#### T-Coffee

- Is a MSA method that combines the consistency based scoring function COFFEE with the progressive alignment algorithm.
- Advantages:
  - Improvement in the accuracy compared with progressive methods.
  - Reduce the dependency on the initial alignment.

**T-Coffee** Parallel-TCoffee

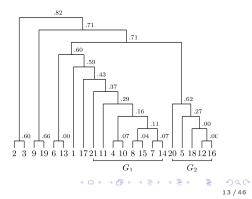
# T-Coffee



◆ 注 ▶ 注 ∽ Q (~ 11 / 46

**T-Coffee** Parallel-TCoffee

### T-Coffee 1. Library


#### Library

- List of pairs of alignments evaluated by a weight that is given by a percentage of identity.
- Generated using different resources.
- Can be extended by transitive properties.
- Used in the progressive alignment.

**T-Coffee** Parallel-TCoffee

#### Structure 2. Distance Matrix (DM) & Guide Tree (GT)

| Dist | А    | В    | С    | D    | Е    | F    | 211 |
|------|------|------|------|------|------|------|-----|
| A    | 0.00 | 0.71 | 5.66 | 3.61 | 4.24 | 3.20 | N   |
| В    | 0.71 | 0.00 | 4.95 | 2.92 | 3.54 | 2.50 |     |
| c J  | 5.66 | 4.95 | 0.00 | 2.24 | 1.41 | 2.50 |     |
| D    | 3.61 | 2.92 | 2.24 | 0.00 | 1.00 | 0.50 | 1   |
| E    | 4.24 | 3.54 | 1.41 | 1.00 | 0.00 | 1.12 |     |
| F    | 3.20 | 2.50 | 2.50 | 0.50 | 1.12 | 0.00 | U   |



**T-Coffee** Parallel-TCoffee

### Structure 3. Progressive Alignment

#### Progressive Alignment (PA)

- Align the two input sequences using the information of the library.
- The order is determined by the alignment guide tree.

**T-Coffee** Parallel-TCoffee

## Disadvantages

#### Library

- Size =  $N^2 * L$
- Primary library complexity:  $O(N^2L^2)$
- Extended library complexity:  $O(N^3L^2)$

#### Progressive aligment

- Requires n-1 partial multiple alignments using the library. Each alignment can be computation intensive.
- Complexity: O(NL<sup>2</sup>)

T-Coffee Parallel-TCoffee

## Index

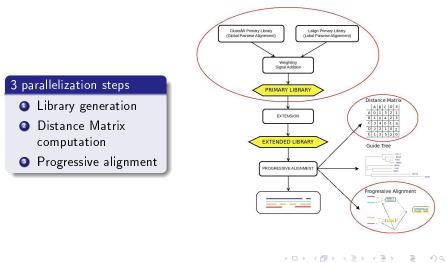




### 2 MSA Tools

- T-Coffee
- Parallel-TCoffee

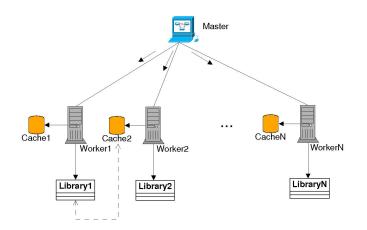
#### Proposed Solutions


- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

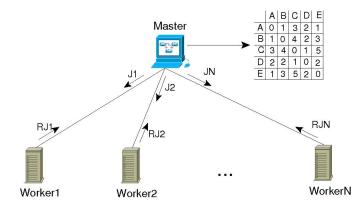
イロト イヨト イヨト イヨト 3 16/46

T-Coffee Parallel-TCoffee


### Parallel-TCoffee Parallelization analysis

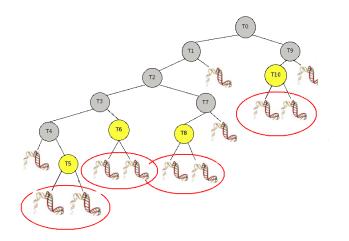


17/46


T-Coffee Parallel-TCoffee

#### Parallel-TCoffee 1. Library Generation

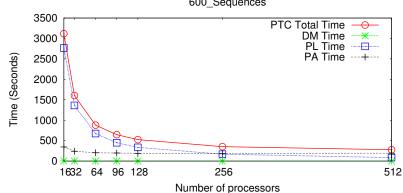



T-Coffee Parallel-TCoffee

#### Parallel-TCoffee 2. Distance Matrix



T-Coffee Parallel-TCoffee


#### Parallel-TCoffee 3. Progressive Alignment



< □ > < 큔 > < 클 > < 클 > 클 → ○ < ♡ 20 / 46

T-Coffee Parallel-TCoffee

#### Parallel-TCoffee Performance PF00231 Execution times (554 sequences)



600\_Sequences

Balanced Guide Tree Multiple Trees

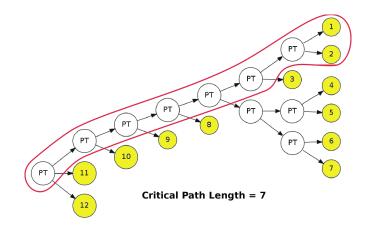
## Index





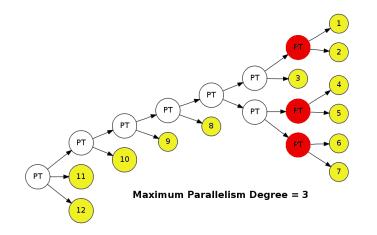
- T-CoffeeParallel-TCoffee
- Parallel- I Collee

Proposed Solutions
 Balanced Guide Tree


Multiple Trees

#### 4 Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


Balanced Guide Tree Multiple Trees

#### NJ Guide Tree analysis Critical Path (CP)



Balanced Guide Tree Multiple Trees

NJ Guide Tree analysis Maximum Parallelism Degree (MPD)



Balanced Guide Tree Multiple Trees

# NJ Guide Tree analysis

| Sequence Set | Nseqs | CP/OCP | MPD |
|--------------|-------|--------|-----|
| PF00859      | 105   | 37/7   | 19  |
| PF00074      | 442   | 24/9   | 137 |
| PF00349      | 515   | 21/10  | 144 |
| PF01057      | 563   | 84/10  | 87  |
| PF00007      | 731   | 54/10  | 186 |

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへぐ

25/46

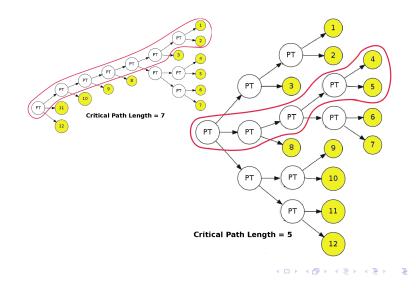
Balanced Guide Tree Multiple Trees

## NJ Guide Tree analysis

#### Guide Tree problems

- Trees generated with T-Coffee are unbalanced.
- Dependence between iterations.
- Low degree of parallelism.
- Limited scalability.

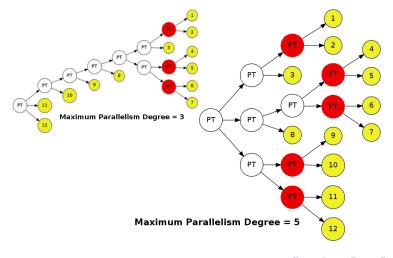
Balanced Guide Tree Multiple Trees


## Balanced Guide Tree heuristic

#### Balanced Guide Tree (BGT)

- BGT: Heuristic to balance the nj guide tree maintaining the alignment accuracy.
- Goals:
  - Reduce the number of precedence relations.
  - Decrease the critical path.
  - Increase the parallelism degree.

Balanced Guide Tree Multiple Trees


#### Balanced Guide Tree heuristic BGT Tree Features - Critical Path (CP)



28/46

Balanced Guide Tree Multiple Trees

#### Balanced Guide Tree heuristic BGT Tree Features - Parallelism Degree (PD)



4 ロ ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) ト ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) +

Balanced Guide Tree Multiple Trees

#### BGT Results Tree features comparison

|               | Standa | rd Tree | BGT Tree |     |  |
|---------------|--------|---------|----------|-----|--|
| Sequence Set  | CP/OCP | MPD     | CP/OCP   | MPD |  |
| PF00859 (105) | 37/7   | 19      | 8/7      | 51  |  |
| PF00074 (442) | 24/9   | 137     | 14/9     | 216 |  |
| PF00349 (515) | 21/10  | 144     | 15/10    | 249 |  |
| PF01057 (563) | 84/10  | 87      | 17/10    | 274 |  |
| PF00007 (731) | 54/10  | 186     | 24/10    | 355 |  |

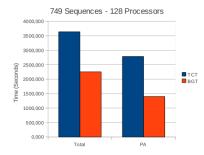
30/46

Balanced Guide Tree Multiple Trees

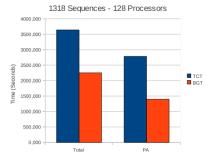
#### BGT Results Alignment Accuracy

|          | T-Coffee |       | В     | зт    |
|----------|----------|-------|-------|-------|
| Balibase | SP       | тс    | SP    | тс    |
| Ref 1    | 0.764    | 0.579 | 0.763 | 0.577 |
| Ref 2    | 0.877    | 0.362 | 0.877 | 0.363 |
| Ref 3    | 0.785    | 0.393 | 0.783 | 0.390 |
| Ref 4    | 0.804    | 0.419 | 0,805 | 0.426 |
| Ref 5    | 0.788    | 0.424 | 0.786 | 0.426 |
| Ref 6    | 0,807    | 0,393 | 0,807 | 0,402 |
| Ref 7    | 0,804    | 0.360 | 0.809 | 0.353 |
| Ref 8    | 0.700    | 0.180 | 0.700 | 0.180 |
| Ref 9    | 0.742    | 0.481 | 0.742 | 0.482 |
| Tot al   | 0.783    | 0.457 | 0.783 | 0.458 |

31 / 46


Balanced Guide Tree Multiple Trees

#### BGT Results Alignment Accuracy


|         | T-Coffee | BGT   |
|---------|----------|-------|
| Prefab  | Q        | Q     |
| 0 - 15  | 0.421    | 0.422 |
| 15 - 25 | 0.724    | 0.725 |
| 25 - 35 | 0.877    | 0.875 |
| 35 -100 | 0.955    | 0.954 |
| Total   | 0.711    | 0.711 |

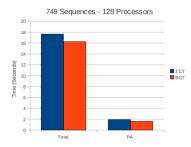
Balanced Guide Tree Multiple Trees

#### BGT Results Parallel-TCoffee Performance



Total: Total execution time PA: Progressive alignment execution time




・ロン ・回 と ・ ヨン ・ ヨン

æ

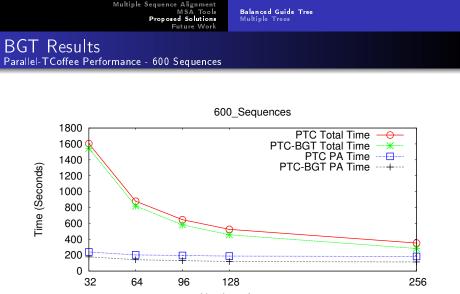
33/46

Balanced Guide Tree Multiple Trees

### BGT Results ClustalW-MPI Performance



120,000 100,000 60,000 40,000 20,000 Total PA


イロト イヨト イヨト イヨト

æ

34 / 46

1318 Sequences - 128 Processors

Total: Total execution time PA: Progressive alignment execution time



Number of processors

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
35 / 46

Balanced Guide Tree Multiple Trees

## Index



### 2 MSA Tools

- T-Coffee
- Parallel-TCoffee

#### Proposed Solutions

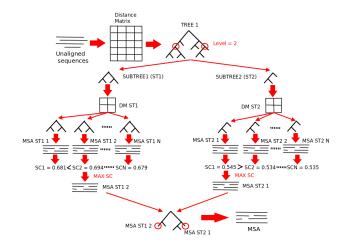
- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

Balanced Guide Tree Multiple Trees

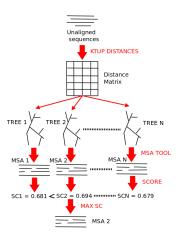
## Proposal

#### Proposal


- Create multiple different subtrees of a guide tree.
- Calculate the alignment of each subtree and its score.
- Use the alignment which gets the best score.

#### Objective

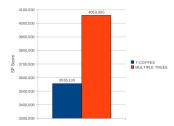
• Improve the alignment accuracy.

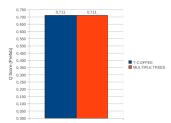

Balanced Guide Tree Multiple Trees

#### Proposal Algorithm proposal

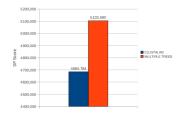


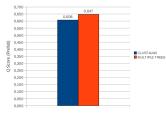
Balanced Guide Tree Multiple Trees


# First Implementation Algorithm




Balanced Guide Tree Multiple Trees


#### Experimentation results Prefab - SP Score

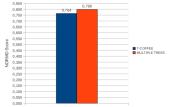

#### T Coffee:

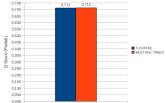




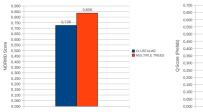
#### ClustalW:

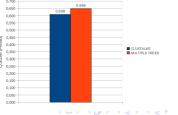






∃ √QC 40/46

Balanced Guide Tree Multiple Trees


#### Experimentation results Prefab - NORMD Score


#### T Coffee:

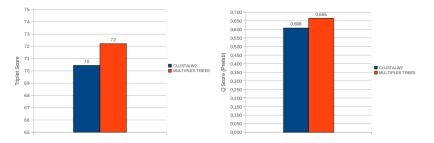




ClustalW:






ଏ ଏ 1 / 46

3

Balanced Guide Tree Multiple Trees

#### Experimentation results Prefab - Triplet Score

ClustalW:



Balanced Guide Tree Multiple Trees

## Disadvantages

#### Disadvantages

- To find an evaluation score that defines the best tree.
- The MSA with the best score is not always the best MSA using the benchmark scores.

## Index



#### 2 MSA Tools

- T-Coffee
- Parallel-TCoffee

#### Proposed Solutions

- Balanced Guide Tree
- Multiple Trees

#### 4 Future Work

## Future Work

#### Future Work

- Finish the implementation of the Multiple Trees algorithms.
- Test the performance of the Parallel Multiple Trees solution.

イロト イヨト イヨト イヨト

45 / 46

- Publish the Multiple Trees solution.
- Study new parallel algorithms for MSA.

## Questions?





## Universitat de Lleida

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 46 / 46