
Shahriar Bijani

30 Novermber 2012

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Open Multi-agent Systems (MAS): open
systems in which autonomous agents can join
and leave freely.

 In this talk:
Open (peer to peer) MAS that agents can
invent protocols for different applications and
share them.

 Open MAS have growing popularity (Poslad 07).

 Security is a major practical limitation to
open MAS.

 Security means: confidentiality, integrity and
availability.

 Our Assumption: there exists confidential
information in open MAS.

 My thesis :
 Study and categorise various attacks on open

MAS
 Review and classify different security solutions
 Focus on information leakage in LCC-based

systems
 Propose an information flow security analysis

based on a language-based approach
 Case study of cloud configuration management

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 a convenient complement to traditional
security mechanisms
 Why?
 Access control prevents information release...
 Encryption could guarantee the origin,

confidentiality and integrity of information, but
not its behaviour.
 A fundamental limitation: can not prevent

information from being propagated

 Sound type systems are a promising
language-based technique to specify and
enforce an information flow policy. (Sabelfeld &
Myers, 2003)

 In type checking approach:
 Every program term has a security type
 Security is enforced by type checking

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 LCC is a declarative language to execute
agents’ organisational models in a peer to
peer style.

 a choreography language based on pi-calculus
and logic programming.

Interaction Model := {Clause,...}

Clause := Role::Def

Role := a(Type, Id)

Def := Role | Message | Def then Def | Def or Def | null ← Constraint

Message:= M  Role | M  Role ← Constraint | M  Role |

Constraint ← M  Role

Constraint:= Constant | Term | Constraint  Constraint |

Constraint  Constraint

Type := Term

Id := Constant | Variable

M := Term

Term := Constant | Variable | a structured term in Prolog syntax

Constant := lower case character sequence or number

Variable := upper case character sequence or number

LCC language syntax:
Outgoing message: 
Incoming message: 
Conditional: ←
Sequence: then
Committed choice: or

 The rules are judgments of the form:  ⊢T : 
  : a type environment that maps a LCC term T to the

type  and its secrecy level.
 Security types:  = id  |  | op  | con 1/ 2

 Variables have only type id  .
 Other terms have only type  .
 Def commands have only type op .

 Constraint expressions have only types con 1/ 2.

Def := Role | Message | Def then Def| Def or Def | null <- Constraint

Constraint:= Constant | Term | Constraint  Constraint | Constraint  Constraint

 Security levels:
For simplicity it could be assumed that there are
two levels of secrecy L (low) and H (high).

 Security levels are directly assigned to LCC
terms by annotations in the code.

 the terms which are not annotated may be
assigned to the highest security level.

≤ means information flow is permitted from left to right

≤ ≤ , ≤≤Γ ⊢ : , ≤Γ ⊢ :

Source of illegal information flows in LCC:
 Explicit flows (operations are independent of the

value of their terms)
I. Message passing
II. Role assignment
III. Constraints

 Implicit Flows disclose some information
through the program control flow.

 Permissible information flows in sending a message based
on the security levels of the sender, the receiver and the
message

 Message => a(receiver, R)

Sender Receiver Message Permissible Flow

L L L Yes
L L H No
L H L Yes
L H H No
H L L Yes
H L H No
H H L Yes
H H H Yes

 Permissible information flows regarding the security
levels of the role and the agent identifier

 a(role, agentID)::

Agent Identifier Role Permissible Flow

L L Yes

L H No

H L Yes

H H Yes

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 The type system has been implemented in Prolog
 A GUI prototype in C#.NET.

 Existing commercial tools for VMs management are
usually based on a centralised control.

 Centralised solution may not be interesting for large
scale and complex clouds.

 We proposed a less centralised multi-agent VM
management framework:
 P. Anderson, S. Bijani, A. Vichos, Multi-agent Negotiation of Virtual

Machine Migration Using LCC, 6th KES Int. Conf., KES-AMSTA 2012.
 P. Anderson, S. Bijani, H. Herry, Multi-Agent Virtual Machine

Management Using the Lightweight Coordination Calculus, IJICIC
Journal (selected to be published).

Physical Machine Agent 1 (PID1) Physical Machine Agent 2 (PID2)

role: idle

getPeerState

isOverLoaded?

role: overloaded

readyToMigrate(Need)

isUnderLoaded?

role: underloaded

isMigrationPossible?

migration(“ok”)

role: idle

role: idle

migration(PID1,PID2)

getPeerState

waitForMigration

role: idle

Migration policy:
unbalanced peers
interact to balance
their loads.

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(readyToMigrate, l).
label(Need, h).
label(underloaded, l).
label(PID2, l).

Explicit Flow from PID1 to PID2:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Explicit Flow from underloaded to PID2:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Implicit Flow from PID2 to PID1:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Implicit Flow from PID2 to PID1:
Forbidden

LCC code LCC Interpreter’s
Action

Security Type Rule Result

ready <= a(overload,pid1) then
(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)
then null <- wait()

) or (
migrate(notOk)=>a(overload,pid1))

Closed(c(ready <=

a(overload,pid1)))

sTypeCheck(ready<=
a(overload,pid1))

⊢ : , ⊢ :⊢ () <= (,):
OK

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)

then null <- wait()

) or (

migrate(notOk)=>a(overload,pid1))

satisfy(migratPossible(capa
city,need))
returns FALSE or
could not find the constraint

--

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)

then null <- wait()

) or (

migrate(notOk)=>a(overload,pid1))

Close(c(migrate(notOk)=
> a(overload,pid1))))

⊢ (,): , ⊢ ():⊢ () => (,):⊢ : , ⊢ 1⊢ , :⊢ : , ⊢ :⊢ : ∨

OK

={ ready: L, overload: L, pid1: L, need: L, capacity: H, migratePossible: L , migrate: L }

LCC code Security Type Rule Result

ready <= a(overload,Pid1) then
(migrate(ok) =>a(overload, Pid1)
<- migratPossible(Capacity, Need)
then null <- wait()

) or (migrate(notOk)=>
a(overload,Pid1))

⊢ : , ⊢ :⊢ () <= (,):
OK

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, Pid1)

<- migratPossible(Capacity, Need)

then null <- wait()

) or (migrate(notOk)=>

a(overload,Pid1))

⊢ (,): , ⊢ () (,)∶⊢ () (,) (,):⊢ (,): , ⊢ ():⊢ () => (,):⊢ : , ⊢ 1⊢ , :⊢ : , ⊢ :⊢ : ∨
⊢ : , ⊢ : , ⊢ :⊢ (,): ∨ ∨

Alarm

={ ready: L, overload: L, Pid1: L, Need: L, Capacity: H, migratePossible: L , migrate: L, … }

 Between different datacentres
 E.g. from a private cloud to a public cloud
 Not transparent to the user
 Needs more negotiation and configurations

An Interaction
diagram for an
offline VM
migration

PID1 PID2 SID21, …,SID2n CID

role: initial

getPeerState

hasExtraLoad?

role: emigrant

getVmProfile
readyToMigrate

canAcceptLoad?

role: host

!same_location
& migrationPossible? &

createNewVMs &
getServiceList

manage_services

migration(“ok”)

…

…

do(“start”)…

role: service

done(“start”)
…

role: client

do(“shutdown”)…

startService

role: initial

role: initial

sameLocation?

No
Yes

live Migration

getServiceList

manage_services

role: service

…

manage_clients

do (“redirect”)

SID11, … SID1n

…

done(“redirect”)

…

check (“running”)

confirm()

shutdownshutdown

redirect

clientList

getPeerState

a(initial, PeerID) ::

null <- getPeerState(Status) then

(% if the peer is underloaded (e.g.≤ %50), change the role to "emigrant"
(a(emigrant(Status), PeerID) <- isUnderLoaded(Status)) or

% if the peer's load > threshold (e.g. %50), but it still has free resources

% change the peer's role to "host" and send the peer's status

(a(host(Status), PeerID) <- canAcceptMoreLoad(Status))

or

% if the peer has no load, change the role to "shutdown"

(a(shutdown, PeerID) <- hasNoLoad(Status))

or

(a(initial, PeerID)) % otherwise, the peer is fully-loaded (recursion)

)

Annotations:
label(initial, l).
label(PeerID, l).
label(getPeerState, l).
label(Status, h).

Explicit flow from Status to PeerID:
Forbidden

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Pros
 proof of program correctness with reasonable

computation cost
 conservatively detects implicit and explicit

information flows and provides stronger security
assurance.

 Cons
 high false positive because possibility of run-time

information manipulation

 Cons
 It can not detect implicit information flows.
 It is not sound, because does not check all

execution paths of the program.

 A security type system is proposed for LCC to
analyse information flow.
 LCC interpreter is augmented with security

type check (dynamic check).
 A static security type check is implemented

for LCC.
 A Case study of cloud computing has been

analysed

