Shahriar Bijani

Information Leakage Analysis in

Open Multi-agent Systems:
A Case Study in Cloud Computing

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Introduction

Open Multi-agent Systems (MAS): open
systems in which autonomous agents can join
and leave freely.

In this talk:

Open (peer to peer) MAS that agents can
invent protocols for different applications and
share them.

Open MAS have growing popularity (Poslad o).

Introduction

Security is a major practical limitation to
open MAS.

Security means: confidentiality, integrity and
availability.

Our Assumption: there exists confidential
information in open MAS.

Introduction

My thesis :

Study and categorise various attacks on open
MAS

Review and classify different security solutions

Focus on information leakage in LCC-based
systems

Propose an information flow security analysis
based on a language-based approach

Case study of cloud configuration management

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Language-based Security

a convenient complement to traditional
security mechanisms
Why?

Access control prevents information release...

Encryption could guarantee the origin,
confidentiality and integrity of information, but
not its behaviour.

A fundamental limitation: can not prevent
information from being propagated

Language-based Security

Sound type systems are a promising
language-based technique to specify and

enforce an information flow policy. (Sabelfeld &
Myers, 2003)

In type checking approach:

Every program term has a security type
Security is enforced by type checking

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Lightweight Coordination Calculus (LCC)

LCC is a declarative language to execute
agents’ organisational models in a peerto

peer style.

a choreography language based on pi-calculus
and logic programming.

LCC Syntax

| nteraction Mddel := {Cause,...}

Cl ause : = Rol e: : Def

Role := a(Type, 1d)

Def := Role | Message | Def then Def | Def or Def | null - Constraint
Message:= M P Role | M b Role . Constraint | M U Role |

Constraint « MU Role

Constraint: = Const ant | Term | Constr ai nt U Const r ai nt |
Constrai nt U Constraint

Type := Term

|ld : = Constant | Variable

M:= Term

Term := Constant | Variable | a structured termin Prol og syntax

Constant := |l ower case character sequence or nunber

Vari abl e : = upper case character sequence or nunber

A LCC Example

Role a (requester, A) 1
N
Message out ask (X)=a(i1nformer,B) « Clause
Constraint query from(X, B) then
) >t+— Role definition |
| Message in tell (X)& a(informer, B) then
Recursion a (requester, A)
UJ

a(informer, B)
ask (X)<«< a(requester,A)then
tell (X)= a(requester,A)«
know (X)

LCC language syntax:
Outgoing message: b
Incoming message: U
Conditional: «
Sequence: then
Committed choice: or

Security Type System for LCC

The rules are judgments of the form: ' =T : @

[": atype environment that maps a LCC term T to the
type ¢ and its secrecy level.

Security types: ¢ =idt |t | opt | cont,/7,
Variables have only type idt .

Other terms have only typet .

Def commands have only type op .

Def := Role | Message | Def then Def| Def or Def | null <- Constraint

Constraint expressions have only types con 1./ ..

Constraint:= Constant | Term | Constraint U Constraint | Constraint U Constraint

Security Levels

Security levels:
For simplicity it could be assumed that there are

two levels of secrecy L (low) and H (high).

Security levels are directly assigned to LCC
terms by annotations in the code.

the terms which are not annotated may be
assigned to the highest security level.

Security Typing Rules for LCC

Tt el

r I_S: To, Fl—tlzrl,.

i T

—Id St t
e Tsx o= S s B e Ta NV T W sV T o
I'+-R:t, T'+ID:id T I''+—-a(R,ID):agentt, T WmEopT
Agnt Role
I'-a(R,ID): agent T I''~a(R,ID) ::E: opTt
a(R,ID) :: Def, ' —w a(R,ID) agent T F-C:cont'/T"”
(R, ID) :: Def (R,ID) ag . Ll

I' -my;:agentt

I''-A:agentt, ' WM:t
IF'-M= A:o0opTt

Snd

L'FFs® V't F Rl Tl F B

r--—C:opt'/t"”

I' -my;:agentt, ' W M:T
F-M<A:0opT

Rsv

I b= PREgciibmicnbnl 0D T

'+ Cy:cont'y /T3, + Cr:cont'a/T";
I + ClACZ:Con.r’lf\‘[’z/‘r”l\/l‘”z

F'-C:cont/t', T'-M < A:0pT
r-C—M<<=A:0p<

If1

F''-null:t, ''+-C:opt'/T
I''null < C:0opt

I3

I''-Aq:opt, I'+-As:0pT
I'-A;thenA:opt

Seq

3
Call

r+ Cy:cont’'y /7"y, + Co:con 1’5 /T"">5
I + C1VCZ:CO'n.T'l/\T'Z/THIVTHZ

Or

F'-C:cont’'/t, T'-M = A:0op T

'- M=>A<«<C:0p< L

'+-a(R,N:agentt, '+ C:cont'/T

If4
I'-a(R,I) < C:opt 7

'+-As:opt, I'-A,:0p< .
Choice

I'-A,orAs:opt

LCC Subtyping Rules

<@,,0, <
@ <@ Reflex i lah i d i Aak Trans

P1 = @3

TET: @, p <@’
'-T: ¢’

Subsum

< means information flow is permitted from left to right

Information Flows in LCC

Source of illegal information flows in LCC:

Explicit flows (operations are independent of the
value of their terms)

Message passing
Role assignment
Constraints

Implicit Flows disclose some information
through the program control flow.

Explicit Information Flows

Permissible information flows in sending a message based
on the security levels of the sender, the receiver and the

message
Message => a(receiver, R

L L L Yes
L L H NO
L H L Yes
L H H NoO
H L L Yes
H L H NoO
H H L Yes
H H H Yes

Explicit Information Flows

Permissible information flows regarding the security
levels of the role and the agent identifier

a(role, agentlD)::

Agent | dentifier Role Permissible Flow

L L Yes
_ a No
a L Yes
H H Yes

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Implementation

The type system has been implemented in Prolog
A GUI prototype in C#.NET.

s =
' Information Flow Analysis of LCC l =l li"'n
i o W - — n
Input LCC | Security Analysis o;! Information Flow Analysis of LCC 1= = I—EF’-J
Analysis Result Input LCC | Security Analysis
Sta‘tlc T)’De Check Static SECUth‘,’ C
Successfull — = Syntax Check Annotation
@ Manual Annotation
Dynamic Check *_:-_ = “balanced” state _ = Random Annotatior
a(idle, PeerID) .
R % constraint to check the pear State ' ~
Save Resul T E . o L U B | Ty (PR st LCC Terms Security Level New Tem
null <- getPeerState(Status) then PeerlD Low (public)
(
[L
Bxit

Case Study: Cloud Configuration

Existing commercial tools for VMs management are
usually based on a centralised control.
Centralised solution may not be interesting for large

scale and complex clouds.
We proposed a less centralised multi-agent VM

management framework:

P. Anderson, S. Bijani, A. Vichos, Multi-agent Negotiation of Virtual
Machine Migration Using LCC, 6th KES Int. Conf., KES-AMSTA 2012.

P. Anderson, S. Bijani, H. Herry, Multi-Agent Virtual Machine
Management Using the Lightweight Coordination Calculus, JICIC
Journal (selected to be published).

A Simple VM Management Policy

(Interaction Diagram)

Physical Machine Agent 1 (PID1) Physical Machine Agent 2 (PID2)

Migration policy: I "
unbalanced peers oede] e e

interact to balance
their loads.

role: overloaded] role: underloaded]

readyToMigrate(Need)

isMigrationPossible?

migration(“ok”)

migration(PID1,PID2)

role: idle role: idle]

'

A Simple VM Management Policy

(LCC code)

% Here, “idle” means the “balanced” state % “Capacity” i1s the amount of free resources}
a(idle, PeerlD) :: a(under| oaded(Capacity), PID2)
% the constraint to check the state of the peer % receive a request from an overl oaded peer
null <- getPeerState(Status) then (readyToM gr at e(Need) <= a(overl| oaded, PI D1) then
%if the peer is overloaded, change role to overl oaded %f free “Capacity” of the underl oaded peer >
% “Need” of the overl oaded peer

a(overl oaded(Status), PeerlD)<- isOverLoaded() then
(mgration(ok) => a(overl oaded, PIDl) <-

) or i sM grationPossi bl e(Capacity, Need)
(%if the peer is underloaded, change to underl oaded t hen nul | <- waitForMgration())
a(under| oaded(Status), PeerlD)<- isUnderLoaded() then or
) or (migration(notCk) => a(overloaded, PID1)) then
a(idle, PeerlD) %otherwi se, remain as idle (recursion) a(idle, PIDL) % change the peer’s role to “idle”
% “Need” = amount of resources required

a(overl| oaded(Need), PID1)
readyToM gr at e(Need) => a(underl oaded, PID2) then
m gration(ok)<= a(underl oaded, PID2) then
%live mgration: send VMs to the underl oaded peer
null <- migration(PIDL, PID2) then

a(idle, PID1) % change the peer’s role to “idle”

A Simple VM Management Policy:

Information Leakage

% Here, “idle” means the “balanced” state % “Capacity” i1s the amount of free resources}
a(idle, PeerlD) :: a(under| oaded(Capacity), PID2)
% the constraint to check the state of the peer % receive a request from an overl oaded peer
null <- getPeerState(Status) then (readyToM gr at e(Need) <= a(overl| oaded, PI D1) then
%if the peer is overloaded, change role to overl oaded %f free “Capacity” of the underl oaded peer >
% “Need” of the overl oaded peer

a(overl oaded(Status), PeerlD)<- isOverLoaded() then
(mgration(ok) => a(overl oaded, PIDl) <-

) or i sM grationPossi bl e(Capacity, Need)

(%if the peer is underloaded, change to underl oaded t hen nul | <- waitForMgration())
a(under| oaded(Status), PeerlD)<- isUnderLoaded() then or

) or (migration(notCk) => a(overloaded, PID1)) then

a(idle, PeerlD) %therw se, remain as idle (recursion) a(idle, PIDL) % change the peer’s role to “idle”

Consider the following annotations:
% “Need” = amount of resources required | abel (readyToM grate, 1|).

| abel (Need, h).

| abel (under| oaded, |).

readyToM gr at e(Need) => a(underl| oaded, PID2) then | abel (PI D2, 1).

a(overl| oaded(Need), PID1)

m gration(ok)<= a(underl oaded, PID2) then

Explicit Flow from PID1 to PID2:
Forbidden

%live mgration: send VMs to the underl oaded peer
null <- migration(PIDL, PID2) then

a(idle, PID1) % change the peer’s role to “idle”

A Simple VM Management Policy:

Information Leakage

% Here, “idle” means the “balanced” state % “Capacity” i1s the amount of free resources}
a(idle, PeerlD) :: a(under| oaded(Capacity), PID2)
% the constraint to check the state of the peer % receive a request from an overl oaded peer
null <- getPeerState(Status) then (readyToM gr at e(Need) <= a(overl| oaded, PI D1) then
%if the peer is overloaded, change role to overl oaded %f free “Capacity” of the underl oaded peer >
% “Need” of the overl oaded peer

a(overl oaded(Status), PeerlD)<- isOverLoaded() then
(mgration(ok) => a(overl oaded, PIDl) <-

) or i sM grationPossi bl e(Capacity, Need)

(%if the peer is underloaded, change to underl oaded t hen nul | <- waitForMgration())
a(under| oaded(Status), PeerlD)<- isUnderLoaded() then or

) or (migration(notCk) => a(overloaded, PID1)) then

a(idle, PeerlD) %therw se, remain as idle (recursion) a(idle, PIDL) % change the peer’s role to “idle”

Consider the following annotations:

% “Need” = amount of resources required | abel (migration, 1).
| abel (ok, 1).
I N Pl D1 o . .
a(overl oaded(Need),) | abel (i sM grationPossible, I).
readyToM gr at e(Need) => a(underl| oaded, PID2) then | abel (Need, 1).
| abel (Capacity, h).
m gration(ok) <= a(under| oaded, PID2) then | abel (not Ok, 1).

| abel (overl oaded, 1).
| abel (PID1, 1).

null <= migration(PIDL, PID2) then Explicit Flow from underloaded to PID2:
a(idle, PID1) % change the peer’s role to “idle” Forbidden

%live mgration: send VMs to the underl oaded peer

A Simple VM Management Policy:

Information Leakage

% “Capacity” 1s the amount of free resources}

a(under | oaded(Capacity), Pl D2)
% receive a request from an overl oaded peer
readyToM gr at e(Need) <= a(overl oaded, PI D1) then

%f free “Capacity” of the underl| oaded peer >
% “Need” of the overl oaded peer

(mgration(ok) => a(overl oaded, PIDl) <-
i sM grationPossi bl e(Capacity, Need)

t hen null <- waitForMgration())
or

(mgration(notCk) => a(overloaded, PIDl)) then

a(idle, PIDl) % change the peer’s role to “idle”

Consider the following annotations:
| abel (m gration, |).
| abel (ok, 1).
| abel (i sM grationPossible, |).
| abel (Need, |).
| abel (Capacity, h).
| abel (not Gk, 1).
| abel (overl oaded, 1).
| abel (PID1, I).

Implicit Flow from PID2 to PIDa:
Forbidden

A Simple VM Management Policy:

Information Leakage

% “Capacity” 1s the amount of free resources}

a(under | oaded(Capacity), Pl D2)
% receive a request from an overl oaded peer
readyToM gr at e(Need) <= a(overl oaded, PI D1) then

%f free “Capacity” of the underl| oaded peer >
% “Need” of the overl oaded peer

(mgration(ok) => a(overl oaded, PIDl) <-
i sM grationPossi bl e(Capacity, Need)

t hen null <- waitForMgration())
or

(mgration(notCk) => a(overloaded, PIDl)) then

a(idle, PIDl) % change the peer’s role to “idle”

Consider the following annotations:
| abel (m gration, |).
| abel (ok, 1).
| abel (i sM grationPossible, |).
| abel (Need, |).
| abel (Capacity, h).
| abel (not Gk, 1).
| abel (overl| oaded, 1).
| abel (PID1, I).

Implicit Flow from PID2 to PIDa:
Forbidden

Dynamic vs. Static Security Check

Dynamic Check (false negative result)

['={ready: L, overload:L, pida:L, need:L, capacity: H, migratePossible: L, migrate: L}
LCC code LCC Interpreter’s Security Type Rule Result
Action
ready <= a(overl oad, pidl) then Closed(c(r eady <= OK
(mgrate(ok) =>a(overload, pidl) a(overl oad, pi d1)))
<- m grat Possi bl e(capacity, need) I'+-my:agent L, I + ready: L 5
then null <- wait() sTypeCheck(reaegc I' - ready(need) <= a(overload,pidl):op L v
) or (a(over | oad, pi d1))

m gr at e(not k) =>a(over | oad, pi d1))

ready <= a(overload, pidl) then
(mgrate(ok) =>a(overl oad, pidl)

<- m grat Possi bl e(capacity, need)
t hen null <- wait()
) or (

m gr at e(not k) =>a(over | oad, pi d1))

satisfy(mi gr at Possi bl e(capa
city, need))

returns FALSE or

could not find the constraint

ready <= a(overl oad, pi dl) then
(mgrate(ok) =>a(overload, pidl)

<- m grat Possi bl e(capacity, need)
t hen null <- wait()
) or (

m gr at e(not k) =>a(over | oad, pi dl1))

Close(c(mi grat e(not Ck) 5
> a(overload, pidl))))

I' + a(overload, pidl): agent L,I' - migrate(notOk):L ¢, fOK

I' - migrate(notOk) => a(overload, pidl):op L

I'+overload:L, IF pidllI

I' + a(overload,pid1): agent L

I' - migrate:L, T + notOk:

Agnt

L
— Struct

I' W migrate(notOk): LV L

Static Type Check

['={ready: L, overload:L, Pidax:L, Need:L, Capacity: H, migratePossible: L,

migrate: L, ... }

LCC code

Security Type Rule

Result

ready <= a(overl oad, Pi d1) then
(mgrate(ok) =>a(overload, Pidl)
<- m grat Possi bl e(Capacity, Need)
t hen null <- wait()
) or (mgrate(notCk)=>
a(overl oad, Pi dl))

' -my:agent L, I' +ready: L

: R
I' + ready(need) <= a(overload, Pid1):op L v

OK

ready <= a(overload, pidl) then
(mgrate(ok) =>a(overload, Pidl)
<- m grat Possi bl e(Capacity, Need)
t hen null <- wait()
) or (mgrate(notCk)=>
a(overl oad, Pi dl1))

Ir'rmigratPsbl(Capacity,Need):H t ,I'+

'rmigrate(ok) =>a(overload,Pidl1)<— migratPsbl(Capacity,Need):op T

I' + a(overload, Pid1): agent L, I' - migrate(ok): L Snd

Ik
I' - overload:L, I+ PidlL P
n

I' - a(overload, pid1): agent L g
I' - migrate:L, T + ok: L

s —— Struct
' - migrate(ok): LV L

I' - migratePossible: L, I' + Capacity:H, I' + Need: L
Struct

I + migratPossible(Capacity, Need): LVHV L

If

]

4

Alarm

Offline VM Migration

Between different datacentres

E.g. from a private cloud to a public cloud
Not transparent to the user

Needs more negotiation and configurations

PID1 PID2 sib2,, ...,SID2,, CID SID1,, ... SID1,

role: initial role: initial role: client role: service

getPeerState getPeerState
\L/ \ i/
hasExtraLoad? anAcceptlLoad?
\l

role: emigrant role: host role: service Shals

adyToMigrate

e
getVmProfile

An Interaction
diagram for an
Offl I n e V M — > manage_services

|_do(Tstart’) _ _

—=-SIIIZ o>

migration § ez

Isame_location
& migrationPossible? &
createNewVMs &
getServicelis

role: initial
->] manage_services |~
1 — « »”
1 ____________..iolihgtﬂo_\l\lﬂl____ T rr rr lientList
T e e e —— —— e e] e -
|
e manage_clients

.<£h£<|'.< _running?) _
I

[confirn

g dolredirecty) L1 A
1
1
1
1
1
1

shutdown shutdown

Offline VM Migration:

Information Leakage

a(initial, PeerlD)

nul | <- getPeerState(Status) then
(%if the peer is underloaded (e.g.< %50), change the role to "emigrant"
(a(emgrant(Status), PeerlD) <- isUnderLoaded(Status)) or
%if the peer's load > threshold (e.g. %0), but it still has free resources
% change the peer's role to "host" and send the peer's status
(a(host(Status), PeerlD) <- canAccept MorelLoad(Status))
or
%if the peer has no |oad, change the role to "shutdown"
(a(shutdown, PeerlD) <- hasNoLoad(Status))
or

(a(initial, PeerlD)) %otherwise, the peer is fully-1oaded (recursion)

Annotations:
| abel (initial, I).
| abel (PeerI D, 1).
| abel (get Peer State, |).
| abel (St atus, h).

Explicit flow from Status to PeerID:
Forbidden

Outline

Introduction

Language-based Security

A Security Type System for LCC
Information Leakage in Clouds

Conclusion

Static Type Check

Pros

proof of program correctness with reasonable
computation cost

conservatively detects implicit and explicit
information flows and provides stronger security
assurance.

cons

high false positive because possibility of run-time
information manipulation

Dynamic Check

Cons
It can not detect implicit information flows.

It is not sound, because does not check all
execution paths of the program.

Summary

A security type system is proposed for LCC to
analyse information flow.

LCC interpreter is augmented with security
type check (dynamic check).

A static security type check is implemented
for LCC.

A Case study of cloud computing has been
analysed

