
Shahriar Bijani

30 Novermber 2012

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Open Multi-agent Systems (MAS): open
systems in which autonomous agents can join
and leave freely.

 In this talk:
Open (peer to peer) MAS that agents can
invent protocols for different applications and
share them.

 Open MAS have growing popularity (Poslad 07).

 Security is a major practical limitation to
open MAS.

 Security means: confidentiality, integrity and
availability.

 Our Assumption: there exists confidential
information in open MAS.

 My thesis :
 Study and categorise various attacks on open

MAS
 Review and classify different security solutions
 Focus on information leakage in LCC-based

systems
 Propose an information flow security analysis

based on a language-based approach
 Case study of cloud configuration management

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 a convenient complement to traditional
security mechanisms
 Why?
 Access control prevents information release...
 Encryption could guarantee the origin,

confidentiality and integrity of information, but
not its behaviour.
 A fundamental limitation: can not prevent

information from being propagated

 Sound type systems are a promising
language-based technique to specify and
enforce an information flow policy. (Sabelfeld &
Myers, 2003)

 In type checking approach:
 Every program term has a security type
 Security is enforced by type checking

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 LCC is a declarative language to execute
agents’ organisational models in a peer to
peer style.

 a choreography language based on pi-calculus
and logic programming.

Interaction Model := {Clause,...}

Clause := Role::Def

Role := a(Type, Id)

Def := Role | Message | Def then Def | Def or Def | null ← Constraint

Message:= M Role | M Role ← Constraint | M Role |

Constraint ← M Role

Constraint:= Constant | Term | Constraint Constraint |

Constraint Constraint

Type := Term

Id := Constant | Variable

M := Term

Term := Constant | Variable | a structured term in Prolog syntax

Constant := lower case character sequence or number

Variable := upper case character sequence or number

LCC language syntax:
Outgoing message:
Incoming message:
Conditional: ←
Sequence: then
Committed choice: or

 The rules are judgments of the form: ⊢T :
 : a type environment that maps a LCC term T to the

type and its secrecy level.
 Security types: = id | | op | con 1/ 2

 Variables have only type id .
 Other terms have only type .
 Def commands have only type op .

 Constraint expressions have only types con 1/ 2.

Def := Role | Message | Def then Def| Def or Def | null <- Constraint

Constraint:= Constant | Term | Constraint Constraint | Constraint Constraint

 Security levels:
For simplicity it could be assumed that there are
two levels of secrecy L (low) and H (high).

 Security levels are directly assigned to LCC
terms by annotations in the code.

 the terms which are not annotated may be
assigned to the highest security level.

≤ means information flow is permitted from left to right

≤ ≤ , ≤≤Γ ⊢ : , ≤Γ ⊢ :

Source of illegal information flows in LCC:
 Explicit flows (operations are independent of the

value of their terms)
I. Message passing
II. Role assignment
III. Constraints

 Implicit Flows disclose some information
through the program control flow.

 Permissible information flows in sending a message based
on the security levels of the sender, the receiver and the
message

 Message => a(receiver, R)

Sender Receiver Message Permissible Flow

L L L Yes
L L H No
L H L Yes
L H H No
H L L Yes
H L H No
H H L Yes
H H H Yes

 Permissible information flows regarding the security
levels of the role and the agent identifier

 a(role, agentID)::

Agent Identifier Role Permissible Flow

L L Yes

L H No

H L Yes

H H Yes

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 The type system has been implemented in Prolog
 A GUI prototype in C#.NET.

 Existing commercial tools for VMs management are
usually based on a centralised control.

 Centralised solution may not be interesting for large
scale and complex clouds.

 We proposed a less centralised multi-agent VM
management framework:
 P. Anderson, S. Bijani, A. Vichos, Multi-agent Negotiation of Virtual

Machine Migration Using LCC, 6th KES Int. Conf., KES-AMSTA 2012.
 P. Anderson, S. Bijani, H. Herry, Multi-Agent Virtual Machine

Management Using the Lightweight Coordination Calculus, IJICIC
Journal (selected to be published).

Physical Machine Agent 1 (PID1) Physical Machine Agent 2 (PID2)

role: idle

getPeerState

isOverLoaded?

role: overloaded

readyToMigrate(Need)

isUnderLoaded?

role: underloaded

isMigrationPossible?

migration(“ok”)

role: idle

role: idle

migration(PID1,PID2)

getPeerState

waitForMigration

role: idle

Migration policy:
unbalanced peers
interact to balance
their loads.

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(readyToMigrate, l).
label(Need, h).
label(underloaded, l).
label(PID2, l).

Explicit Flow from PID1 to PID2:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% Here, “idle” means the “balanced” state

a(idle, PeerID) ::

% the constraint to check the state of the peer

null <- getPeerState(Status) then (

% if the peer is overloaded, change role to overloaded

a(overloaded(Status), PeerID)<- isOverLoaded() then

) or

(% if the peer is underloaded, change to underloaded

a(underloaded(Status), PeerID)<- isUnderLoaded() then

) or

a(idle, PeerID) %otherwise, remain as idle (recursion)

% “Need” = amount of resources required

a(overloaded(Need), PID1) ::

readyToMigrate(Need) => a(underloaded, PID2) then

migration(ok)<= a(underloaded, PID2) then

% live migration: send VMs to the underloaded peer

null <- migration(PID1, PID2) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Explicit Flow from underloaded to PID2:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Implicit Flow from PID2 to PID1:
Forbidden

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

% “Capacity” is the amount of free resources}

a(underloaded(Capacity), PID2) ::

% receive a request from an overloaded peer

readyToMigrate(Need)<= a(overloaded,PID1) then

%if free “Capacity” of the underloaded peer >
% “Need” of the overloaded peer

(migration(ok) => a(overloaded, PID1) <-
isMigrationPossible(Capacity, Need)

then null <- waitForMigration())

or

(migration(notOk) => a(overloaded, PID1)) then

a(idle, PID1) % change the peer's role to “idle”

Consider the following annotations:
label(migration, l).
label(ok, l).
label(isMigrationPossible, l).
label(Need, l).
label(Capacity, h).
label(notOk, l).
label(overloaded, l).
label(PID1, l).

Implicit Flow from PID2 to PID1:
Forbidden

LCC code LCC Interpreter’s
Action

Security Type Rule Result

ready <= a(overload,pid1) then
(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)
then null <- wait()

) or (
migrate(notOk)=>a(overload,pid1))

Closed(c(ready <=

a(overload,pid1)))

sTypeCheck(ready<=
a(overload,pid1))

⊢ : , ⊢ :⊢ () <= (,):
OK

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)

then null <- wait()

) or (

migrate(notOk)=>a(overload,pid1))

satisfy(migratPossible(capa
city,need))
returns FALSE or
could not find the constraint

--

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, pid1)

<- migratPossible(capacity, need)

then null <- wait()

) or (

migrate(notOk)=>a(overload,pid1))

Close(c(migrate(notOk)=
> a(overload,pid1))))

⊢ (,): , ⊢ ():⊢ () => (,):⊢ : , ⊢ 1⊢ , :⊢ : , ⊢ :⊢ : ∨

OK

={ ready: L, overload: L, pid1: L, need: L, capacity: H, migratePossible: L , migrate: L }

LCC code Security Type Rule Result

ready <= a(overload,Pid1) then
(migrate(ok) =>a(overload, Pid1)
<- migratPossible(Capacity, Need)
then null <- wait()

) or (migrate(notOk)=>
a(overload,Pid1))

⊢ : , ⊢ :⊢ () <= (,):
OK

ready <= a(overload,pid1) then

(migrate(ok) =>a(overload, Pid1)

<- migratPossible(Capacity, Need)

then null <- wait()

) or (migrate(notOk)=>

a(overload,Pid1))

⊢ (,): , ⊢ () (,)∶⊢ () (,) (,):⊢ (,): , ⊢ ():⊢ () => (,):⊢ : , ⊢ 1⊢ , :⊢ : , ⊢ :⊢ : ∨
⊢ : , ⊢ : , ⊢ :⊢ (,): ∨ ∨

Alarm

={ ready: L, overload: L, Pid1: L, Need: L, Capacity: H, migratePossible: L , migrate: L, … }

 Between different datacentres
 E.g. from a private cloud to a public cloud
 Not transparent to the user
 Needs more negotiation and configurations

An Interaction
diagram for an
offline VM
migration

PID1 PID2 SID21, …,SID2n CID

role: initial

getPeerState

hasExtraLoad?

role: emigrant

getVmProfile
readyToMigrate

canAcceptLoad?

role: host

!same_location
& migrationPossible? &

createNewVMs &
getServiceList

manage_services

migration(“ok”)

…

…

do(“start”)…

role: service

done(“start”)
…

role: client

do(“shutdown”)…

startService

role: initial

role: initial

sameLocation?

No
Yes

live Migration

getServiceList

manage_services

role: service

…

manage_clients

do (“redirect”)

SID11, … SID1n

…

done(“redirect”)

…

check (“running”)

confirm()

shutdownshutdown

redirect

clientList

getPeerState

a(initial, PeerID) ::

null <- getPeerState(Status) then

(% if the peer is underloaded (e.g.≤ %50), change the role to "emigrant"
(a(emigrant(Status), PeerID) <- isUnderLoaded(Status)) or

% if the peer's load > threshold (e.g. %50), but it still has free resources

% change the peer's role to "host" and send the peer's status

(a(host(Status), PeerID) <- canAcceptMoreLoad(Status))

or

% if the peer has no load, change the role to "shutdown"

(a(shutdown, PeerID) <- hasNoLoad(Status))

or

(a(initial, PeerID)) % otherwise, the peer is fully-loaded (recursion)

)

Annotations:
label(initial, l).
label(PeerID, l).
label(getPeerState, l).
label(Status, h).

Explicit flow from Status to PeerID:
Forbidden

 Introduction

 Language-based Security

 A Security Type System for LCC

 Information Leakage in Clouds

 Conclusion

 Pros
 proof of program correctness with reasonable

computation cost
 conservatively detects implicit and explicit

information flows and provides stronger security
assurance.

 Cons
 high false positive because possibility of run-time

information manipulation

 Cons
 It can not detect implicit information flows.
 It is not sound, because does not check all

execution paths of the program.

 A security type system is proposed for LCC to
analyse information flow.
 LCC interpreter is augmented with security

type check (dynamic check).
 A static security type check is implemented

for LCC.
 A Case study of cloud computing has been

analysed

