

Combining Data-Intensive with Modelling: to make the most of data and computation

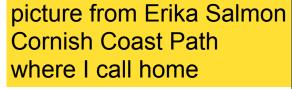
Malcolm Atkinson <u>Malcolm.Atkinson@ed.ac.uk</u> 28th May 2012 **1st EPOS-Orfeus Coordination Meeting** Global challenges for seismological data analysis <u>EMFCSC, Erice</u>

FP7-INFRASTRUCTURES-2011 project# 283543

Monday, 28 May 12

Outline

- Data Intensive
 - What is it?
 - Why use it?
- HPC & Data Intensive
 - Similarities and Differences
- Models for Coupling
 - Loose coupling
 - Examples
 - Tight coupling
- Sketch of Data-Intensive thinking
- Summary and Conclusions



Monday, 28 May 12

Data-Intensive Thinking

Gray's Laws of Data Engineering

Jim Gray:

- Scientific computing is revolving around data
- Need scale-out solution for analysis
- Take the analysis to the data!
- Start with "20 queries"
- Go from "working to working"

Monday, 28 May 12

From: Alex Szalay, JHU

Gray's Laws of Data Engineering

zzaround data

ysis

Jim Gra

- Scienti
- Need s
- Take th
- Start w
- Go fror

From: Alex Szalay, JHU

The

FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

DITED BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Monday, 28 May 12

Defining "Data-Intensive"

Defining "Data-Intensive"

Generally

- A computational task is data-intensive if you have to think hard about an aspect of data handling to make progress
 - distribution, permissions and rules of use, complexity, heterogeneity, rate of arrival, unstructured or changing structure, long tail of small and scattered instances, size of data, number of users
 - often in combination

Defining "Data-Intensive"

Generally

- A computational task is data-intensive if you have to think hard about an aspect of data handling to make progress
 - distribution, permissions and rules of use, complexity, heterogeneity, rate of arrival, unstructured or changing structure, long tail of small and scattered instances, size of data, number of users
 - often in combination

Quantitatively

- The computation's Amdahl numbers are close to 1
 - CPU operations : bits transferred in or out of memory
 - ▶ 1000 CPU operations : 1 I/O operation
- Total volumes expensive to store

Total requests/unit time hard to accommodate

• Use commodity components and low power

- So that you can afford a lot of them
- Balanced for data-intensive work
- Treat memory bandwidth as a scarce resource

• Use commodity components and low power

- So that you can afford a lot of them
- Balanced for data-intensive work
- Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible

• in the processor cache in fewest steps & not disrupted

• Use commodity components and low power

- So that you can afford a lot of them
- Balanced for data-intensive work
- Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible

• in the processor cache in fewest steps & not disrupted

Work on small chunks of data

- as small as logically possible
- a column of a table
- a row of a table
- a file
- data unbundled, in computational format & compressed

• Use commodity components and low power

- So that you can afford a lot of them
- Balanced for data-intensive work
- Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible

• in the processor cache in fewest steps & not disrupted

Work on small chunks of data

- as small as logically possible
- a column of a table
- a row of a table
- a file
- data unbundled, in computational format & compressed

Once data is close to a processor do all you can with it

- multiple derivatives in one pass
- pipelining
- re-use of intermediate data, caching and forwarding

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence
- Most data WORM (Write Once Read Many)
 - or WORN (Write Once Read Never) automatically eliminate or clean up

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence
- Most data WORM (Write Once Read Many)
 - or WORN (Write Once Read Never) automatically eliminate or clean up
- Updates local and mostly append (mostly non-Transactional)

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence
- Most data WORM (Write Once Read Many)
 - or WORN (Write Once Read Never) automatically eliminate or clean up
- Updates local and mostly append (mostly non-Transactional)
- Coordination & Catalogue DBs
 - distributed shared structures
 - just enough synchronisation

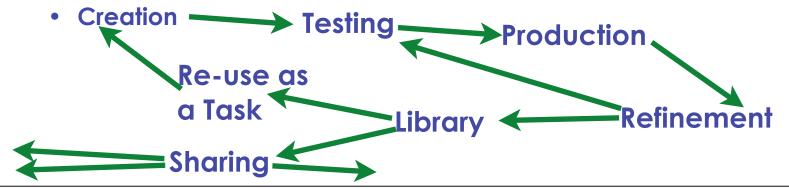
- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence
- Most data WORM (Write Once Read Many)
 - or WORN (Write Once Read Never) automatically eliminate or clean up
- Updates local and mostly append (mostly non-Transactional)
- Coordination & Catalogue DBs
 - distributed shared structures
 - just enough synchronisation
- Fine-grained local protection & authorisation

- Exploit very large scale parallelism and distribution
 - many subtasks at modest rate per task in large numbers
 - NOT tightly coupled parallelism!!!
 - distribution for availability, ownership & persistence
 - proximity to data sources or destinations for speed
- Replicate
 - for more parallelism and for durable persistence
- Most data WORM (Write Once Read Many)
 - or WORN (Write Once Read Never) automatically eliminate or clean up
- Updates local and mostly append (mostly non-Transactional)
- Coordination & Catalogue DBs
 - distributed shared structures
 - just enough synchronisation
- Fine-grained local protection & authorisation
- Statistical and quantised accounting

- High-level notations for describing methods /composing tasks
 - with well-developed optimised transformations before execution
 - query languages: SQL/AQL, (Xquery &SPARQL), ...
 - workflow languages: Kepler, Pegasus, DISPEL, ...
 - MapReduce: PigLatin, ZigZag, ...

- High-level notations for describing methods /composing tasks
 - with well-developed optimised transformations before execution
 - query languages: SQL/AQL, (Xquery &SPARQL), ...
 - workflow languages: Kepler, Pegasus, DISPEL, ...
 - MapReduce: PigLatin, ZigZag, ...
- Providers + Community + User definition of (libraries of) tasks
 - your signal processing, geophysics & data-presentation steps
 - your existing code & preferred languages

- High-level notations for describing methods /composing tasks
 - with well-developed optimised transformations before execution
 - query languages: SQL/AQL, (Xquery &SPARQL), ...
 - workflow languages: Kepler, Pegasus, DISPEL, ...
 - MapReduce: PigLatin, ZigZag, ...
- Providers + Community + User definition of (libraries of) tasks
 - your signal processing, geophysics & data-presentation steps
 - your existing code & preferred languages
- Support for the query & workflow lifetime: new research objects



Tradeoffs Today

"Extreme computing is about tradeoffs"

Stu Feldman (Google)

Ordered priorities for data-intensive scientific computing

- 1. Total storage (-> low redundancy)
- 2. Cost (-> total cost vs price of raw disks)
- 3. Sequential IO (-> locally attached disks, fast ctrl)
- 4. Fast stream processing (->GPUs inside server)
- *5.* Low power (-> slow normal CPUs, lots of disks)

The order will be different in a few years...and scalability may appear as well

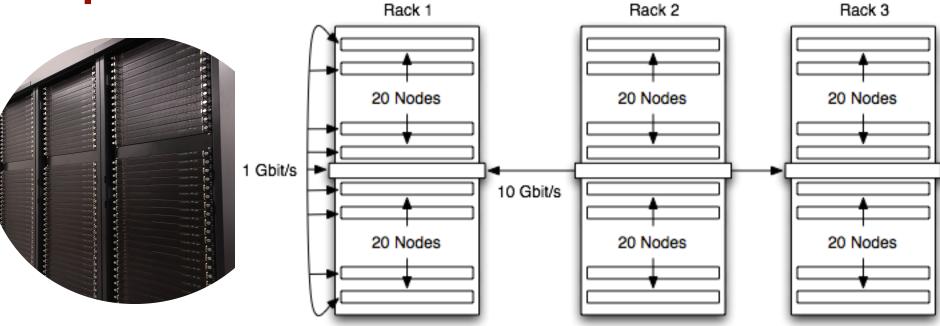
G. Bell, J. Gray, and A. S. Szalay, "Petascale computational systems: balanced cyberinfrastructure in a data-centric world," IEEE Computer, vol. 39, no. 1, pp. 110–12, 2006.

A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White, "Low-Power Amdahl-Balanced Blades for Data Intensive Computing," ACM Operating Systems Review, 2010.

A. S. Szalay, "Extreme data-intensive scientific computing," Computing in Science and Engineering, vol. 13, no. 6, pp. 34–41, 2011. From: Alex Szalay, JHU

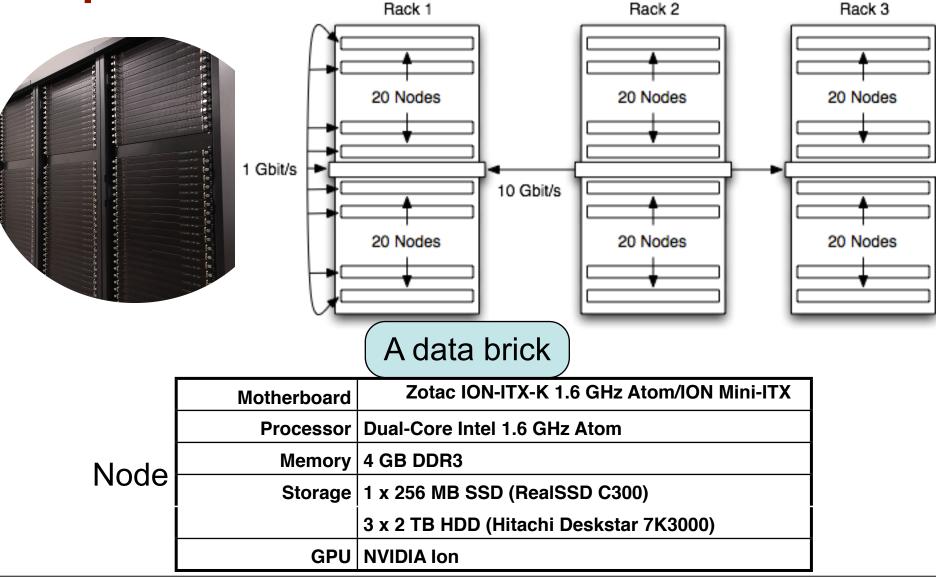
Monday, 28 May 12

EDIM1: Our Data-Intensive Experimental Platform



Node	Motherboard	Zotac ION-ITX-K 1.6 GHz Atom/ION Mini-ITX				
	Processor Dual-Core Intel 1.6 GHz Atom					
	Memory	ry 4 GB DDR3				
	Storage	1 x 256 MB SSD (RealSSD C300)				
		3 x 2 TB HDD (Hitachi Deskstar 7K3000)				
	GPU	NVIDIA Ion				

EDIM1: Our Data-Intensive Experimental Platform



JHU Data-Scope

- Funded by NSF MRI to build a new 'instrument' to look at data
- Goal: 102 servers for \$1M + about \$200K switches+racks
- Two-tier: performance (P) and storage (S)
- Large (5PB) + cheap + fast (400+GBps), but ...

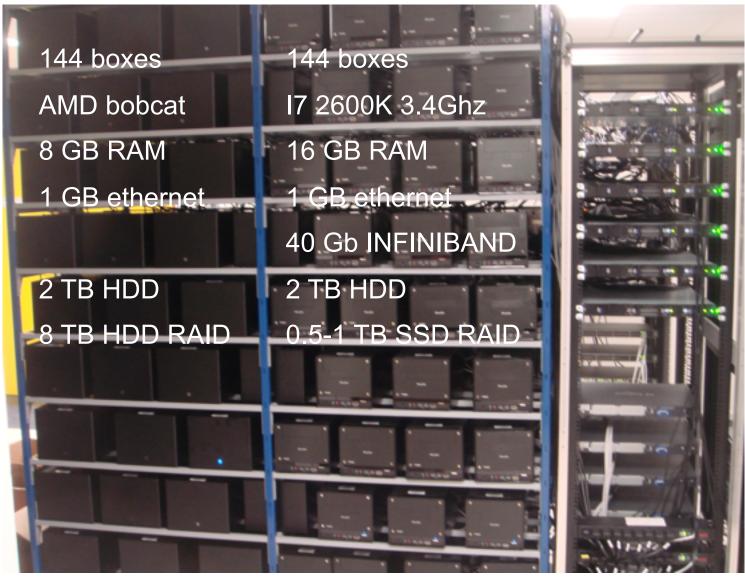
...a special purpose instrument

	1P	1S	90P	12S	Full	
servers	1	1	90	12	102	
rack units	4	12	360	144	504	
capacity	24	252	2160	3024	5184	ТВ
price	8.5	22.8	766	274	1040	\$K
power	1	1.9	94	23	116	kW
GPU	3	0	270	0	270	TF
seq IO	4.6	3.8	414	45	459	GBps
netwk bw	10	20	900	240	1140	Gbps

Monday, 28 May 12

The Scilens Cluster

monetat



M. L. Kersten and S. Manegold, "Revolutionary database technology for data intensive research," ERCIM News, vol. 2012, no. 89, 2012.

Monday, 28 May 12

- Add data bricks in balance with latest technology
 - as you need them

- Add data bricks in balance with latest technology
 - as you need them
- But you don't want
 - to buy a brick at time
 - to manage bricks individually

- Add data bricks in balance with latest technology
 - as you need them
- But you don't want
 - to buy a brick at time
 - to manage bricks individually
- Buy/rent crates of data bricks
 - one to a small number per data condominium
 - ownership and management at data condo granularity

- Add data bricks in balance with latest technology
 - as you need them
- But you don't want
 - to buy a brick at time
 - to manage bricks individually
- Buy/rent crates of data bricks
 - one to a small number per data condominium
 - ownership and management at data condo granularity
- Federation of data condominiums
 - to match reality of ownership and control politics
 - to support geographically dispersed concentrations of work
 - to achieve availability, durable persistence, ...

- Add data bricks in balance with latest technology
 - as you need them
- But you don't want
 - to buy a brick at time
 - to manage bricks individually
- Buy/rent crates of data bricks
 - one to a small number per data condominium
 - ownership and management at data condo granularity
- Federation of data condominiums
 - to match reality of ownership and control politics
 - to support geographically dispersed concentrations of work
 - to achieve availability, durable persistence, ...
- Inevitable heterogeneous
 - optimum choice varies with locality and time
 - specialised architectures for specific tasks

- Build on optimised subsystems with critical commitment behind them
- File systems
 - GFS, HFS, Sector, ...
 - S. Ghemawat, H. Gobioff, and S.-T. Leung, "The google file system," in SOSP, pp. 29-43, 2003.
 - J. Shafer, <u>S. Rixner, A. L. Cox</u>: The Hadoop distributed filesystem: Balancing portability and performance. <u>ISPASS 2010</u>: 122-133
 - Gu and R. L. Grossman, "Sector: A high performance wide area community data storage and sharing system," Future Generation Comp. Syst., vol. 26, no. 5, pp. 720–728, 2010
 - B. Trushkowsky, P. Bod ´ık, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, "The SCADS Director: Scaling a Distributed Storage System Under Stringent Performance Requirements," in Proceedings of FAST '11: Conference on File and Storage Technologies, USENIX, 2011
 - S. Patil and G. Gibson, "Scale and concurrency of giga+: file system directories with millions of files," in Proceedings of the 9th USENIX conference on File and Storage technologies, FAST'11, (Berkeley, CA, USA), pp. 13–13, USENIX Association, 2011

• ...

- Build on optimised subsystems with critical commitment behind them
- Data-base systems
 - SciDB <u>www.scidb.org</u>
 - MonetDB www.monetdb.org
 - Microsoft SQL server
 - XLDB workshop series <u>www.xldb.org</u>
 - MapReduce, Hadoop, ...
 - J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," CACM, vol. 51, no. 1, pp. 107–113, 2008
 - T. White, Hadoop: The Definitive Guide. O'Reilly, 2009
 - M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin, "MapReduce and parallel DBMSs: friends or foes?," Communications of the ACM, vol. 53, no. 1, pp. 64–71, 2010

Directly mapped scientific data structures

- Build on optimised subsystems with critical commitment behind them
- Shared-structured updatable memory
 - **BigTable** research.google.com/archive/bigtable.html
 - Cassandra cassandra.apache.org
- Reliable message systems for orchestration, monitoring and control
 - rabbitmq www.rabbitmq.com
 - storm-MQ

stormmq.com

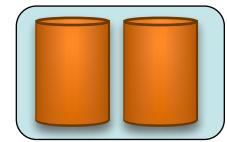
Data-transport systems

- Build on optimised subsystems with critical commitment behind them
- Data-transport systems
- Optimising workflow systems
 - Multiple scales of activity & data granularity
 - Multiple libraries of activities
 - Choices in model, editor & notation:
 - Kepler, Trident, Knime, DISPEL, ...
- Parallel execution frameworks
- Well developed libraries of components

Data-Intensive and HPC (in)compatibility

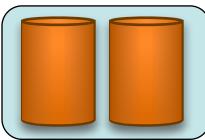
Loosely coupled model submit

Data-Condo

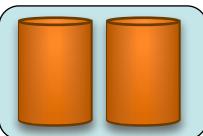


HPC Centre

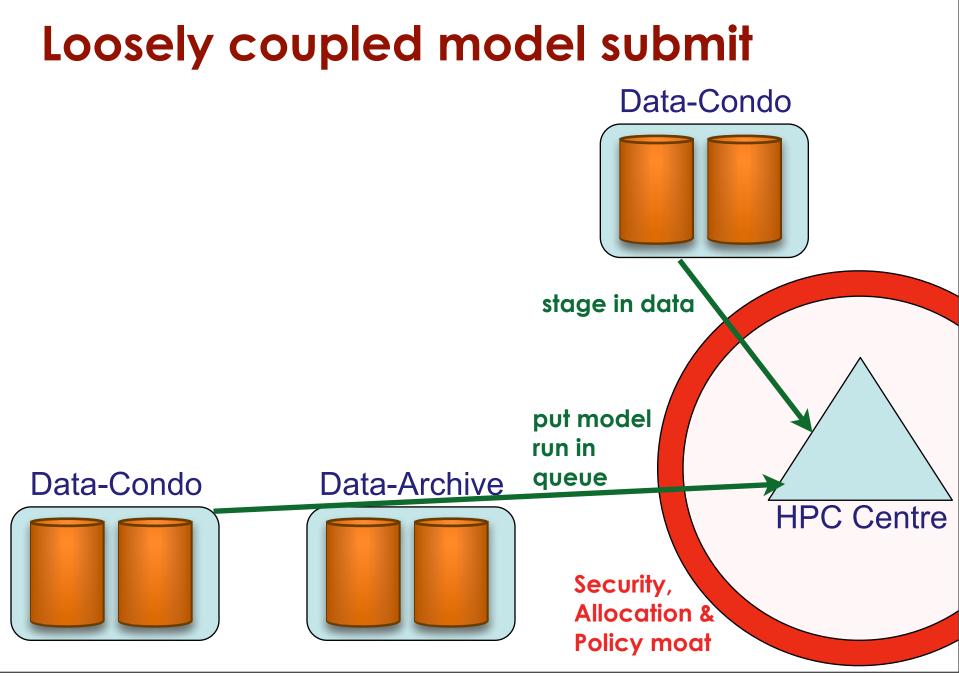
Data-Condo



Data-Archive



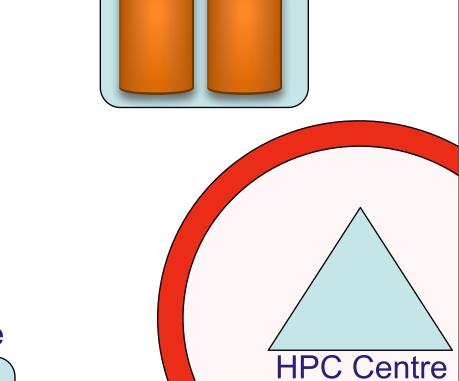
Security, Allocation & Policy moat



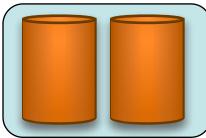
Time passes

Loosely coupled model

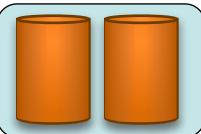
Data-Condo



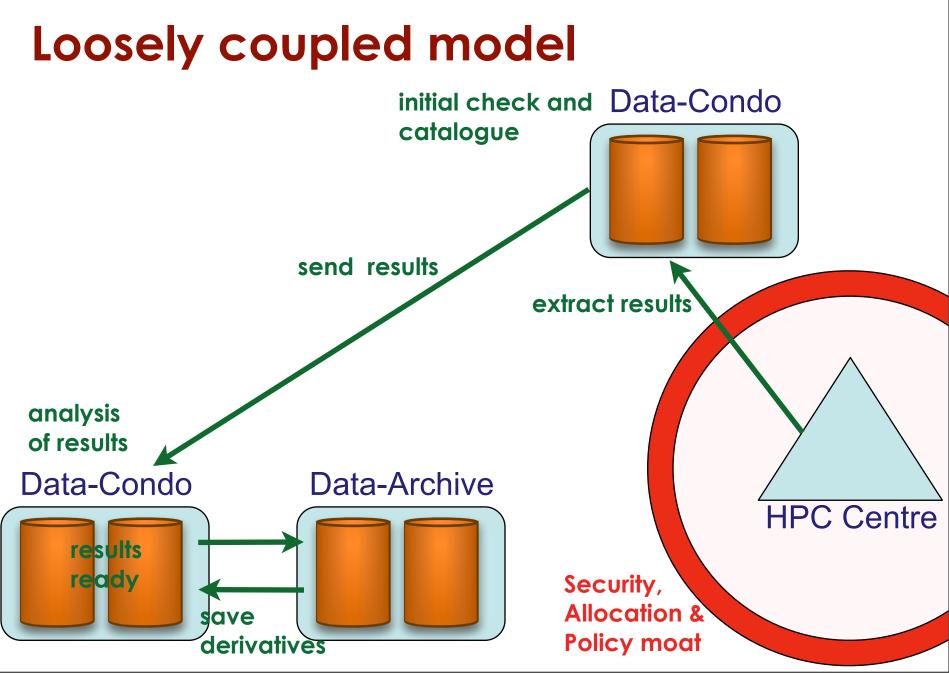
Data-Condo



Data-Archive



Security, Allocation & Policy moat



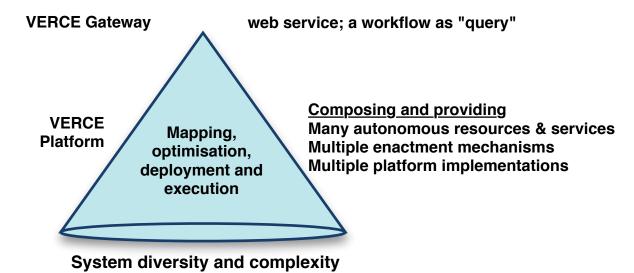
Caveats with loose coupling

- In principle all of the pre and post phases + the modelling job can be described in one workflow
 - It could be automatically partitioned
 - Then sent to the correct places
 - Data movement & Job submission can be tasks
 - The fragments could be automatically orchestrated
 - E.G. the preparation workflows could pause waiting for results
 - The pause could be released when a message gets sent from job
 - The post-processing workflow fragments would then run
- But
 - Today researchers have to negotiate resources, get authorisation in different regimes, get data over moat, ...

Mapping a complete request

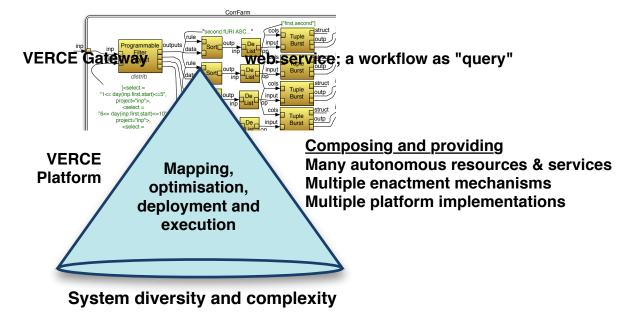
Seismologists User and application diversity Iterative data-intensive Accommodating VERCE process Many groups of researchers **Tools and** development Many tool sets Portals Many research strategies Many working practices **VERCE** Gateway **Controlled canonical representation Composing and providing** VERCE Many autonomous resources & services Mapping, Platform Multiple enactment mechanisms optimisation, Multiple platform implementations deployment and execution System diversity and complexity Existing Resources

Focus on the gateway and platform

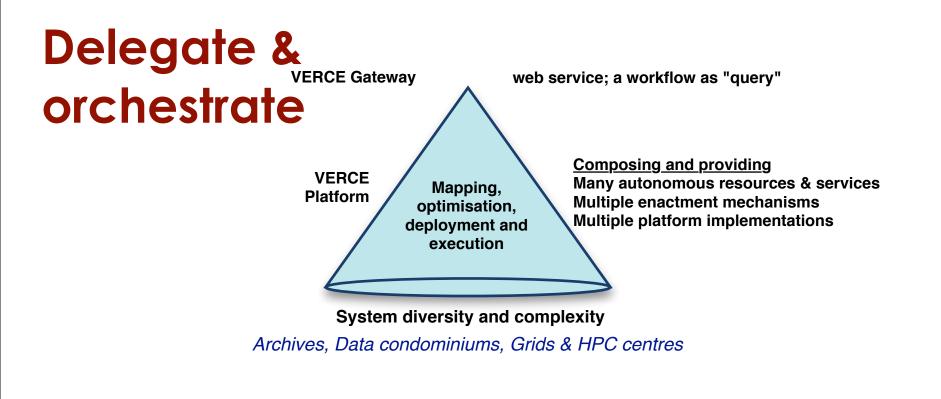


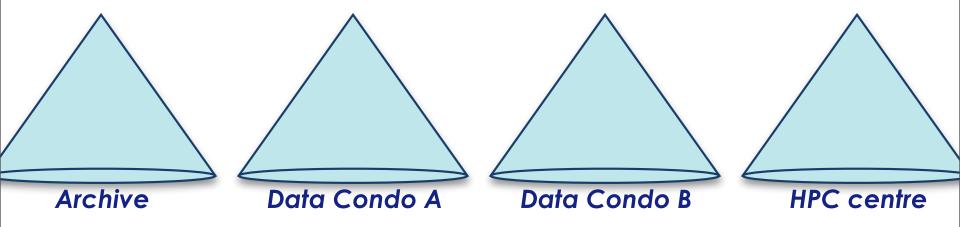
Archives, Data condominiums, Grids & HPC centres

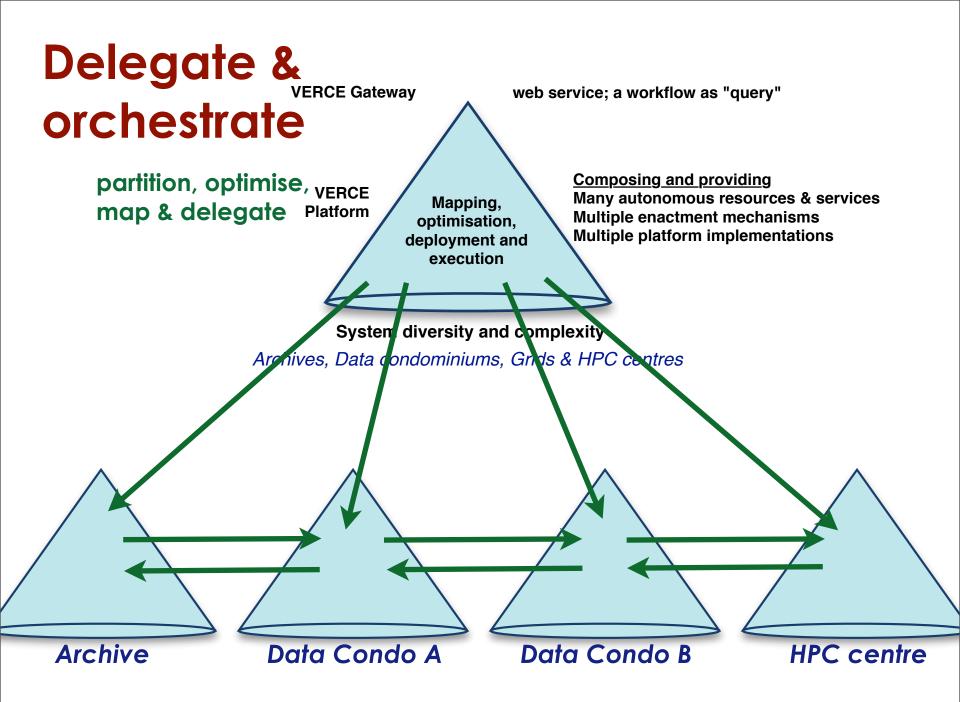
Focus on the gateway and platform



Archives, Data condominiums, Grids & HPC centres







Example Data-Intensive analysis after model run

Data in HPC Simulations

- HPC is an instrument in its own right
- Largest simulations approach petabytes
 from supernovae to turbulence, biology and brain modeling
- Need public access to the best and latest through interactive numerical laboratories
- Creates new challenges in
 - how to move the petabytes of data (high speed networking)
 - How to look at it (render on top of the data, drive remotely)
 - How to interface (virtual sensors, immersive analysis)
 - How to analyze (algorithms, scalable analytics)

From: Alex Szalay, JHU

Immersive Turbulence

0.2

0.2

-02 -02 0

-5000

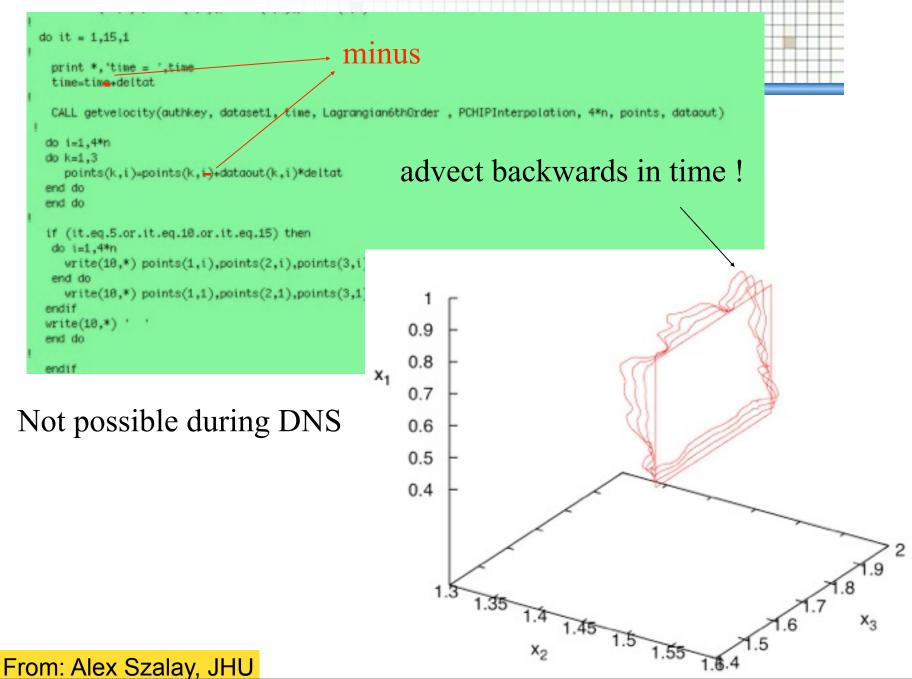
"... the last unsolved problem of classical physics..." Feynman

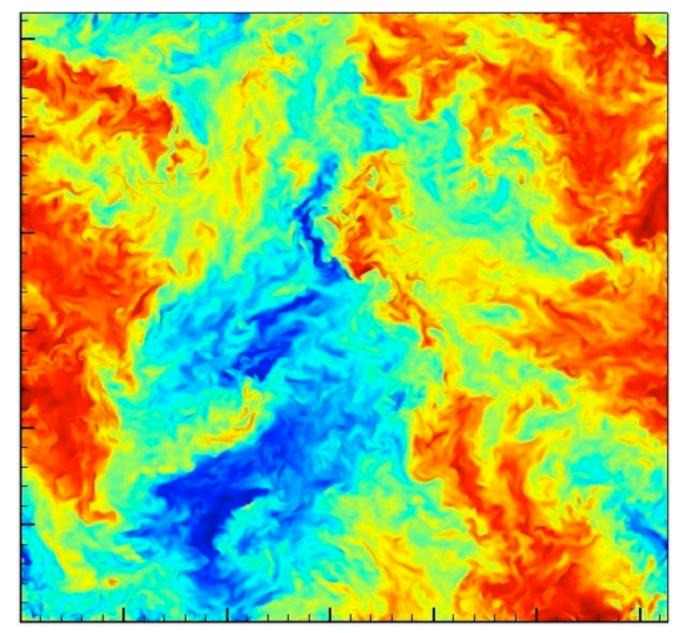
Understand the nature of turbulence

- Consecutive snapshots of a large simulation of turbulence: now 30 Terabytes
- Treat it as an experiment, play with the database!
- Shoot test particles (sensors) from your laptop into the simulation, like in the movie Twister
- Next: 70TB MHD simulation
- **New paradigm** for analyzing simulations!

C. Meneveau (Mech. E), G. Eyink (Applied Math), R. Burns (CS), A. Szalay (P&A) From: Alex Szalay, JHU

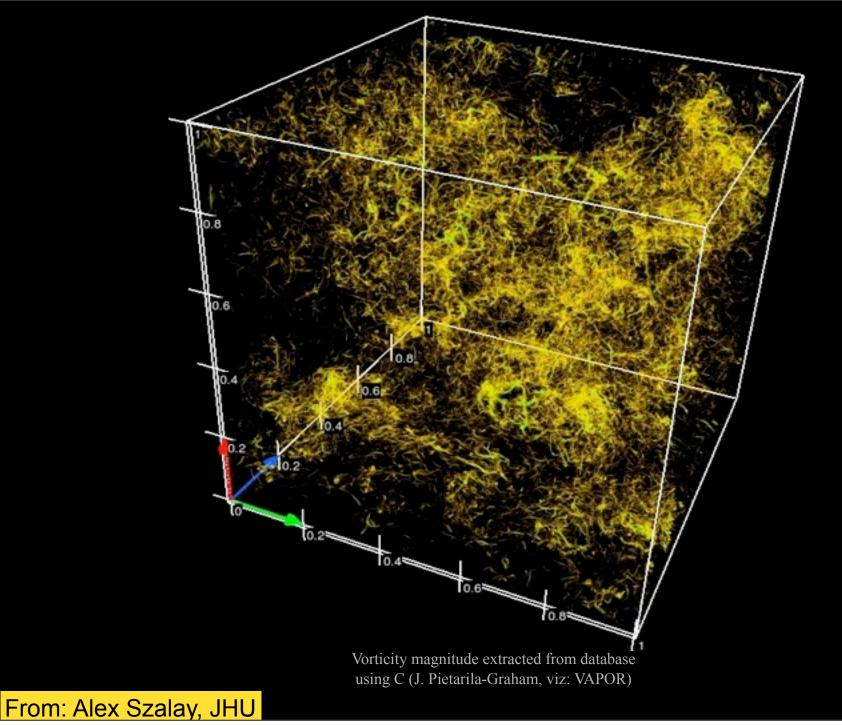
Sample code (fortran 90)





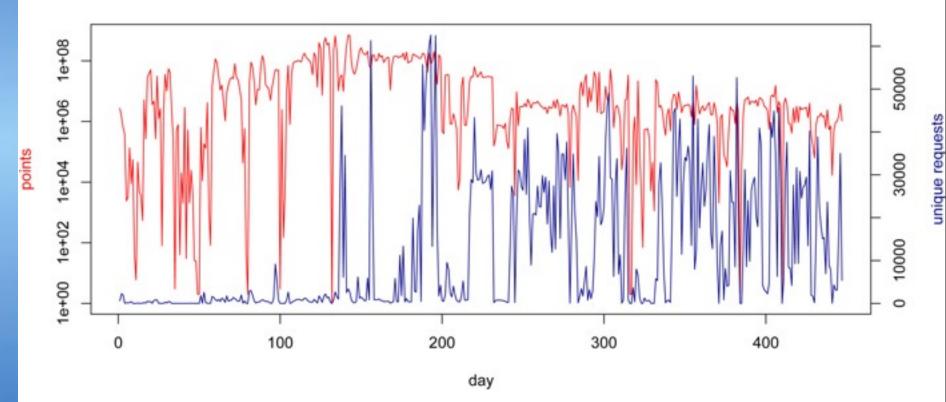
 $u(x,y,z_0,t_0)$ extracted from database using Matlab (C. Verhulst)

From: Alex Szalay, JHU



Daily Usage

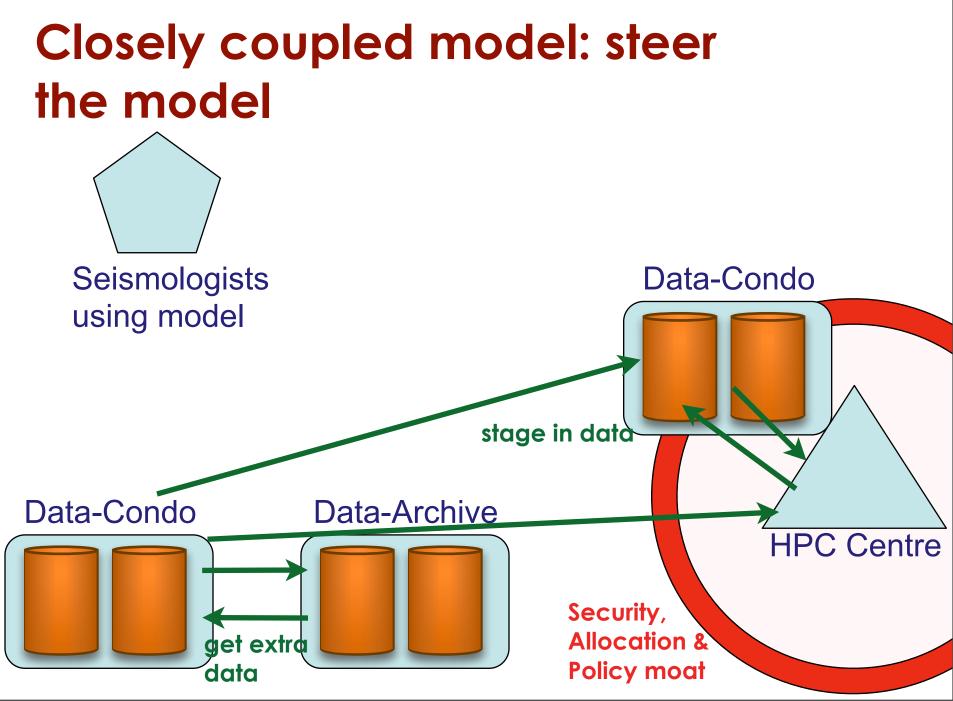
Turbulence Database Usage by Day

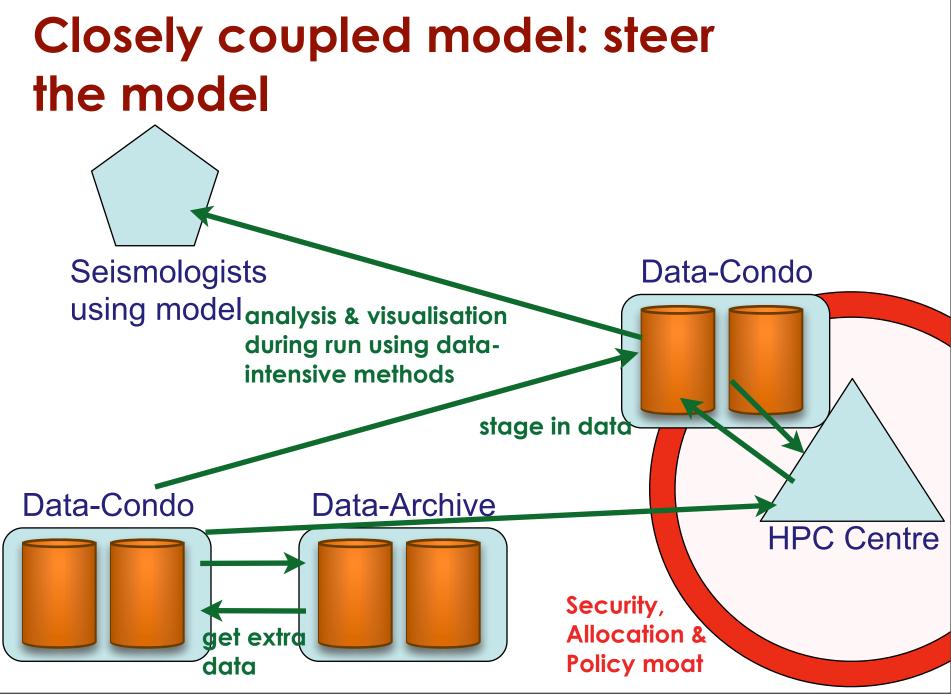


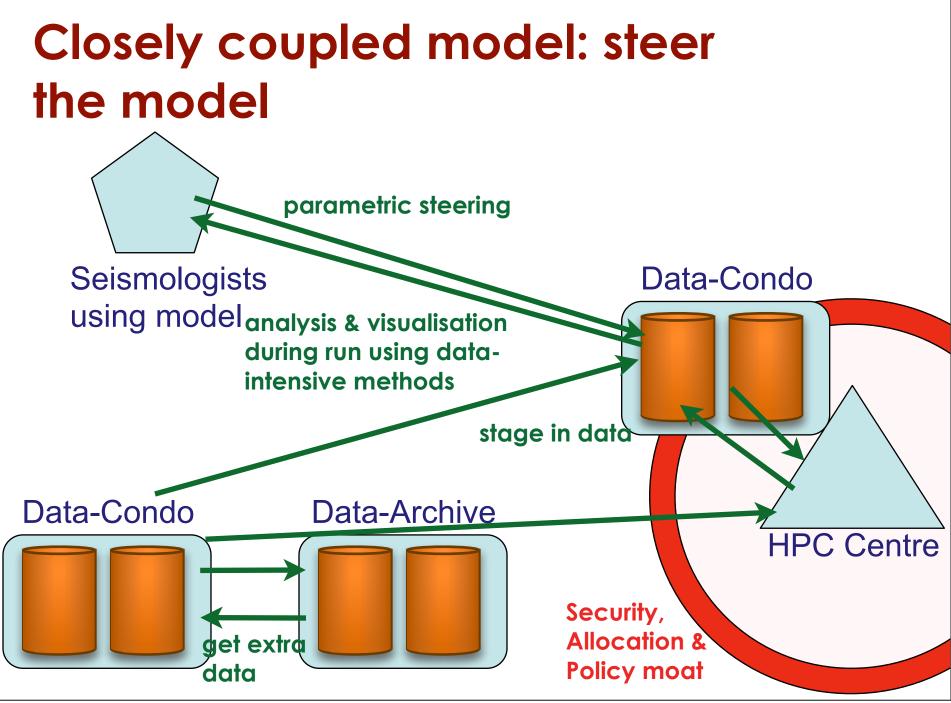
2011: exceeded 100B points, delivered publicly

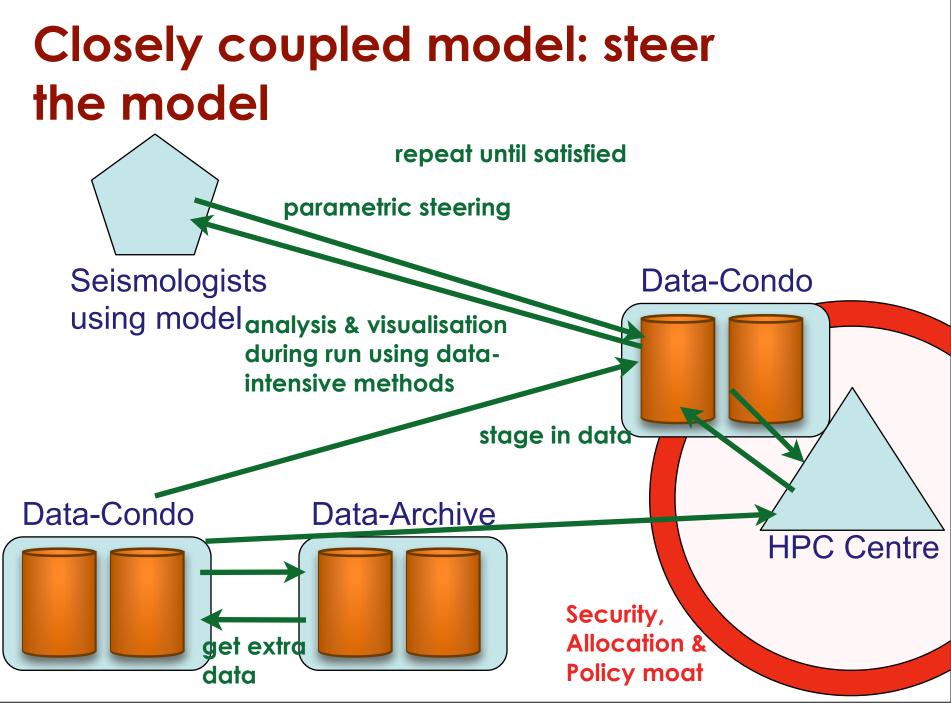
From: Alex Szalay, JHU

Data-Intensive and HPC in close harmony



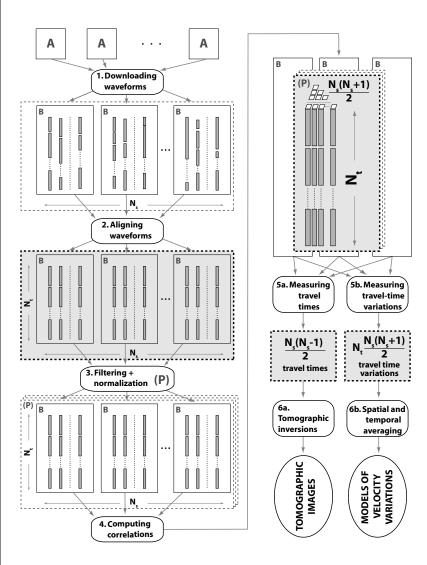






Data-Intensive thinking about data-preparation & correlation

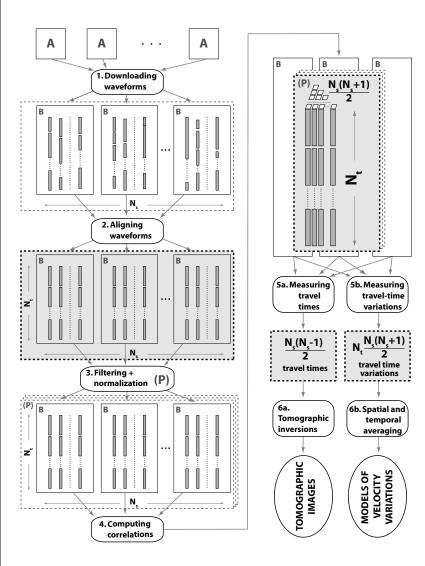
Data-Intensive View of Seismic noise correlation



- From Jean-Pierre Vilotte's talk
 - VERCE use case
- Show use of WF
- Show use of patterns
- Discuss optimisations
- Discuss mapping to existing technologies
- The limit of the lies is the truth
 - whistle-stop tour
 - adding reality and optimisation incrementally
- To understand
 - replay & discuss with DIR folk
 - read the book

THE DATA BONANZA: Improving Knowledge Discovery for Science, Engineering and Business, Atkinson et al., Wiley 2012

Data-Intensive View of Seismic Noise correlation



From Jean-Pierre Vi insights &

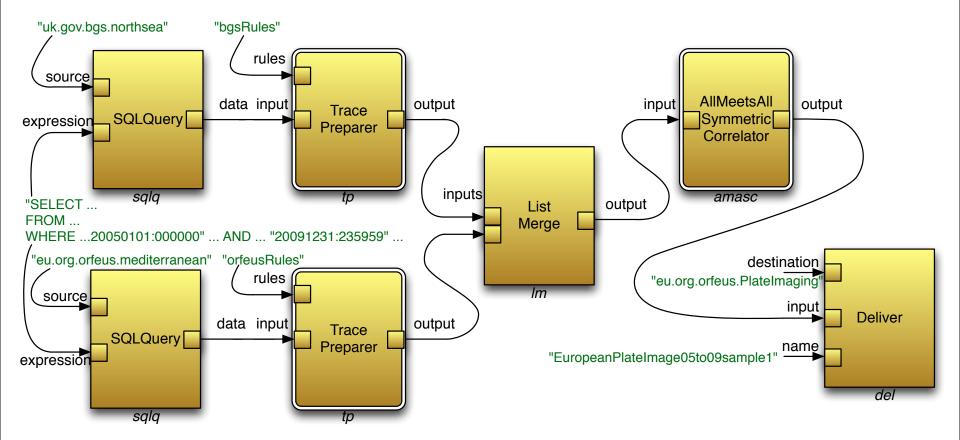
increments to

definitions to

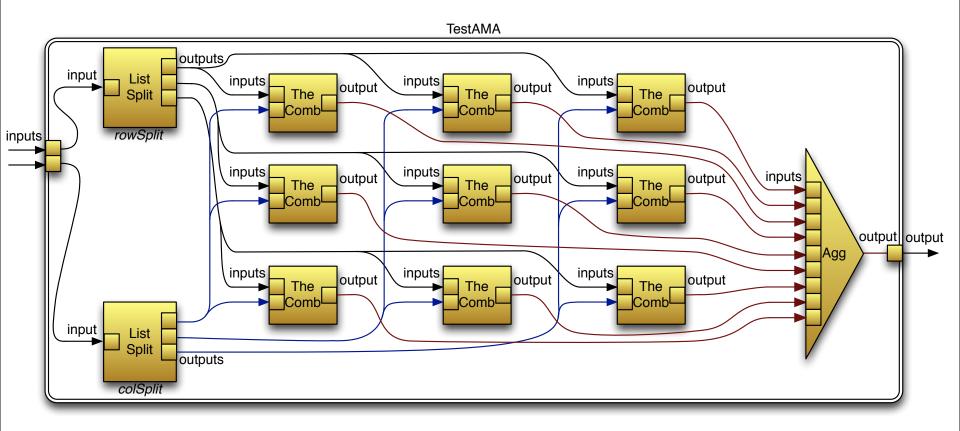
- VERCE use case
- Show use of WF
- Show use of pattern improve and accelerate
- Discuss optimisation
- Discuss mapping t existing technologies
- The limit of the lies is the truth
 - whistle-stop tour
 - adding reality and optimisation incrementally
- To understand
 - replay & discuss with DIR folk
 - read the book

THE DATA BONANZA: Improving Knowledge Discovery for Science, Engineering and Business, Atkinson et al., Wiley 2012

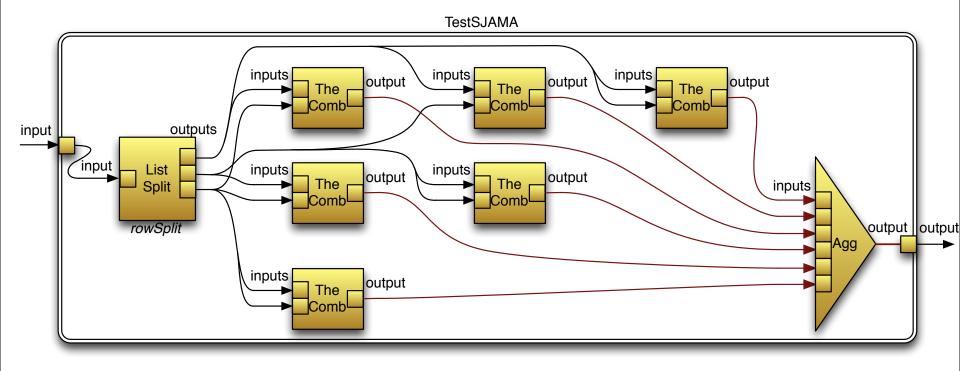
High-level WF generated via science gateway

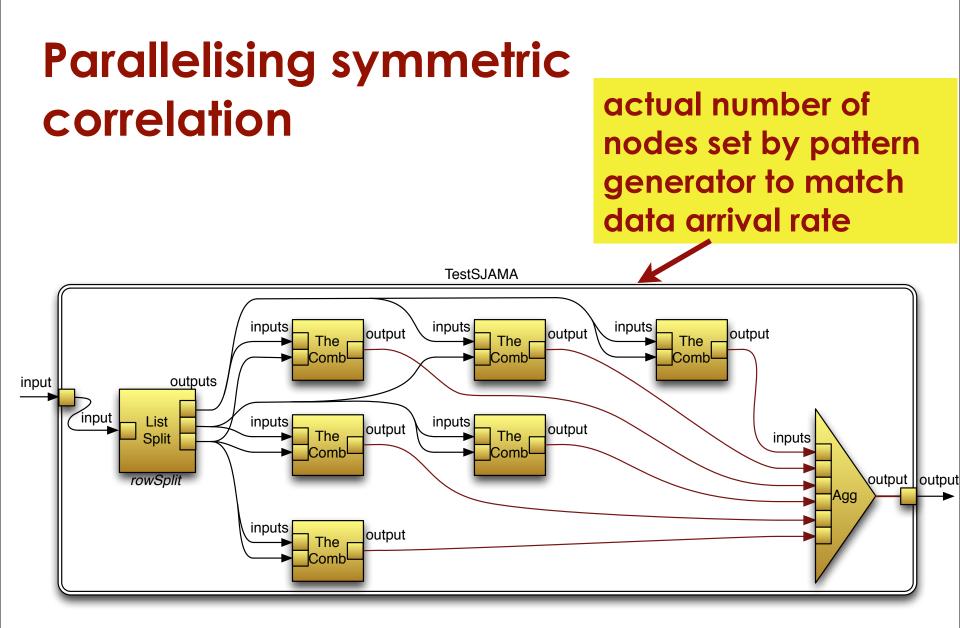


Parallelising correlation

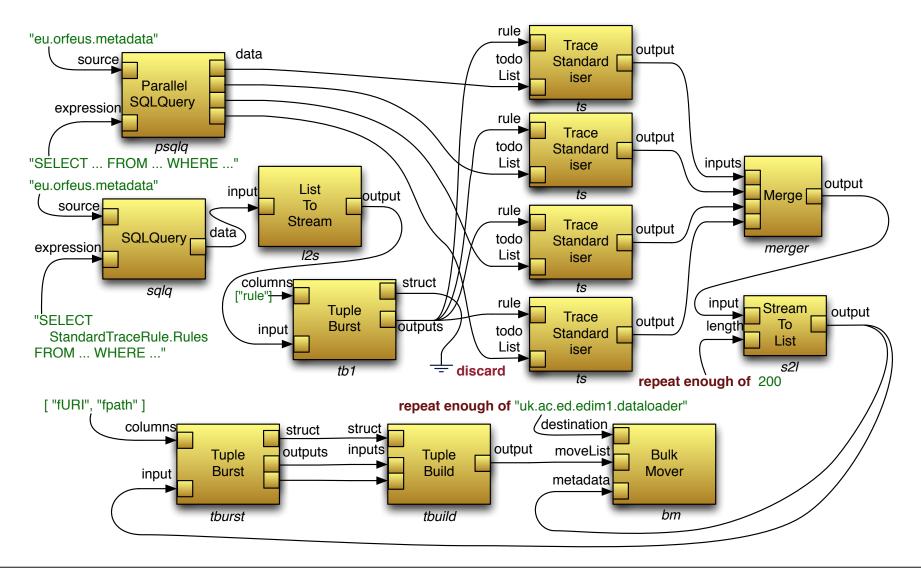


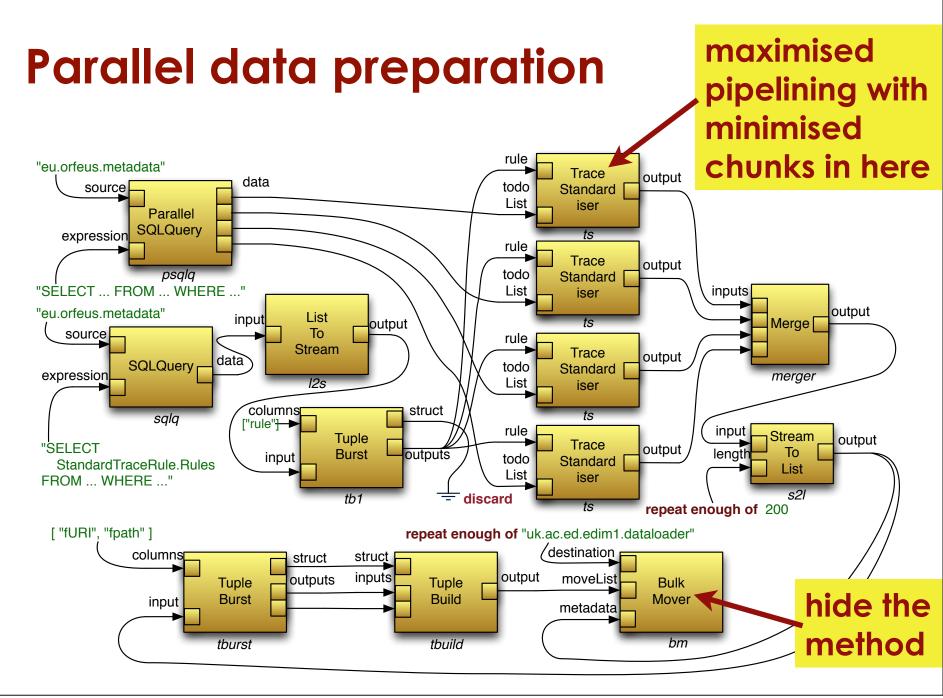
Parallelising symmetric correlation





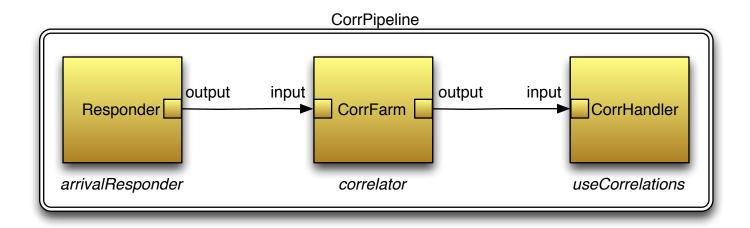
Parallel data preparation



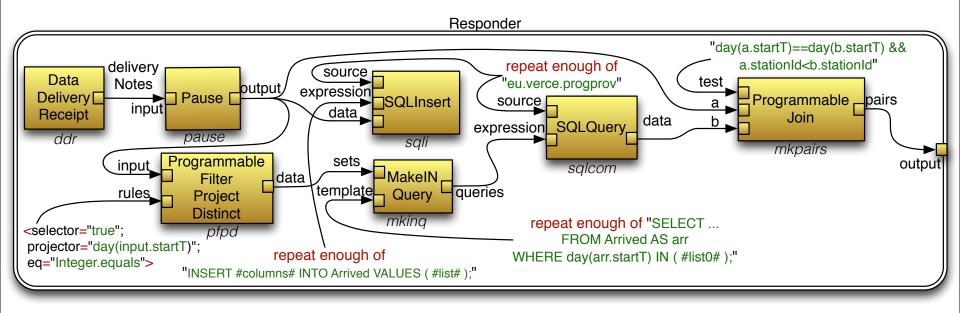


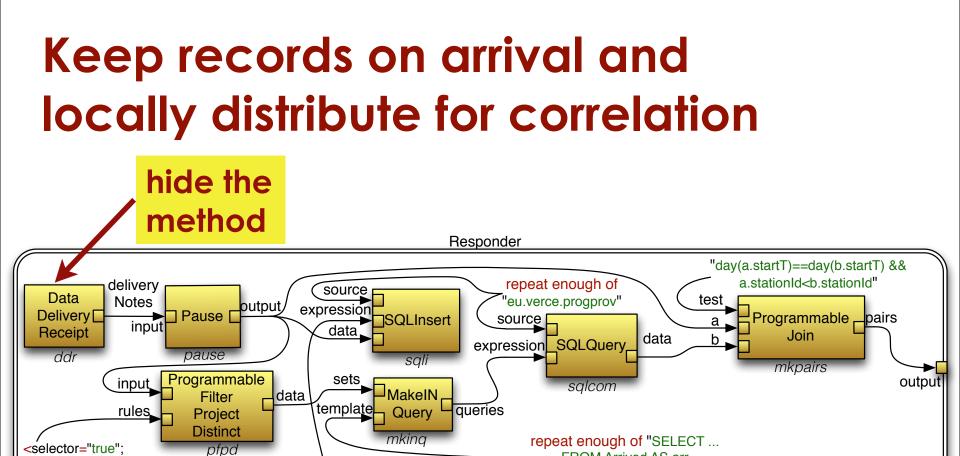
Monday, 28 May 12

High-level view of handling bulk-data deliveries



Keep records on arrival and locally distribute for correlation





repeat enough of

"INSERT #columns# INTO Arrived VALUES (#list#);"

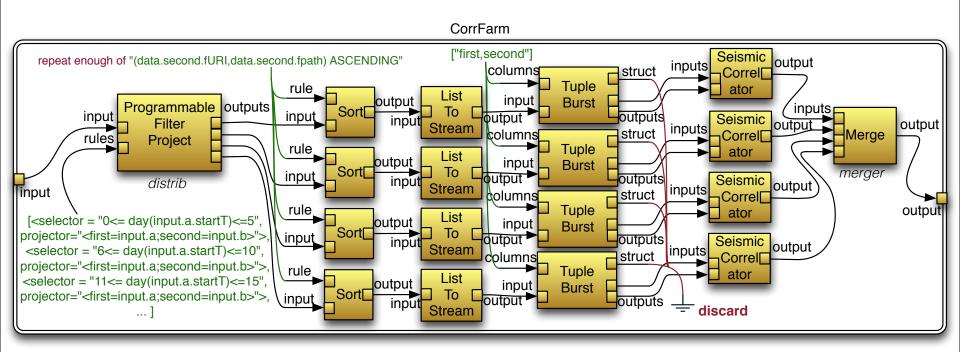
FROM Arrived AS arr

WHERE day(arr.startT) IN (#list0#);"

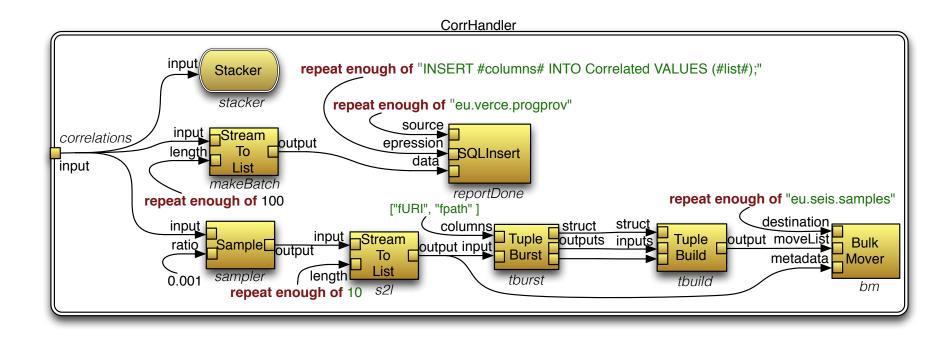
projector="day(input.startT)";

eq="Integer.equals">

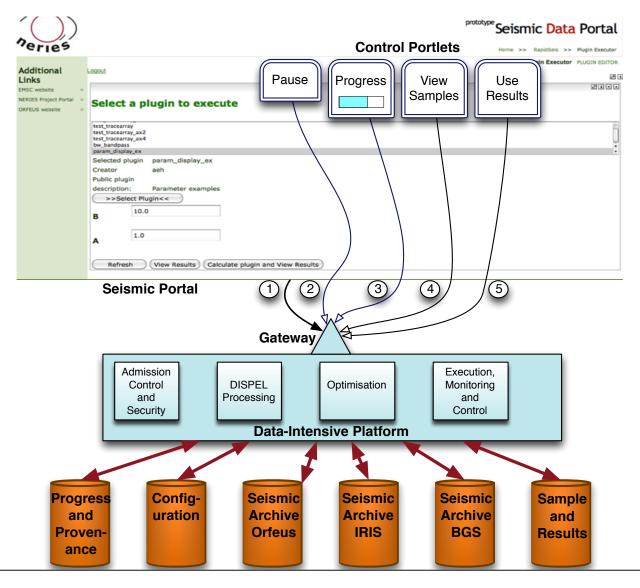
Parallel "hash-join" correlation farm



Keep track of progress & stack

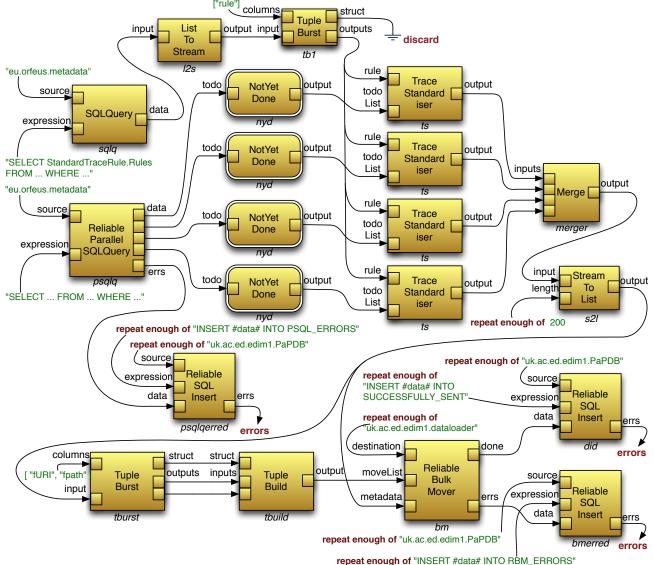


The seismologist in control: providing the scientific cockpit



Monday, 28 May 12

Add recovery of work after partial failure & incremental preparation



Monday, 28 May 12

Summary and Conclusions

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built
- It evolves organically
 - driven by success, economics, investment and technological innovations
 - it is mostly shared with bespoke adaptations

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built
- It evolves organically
 - driven by success, economics, investment and technological innovations
 - it is mostly shared with bespoke adaptations
- Today it's like Jules Verne's "Around the world in 80 days"
 - Growing number of good parts
 - You use your wits to cross the gaps

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built
- It evolves organically
 - driven by success, economics, investment and technological innovations
 - it is mostly shared with bespoke adaptations
- Today it's like Jules Verne's "Around the world in 80 days"
 - Growing number of good parts
 - You use your wits to cross the gaps
- Your ceaseless challenge
 - Pick and ride the winers
 - Spot when to "move out of shipping and onto airlines"

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built
- It evolves organically
 - driven by success, economics, investment and technological innovations
 - it is mostly shared with bespoke adaptations
- Today it's like Jules Verne's "Around the world in 80 days"
 - Growing number of good parts
 - You use your wits to cross the gaps
- Your ceaseless challenge
 - Pick and ride the winers
 - Spot when to "move out of shipping and onto airlines"

with help from IT friends, projects & international collaborations

there isn't a onesize fits all correct answer

- VERCE is designing & prototyping e-Infrastructure for seismologists
 - with a continuity model based on wider use of the VERCE platform
- Infrastructure is not designed and then built
- It evolves organically
 - driven by success, economics, investment and technological innovations
 - it is mostly shared with bespoke adaptations
- Today it's like Jules Verne's "Around the world in 80 days"
 - Growing number of good parts
 - You use your wits to cross the gaps
- Your ceaseless challenge
 - Pick and ride the winers
 - Spot when to "move out of shipping and onto airlines"

with help from IT friends, projects & international collaborations

Infrastructure isn't designed and then built

- Infrastructure isn't designed and then built
- But it's components are!
 - hundreds of person-years of design improving LINPAC (inherited in numpy)
 - >50 accelerating linear file read & write
 - >30 years polishing database algorithms
 - >20 years improving data transport
 - <10 years on large-scale map-reduce</p>

- Infrastructure isn't designed and then built
- But it's components are!
 - hundreds of person-years of design improving LINPAC (inherited in numpy)
 - >50 accelerating linear file read & write
 - >30 years polishing database algorithms
 - >20 years improving data transport
 - <10 years on large-scale map-reduce</p>

What will be your LINPAC for Data-Intensive Operations?