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Abstract— Retinal capillary abnormalities include small,
leaky, severely tortuous blood vessels that are associated with
a variety of retinal pathologies. We present a prototype image-
processing system for detecting abnormal retinal capillary
regions in ultra-widefield-of-view (UWFOV) fluorescein angiog-
raphy exams of the human retina. The algorithm takes as
input an UWFOV FA frame and returns the candidate regions
identified. An SVM classifier is trained on regions traced by
expert ophthalmologists. Tests with a variety of feature sets
indicate that edge features and allied properties differentiate
best between normal and abnormal retinal capillary regions.
Experiments with an initial set of images from patients showing
branch retinal vein occlusion (BRVO) indicate promising area
under the ROC curve of 0.950 and a weighted Cohen’s Kappa
value of 0.822.

I. INTRODUCTION AND MOTIVATION

We present a prototype software system detecting ab-
normal retinal capillary regions in ultra-wide-field-of- view
(UWFOV) fluorescein angiography (FA) exams of the human
retina.

The abnormality we focus on is telangiectasia. Retinal
telangiectasias are retinal vascular anomalies characterized
by severe tortuosity and incompetence, as shown in Figure 1.
They occur in association with diseases such as chronic
retinal vein occlusion and Coats disease among others [12],
[13]. In this study, we focus on telangiectasias secondary to
branch retinal vein occlusion (BRVO). Branch retinal vein
occlusion is a common cause of vision loss, usually affecting
middle-aged and elderly vasculopathic patients. The 15-year
cumulative incidence of BRVO was 1.8% in the Beaver Dam
Eye Study [14]. Important mechanisms of vision loss in
BRVO include macular edema and complications secondary
to ischemia [15], [16]. Indeed, telangiectasias are often found
adjacent to areas of frank retinal nonperfusion. Automated
detection and quantification of this important feature has the
potential to enhance primary care screening applications and
aid in the management of this disease by specialists.

BRVO can also be associated with dilated capillaries,
which should be distinguished from telangiectasias. Dilated
capillaries and telangiectasias have vessels of similar caliber
and both leak. However, in contrast to telangiectasias, dilated
capillaries are not tortuous and the regular vascular branching
pattern of these pre-existing vessels is intact. The clearest

examples of dilated capillaries are typically in acute BRVO,
whereas the telangiectasias are present only in chronic
BRVO.

Fig. 1. Extract of a UWFOV frame with telangiectatic regions outlined in
white.

Telangiectasias should also be distinguished from neovas-
cularization. Both are tortuous, leaky vessels that result from
BRVO. However, neovascularization grows into the vitreous,
whereas telangiectasias are intraretinal.

We propose a novel automatic telangiectasia detector,
designed and tested on UWFOV FA images. The proposed
algorithm uses a combination of edge contour analysis and
support vector machine (SVM) to classify between telang-
iectatic and non-telangiectatic regions.

Fig. 2. Example UWFOV FA frame captured using Optos P200MAAF
200Tx scanner.



II. RELATED WORK

Work on automatic retinal image analysis has grown
dramatically in the last 20 years [1], [7], but, to the authors’
best knowledge, no authors have addressed the automatic
detection of telangiectasia.

Previous work on automated detection of telangiectasia
in clinical images has been reported in the dermatology
literature for the detection of basal cell carcinoma (BCC).
For instance, Cheng et al. [2] trained a neural network
on 212 dermoscopy images containing telangiectasia, 59
of which contained BCC and the remaining 152 contained
benign lesions, with 30 features comprising shape and size
descriptors. The authors report an area under the ROC curve
of 0.967, when tested on a ground truth set constructed by
a single annotator.

Other work in the area of detecting abnormal capillaries in
retinal images is described in [18], where neovascularization
is detected by training a neural network on a dataset of 23
fundus camera images of patients suffering from diabetic
retinopathy, reporting an area under the ROC of 0.84. Hes-
san et al. [19] also describe a neovascularization detection
algorithm designed for colour fundus images, applying nor-
malization, classification and morphology based techniques
to achieve a specificity of 89.4% and sensitivity of 63.9%.
Although telangiectasia may have a similar appearance to
early neovascularization, medical context is often used to
differentiate between the two, which is out of the scope of
the reported algorithm.

In this paper, we utilize Optos UWFOV exams
(Optomap R©), capturing a 200 degree field of view of the
back of the eye, including the retinal periphery. In contrast,
traditional imaging modalities cover only 30–50 degrees
around the optic disc or macula. An example UWFOV FA
frame can be seen in Figure 2. Some literature exists on
automatic UWFOV FA image analysis. Perez-Rovira et al.
[9] describe an algorithm for deformable image registration
developed for UWFOV FA frames. The algorithm aligns
the frames in an FA sequence by detecting vessel segments
and bifurcation points using steerable filters, then iteratively
warps and aligns the segments in neighbouring frames to
create the final registered sequence. Trucco et al. [8] report
work on the automatic detection of ischemia in UWFOV
FA sequences, presenting a prototype system that uses the
AdaBoost [10] algorithm trained with features composed
of pixel intensity time-profiles, matched filters, and shape
analysis.

This paper brings two main contributions. First, to our
knowledge, it is the first report of automated detection of
retinal telangiectasias. Second, it is among the first to utilize
Optos fluorescein angiography for automated retinal imaging
analysis. The medical benefit of this modality has been well
documented [3] [4] [5] and its use is becoming part of
standard care in many centers.

We propose a novel automatic telangiectasia detector,
designed and tested on UWFOV FA images. The proposed
algorithm uses a combination of edge contour analysis and

support vector machine (SVM) learning to detect regions
with telangiectasias.

III. METHODS

A. Image Capture

The fluorescein angiographic images of five patients from
the practice of JPH with clinical diagnosis of chronic
ischemic BRVO were selected. These patients underwent
fluorescein angiography using a standard protocol. After in-
travenous injection of fluorescein, the sequential fluorescein
angiographic images were captured for more than 10 minutes
by certified ophthalmic photographers in the Photography
section at Jules Stein Eye Institute, UCLA, Los Angeles,
CA. Ultra-wide field retinal imaging (of about 200 degrees or
80% of the retina) was performed using Optos P200MAAF
200Tx (Optos Inc., Marlborough, MA, USA) panoramic
scanning laser ophthalmoscope. The images had a resolution
of 3900x3072 pixels and were saved as grayscale images in
bitmap format. An example is shown in Figure 2.

B. Image Annotation

The ground truth (GT) was provided by the clinical authors
from the Jules Stein Eye Institute, UCLA. A medical expert
traced the contour of telangiectatic regions using Adobe
Photoshop CS4 Extended Version 11.0.2 (Adobe Systems,
San Jose, CA, USA). Images in the arteriovenous phase be-
fore significant leakage developed were chosen. The selected
images had good quality and focus extending to periphery,
with minimal image artifacts (e.g. eyelashes).

C. Image Analysis Algorithm

The systems architecture is shown in Figure 3. It works
by performing Canny edge extraction at multiple scales
within a sliding window approach. At each scale, the edge
image is split into patches, and the edge attributes computed
within each patch. The resulting feature vectors yield a
9 dimensional representation of each patch. Ground truth
annotations from clinicians are used to train an SVM [11]
classifier.

The input frame used for analysis is selected as the
middle frame of the FA sequence, as this results in a frame
with widespread perfusion before any vascular leakages are
exhibited. A standard Matlab implementation of the Canny
edge detector is applied to the input FA frame, resulting in
a binary edge image (Figure 4). The figure illustrates the
very different spatial distribution of edges generated by the
altered appearance of the vessel network in telangiectatic
region compared to normal regions. This fact is exploited in
the feature vector used in our system.

We divide the binary edge image into overlapping 100×
100 pixel patches (the optimal patch size was chosen from
experiments). Our results showed that a 10% patch overlap
was the optimal choice as a trade-off between feature extrac-
tion time, classifier training time, and accuracy. 8-connected
component analysis was performed to separate individual
edge segments. In each patch, the average length of each
segment and the number of edge segments is recorded. We
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Fig. 3. System architecture at a glance.

also compute the angle along each edge segment, by fitting
polygons to three neighbouring sub-sampled points along
each edge segment. This process is repeated at three spatial
scales of Canny edge detection, by varying the σ parameter
(standard deviation) of the Gaussian filter. Our experiments
concluded that the set of values σ = 1,3,5 was sufficient to
achieve good results.

Fig. 4. Canny edge response with telangiectatic region (left) and healthy
region (right) highlighted.

We used the LibSVM [6] Matlab SVM library for classi-
fication. We apply the radial basis function kernel (RBF),
which gave the best results over linear and polynomial
kernels in our experiments. We used a grid search for
optimal parameter selection. The optimal combination of
both parameters can be found by iteratively training and
testing the classifier after varying the Cost and Gamma
parameters, in our case 152 for Cost and 4.75 for Gamma.
A total of 11887 patches, represented by the 9 dimensional
feature vector (3 features at 3 scales), were then used to train
the SVM classifier.

IV. RESULTS

The n-fold cross validation technique was used to train
and test the algorithm. The method consists of combining
all the feature data (patches), and then splitting these into a
random number n (n=10 for our tests) of subsets. The SVM

classifier is then evaluated a total of n times, each time being
trained with n -1 sets, and tested with the remaining set. For
our tests, we balanced the number of positive and negative
training examples, resulting in the use of 11887 patches, out
of the total 131269 patches extracted from the five images
in our dataset.

Fig. 5. A ROC curve showing the performance of our algorithm in terms
of sensitivity vs specificity. Solid line is tangent to the ROC in the optimal
operating point. The dashed line represents random chance results. The area
under the curve (AUC) is 0.950.

TABLE I
CONFUSION MATRIX SHOWING THE PERCENTAGE OF TRUE NEGATIVE,
FALSE NEGATIVE, FALSE POSITIVE, AND TRUE POSITIVE RESULTS OF

ANNOTATED GROUND TRUTH (GT) VERSUS THE PROPOSED

ALGORITHM’S PREDICTION.

A Receiver Operating Characteristic (ROC) curve of our
algorithms performance, created by varying the threshold
value on the decimal output of the SVM classifier from -
10.9 (100% Sensitivity) to 7.0 (100% Specificity), can be
seen in Figure 5 — it has an area under the curve of 0.950.

We take the optimal operating point as the tangency
point of the curve with a line of a slope 1 (solid line in
Figure 5), as the optimal compromise between sensitivity
and specificity. At the selected operating point the algorithm
achieves a true negative rate of 91.54% and a true positive
rate of 90.62%, shown in Table I. We report no comparative
tests as we are not aware of any other telangiectasia detectors.

As well as carrying out 10-fold cross validation as de-
scribed above, we also evaluated the algorithm’s performance
with a leave-one-out approach, by iteratively training on the
feature vectors extracted from 4 images, while testing with
the remaining image. The SVM parameter search was re-run
to generate the optimal configuration for the new dataset,
yielding a value of 25 for Cost and 0.2 for Gamma. A
confusion matrix of the reported results can be seen in Table
II. Although we observed a small decrease in accuracy with
this approach, we attribute this decrease to the small dataset



used for these tests, since a single image contributes a large
part of the overall training data (conditional on the size of
the lesion in that image).

TABLE II
CONFUSION MATRIX SHOWING THE TN, FN, FP, AND TP ALGORITHM

RESULTS WHEN TESTED WITH THE LEAVE-ONE-OUT METHODOLOGY.

V. CONCLUSIONS AND FUTURE WORK

To our best knowledge, we have reported the first al-
gorithm for the automatic detection and segmentation of
telangiectatic regions in retinal UWFOV FA exams. This
work is also a component of a larger system, under devel-
opment in our group, to detect branch retinal vein occlusion
and characterize its features, including retinal ischemia and
macular edema. Early results are promising and further tests
with a larger ground truth dataset are planned.

Qualitative analysis of the results show a constant false
positive classification on the optic disc region, though this
can be easily discarded by an optic disc detector [17].
Our experiments also showed that when the algorithm was
trained on the frame chosen by the annotators, not simply
the middle frame of the sequence as currently used by our
system, accuracy was greatly improved with an AUC value
of 0.979 and a weighted Cohen’s Kappa score of 0.885. This
observation will motivate future work into the development
of a more sophisticated frame selection method.
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