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Outline

• Data Intensive
• What is it?
• Why use it?

• DISPEL 
• What is it?
• Why design it?
• Is it different?

• A simple example
• Summary and Conclusions
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where I call home

Tuesday, 17 July 12



Data-Intensive Thinking

Tuesday, 17 July 12



Data-Intensive Thinking

Tuesday, 17 July 12



research

edinburgh
data.intensiveComputing over data pedigree!

• Tycho Brahe and 
Johannes Kepler
 1546-1601 & 1571-1630

• Dennis Noble uses Mercury
• The London University Computer in 1959
• to demonstrate heart beats as emergent behaviour
• by simulating two ion channels
• 2 papers in Nature 1960

} read “The Music of Life” by Dennis Noble
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Gray’s Laws of Data Engineering

Jim Gray:
• Scientific computing is revolving around data
• Need scale-out solution for analysis
• Take the analysis to the data!
• Start with “20 queries”
• Go from “working to working”

From: Alex Szalay, JHU
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Defining “Data-Intensive”
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Defining “Data-Intensive”

• Generally
• A computational task is data-intensive if you have to 

think hard about an aspect of data handling to make 
progress
} distribution, permissions and rules of use, complexity, heterogeneity, 

rate of arrival, unstructured or changing structure, long tail of small 
and scattered instances, size of data, number of users

} often in combination 
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Defining “Data-Intensive”

• Generally
• A computational task is data-intensive if you have to 

think hard about an aspect of data handling to make 
progress
} distribution, permissions and rules of use, complexity, heterogeneity, 

rate of arrival, unstructured or changing structure, long tail of small 
and scattered instances, size of data, number of users

} often in combination 

• Quantitatively
• The computation’s Amdahl numbers are close to 1

} CPU operations : bits transferred in or out of memory
} 1000 CPU operations : 1 I/O operation

• Total volumes expensive to store
• Total requests/unit time hard to accommodate
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Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource
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Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible
• in the processor cache in fewest steps & not disrupted

• Work on small chunks of data
• as small as logically possible
• a column of a table
• a row of a table
• a file
• data unbundled, in computational format & compressed

• Once data is close to a processor do all you can with it
• multiple derivatives in one pass

• pipelining

• re-use of intermediate data, caching and forwarding

• Use directories and indexes to avoid revisiting data randomly
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Data-Intensive Strategies 2
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Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed
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• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

• Updates local and mostly append (mostly non-Transactional)

• Coordination & Catalogue DBs 
• distributed shared structures

• just enough synchronisation

• Fine-grained local protection & authorisation

• Statistical and quantised accounting
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Data-Intensive Strategies 3

• High-level notations for describing methods /composing 
tasks
• with well-developed optimised transformations before execution
• query languages: SQL/AQL, (Xquery &SPARQL), ...
• workflow languages: Kepler, Pegasus, DISPEL, ...
• MapReduce: PigLatin, ZigZag, ...
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Data-Intensive Strategies 3

• High-level notations for describing methods /composing 
tasks
• with well-developed optimised transformations before execution
• query languages: SQL/AQL, (Xquery &SPARQL), ...
• workflow languages: Kepler, Pegasus, DISPEL, ...
• MapReduce: PigLatin, ZigZag, ...

• Providers + Community + User definition of (libraries of) tasks
• your signal processing, geophysics & data-presentation steps
• your existing code & preferred languages

• Support for the query & workflow lifetime: new research objects
• Creation Testing Production

RefinementLibrary

Re-use as
a Task

Sharing
Tuesday, 17 July 12



Diversity, Urgency, Complexity, 
…
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Datascopes for the naked mind

6
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Datascopes for the naked mind

6

NRAO/AUI/NSF

To reveal evidence in data 
you could never see before
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Datascopes for the naked mind

6

NRAO/AUI/NSF

To reveal evidence in data 
you could never see before

Changed our place in the universe
Tuesday, 17 July 12



DISPEL
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Data-Intensive Process 
Engineering Language

• A language for constructing data-flow graphs
• Nodes are processing elements
• Arcs are data-flow paths

• A language for generating data-flow patterns
• Functions hide detail of graphs
• Functions generate graphs

• A language for discussing data-flow 
engineering
• Designed to be read and written by humans
• As well as by programs
• Supports validation and optimisation
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[<select =
"1<= day(inp.first.start)<=5",

project="inp">,
<select =

"6<= day(inp.first.start)<=10",
project="inp">,

<select =
"11<= day(inp.first.start)<=15",

project="inp">,
... ]

Merge

inputs
output

Programmable
Filter

Project

outputsinp
rules
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"second.fURI ASC..."

Sort
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outpinput
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outpinput

structcols
Seismic
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ator

outputinputs
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De
List opinp

De
List opinp

De
List opinp

De
List opinp

inp

outp

CorrFarm

User and application diversity

System complexity

Iterative DISPEL
process

development

Mapping,
optimisation,

deployment and
execution using

OGSA-DAI

Accommodating and facilitating
Several application domains
Several tool sets
Several process representations
Several working practices

DISPEL representation

Composing and providing
Many autonomous resources
One enactment mechanism
A single platform

ADMIRE gateway

Tool level

Enactment
level

Registry

EDIM1
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Trans-
former

outputinput

tr

Results

name

input

res

SQLQuery
data

sq

expression

source

uk.ac.bgs.earthquakes

"SELECT . . . FROM . . . WHERE . . ."

"last 24 hours"

A simple DISPEL graph
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The DISPEL to Generate it

A SIMPLE DISPEL EXAMPLE 47

3.6 A SIMPLE DISPEL EXAMPLE

The following DISPEL request obtains data from a database, transforms it and delivers the
result; the details of how it does this can be found in Chapter 4. We use as a running example
the scenario that data-analysis experts have set up some process elements that perform
major transformational steps in data-intensive processes required by domain experts who
are geophysicists or seismologists using data from the archives of data streamed from
large numbers of seismometers – a thorough treatment of this application can be found in
Chapter 17. This first DISPEL example might correspond to the seismologists reviewing
a sample of data and the effects of a Transformer process element designed for that data to
check on the data selection and quality, and on the functionality of the Transformer they
are using.

1 package book.examples.seismology { //set working context
2 use dispel.db.SQLQuery; //import PE SQLQuery
3 use book.examples.seismo.Transform; //import PE Transform
4 use dispel.lang.Results; //import PE Results
5

6 SQLQuery sq = new SQLQuery; // new instance of SQLQuery
7 Transform tr = new Transform; // new instance of Transform
8 Results res = new Results; // new instance of Results
9

10 sq.data => tr.input; // set up data flow from sq to tr
11 tr.output => res.input; // set up data flow from tr to res
12 |- "uk.ac.bgs.earthquakes" -| => sq.source; // URI of source of data
13 |- "SELECT ... FROM ... WHERE ..." -| => sq.expression; //query gets traces
14 |- "last 24 hours" -| => res.name; //name of results for user
15

16 submit res; // submit for enactment
17 }

Line 1 introduces a package name2. Lines 2 to 4 import predefined process elements (PE)
and lines 6 to 8 make corresponding instances; this is done explicitly so that multiple
instances of a PE may be used in the same DISPEL request. Line 10 connects the output
stream of data from sq to the input of the Transformer instance tr. Lines 12 to 14 construct
streams that are supplied to the specified process-element instance’s inputs. Lines 6 to 14
taken together construct the data-streaming graph shown in Figure 3.4, which is submitted
for enactment by line 16.

SQLquery is a typical PE in that it iterates, consuming values from its input streams and
supplying resulting values to its output streams. That is, each time the SQLquery instance sq
is supplied with URIs (Web addresses) on input source and with SQL query expressions on
expression, it produces a data stream on data that corresponds to the result of the query on
the source. As values arrive on the input to tr they are processed and corresponding values
are emitted on tr’s output and sent as a stream along the connector to the input of res.
All instances of Result deliver, to the client that submitted the DISPEL request, the values
that arrive on their input, with the name supplied on their name. In this case, the name is
"last 24 hours", the data source is "uk.ac.bgs.earthquakes" and the query expression

2Several package names, such as this one, are used solely for the purpose of this book, to keep things simple.
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Who ‘speaks’ DISPEL

Domain
Experts

Data-Analysis 
Experts

Data-Intensive 
Engineers

Tool Gateway & DISPEL Enactment

Architectural Level
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Processing Elements

Resultsname

input

(f)

Split

outputs
input

(e)

. . .

Deliver
name
input

destination

(c)

Detector
events

(a)

Filter
outputinput

(b)

SQLQuery
data

(d)

expression

source
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Processing Elements

Resultsname

input

(f)

Split

outputs
input

(e)

. . .

Deliver
name
input

destination

(c)

Detector
events

(a)

Filter
outputinput

(b)

SQLQuery
data

(d)

expression

source

Expect well-organised libraries of well-described PEs
Description:

•names, inputs, outputs
•formats & meaning of each input and output
•auto-iteration behaviour, termination & errors
•optimisation properties
•use, relationships and logical properties
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Functions

• Algorithms to generate graphs
• parametric variation 
• patterns
• parameters
• subgraphs

• Abstraction and Optimisation
• smart methods for common patterns
• hiding pattern implementation for stability
• late evaluation permits contextual optimisation
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Functions

• Algorithms to generate graphs
• parametric variation 
• patterns
• parameters
• subgraphs

• Abstraction and Optimisation
• smart methods for common patterns
• hiding pattern implementation for stability
• late evaluation permits contextual optimisation
Expect well-organised libraries of well-described Functions
Description:

•names, type signature

Tuesday, 17 July 12



Enactment Model

1.DISPEL language processing
1.1.  Validation & Import from Registry
1.2.  Format & Meaning mis-match handling
1.3.  Interpretation to generate graph

2.Graph optimisation & mapping
2.1.  Re-ordering & Parallelisation
2.2.  Identification of target locations
2.3.  Selection of PE implementations / instances
2.4.  Partitioning into co-located subgraphs

3.Deployment
4.Execution, Monitoring & Clean up
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DAGMan

Ian	  J.	  Taylor,	  Ewa	  Deelman,	  Dennis	  B.	  Gannon,	  and	  Ma8hew	  Shields.	  
Workflows	  for	  e-‐Science:	  Scien1fic	  Workflows	  for	  Grids.	  Springer	  London,	  2007.

Trident
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DISPEL is Different 1

• Spanning Distributed Independent Hosts
• Fragments of one workflow can run in different regimes
• Different security models
• Different file systems
• Different DBMS
• Different Operating Systems
• Different DISPEL implementations

• Agnostic about Size & Scale
• Processing Elements of any size
• Data values in streams of any size
• Streams of any length
• Graphs of any size
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DISPEL is Different 2

• Patterns & Pattern Composition

• Functions define & generate patterns

• Higher-order functions compose patterns

• Functions can be refined to optimise

• Component-Description Driven
• Rich description of components

• Capturing logical properties

• Collecting component-builders’ hints

• Restricted language for workflow longevity

• Only hints and no WF-definition time concrete mappings
• Late mapping permits optimisation and enactment, for the 

system is at execution time - much different from definition 
time!
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Summary and Conclusions
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Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol
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Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol

• Several years of experience
• seven different application domains

• Differences
• functional pattern handling
• multi-scale streams
• restricted information to permit platform evolution

• Status
• two implementations: to OGSA-DAI & to Java
• much still to do to fully explore the ideas

Tuesday, 17 July 12



ADMIRE – Framework 7 ICT 215024

?

Picture 
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based on prior 
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