
FP7-INFRASTRUCTURES-2011 project# 283543

DISPEL
introduction

Malcolm Atkinson
Malcolm.Atkinson@ed.ac.uk

16th July 2012

NSF PIRE Open Science Data Cloud
workshop

Informatics Forum
Edinburgh

research

edinburgh
data.intensive

Tuesday, 17 July 12

mailto:Malcolm.Atkinson@ed.ac.uk
mailto:Malcolm.Atkinson@ed.ac.uk

Outline

• Data Intensive
• What is it?
• Why use it?

• DISPEL
• What is it?
• Why design it?
• Is it different?

• A simple example
• Summary and Conclusions

picture from Erica Salmon
Cornish Coast Path
where I call home

Tuesday, 17 July 12

Data-Intensive Thinking

Tuesday, 17 July 12

Data-Intensive Thinking

Tuesday, 17 July 12

research

edinburgh
data.intensiveComputing over data pedigree!

• Tycho Brahe and
Johannes Kepler
 1546-1601 & 1571-1630

• Dennis Noble uses Mercury
• The London University Computer in 1959
• to demonstrate heart beats as emergent behaviour
• by simulating two ion channels
• 2 papers in Nature 1960

} read “The Music of Life” by Dennis Noble

Tuesday, 17 July 12

Gray’s Laws of Data Engineering

Jim Gray:
• Scientific computing is revolving around data
• Need scale-out solution for analysis
• Take the analysis to the data!
• Start with “20 queries”
• Go from “working to working”

From: Alex Szalay, JHU
Tuesday, 17 July 12

Gray’s Laws of Data Engineering

Jim Gray:
• Scientific computing is revolving around data
• Need scale-out solution for analysis
• Take the analysis to the data!
• Start with “20 queries”
• Go from “working to working”

From: Alex Szalay, JHU
Tuesday, 17 July 12

Defining “Data-Intensive”

Tuesday, 17 July 12

Defining “Data-Intensive”

• Generally
• A computational task is data-intensive if you have to

think hard about an aspect of data handling to make
progress
} distribution, permissions and rules of use, complexity, heterogeneity,

rate of arrival, unstructured or changing structure, long tail of small
and scattered instances, size of data, number of users

} often in combination

Tuesday, 17 July 12

Defining “Data-Intensive”

• Generally
• A computational task is data-intensive if you have to

think hard about an aspect of data handling to make
progress
} distribution, permissions and rules of use, complexity, heterogeneity,

rate of arrival, unstructured or changing structure, long tail of small
and scattered instances, size of data, number of users

} often in combination

• Quantitatively
• The computation’s Amdahl numbers are close to 1

} CPU operations : bits transferred in or out of memory
} 1000 CPU operations : 1 I/O operation

• Total volumes expensive to store
• Total requests/unit time hard to accommodate

Tuesday, 17 July 12

Data-Intensive Strategies 1

Tuesday, 17 July 12

Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

Tuesday, 17 July 12

Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible
• in the processor cache in fewest steps & not disrupted

Tuesday, 17 July 12

Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible
• in the processor cache in fewest steps & not disrupted

• Work on small chunks of data
• as small as logically possible
• a column of a table
• a row of a table
• a file
• data unbundled, in computational format & compressed

Tuesday, 17 July 12

Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible
• in the processor cache in fewest steps & not disrupted

• Work on small chunks of data
• as small as logically possible
• a column of a table
• a row of a table
• a file
• data unbundled, in computational format & compressed

• Once data is close to a processor do all you can with it
• multiple derivatives in one pass

• pipelining

• re-use of intermediate data, caching and forwarding

Tuesday, 17 July 12

Data-Intensive Strategies 1

• Use commodity components and low power
• So that you can afford a lot of them

• Balanced for data-intensive work

• Treat memory bandwidth as a scarce resource

• Data & computation as close together as possible
• in the processor cache in fewest steps & not disrupted

• Work on small chunks of data
• as small as logically possible
• a column of a table
• a row of a table
• a file
• data unbundled, in computational format & compressed

• Once data is close to a processor do all you can with it
• multiple derivatives in one pass

• pipelining

• re-use of intermediate data, caching and forwarding

• Use directories and indexes to avoid revisiting data randomly

Tuesday, 17 July 12

Data-Intensive Strategies 2

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

• Updates local and mostly append (mostly non-Transactional)

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

• Updates local and mostly append (mostly non-Transactional)

• Coordination & Catalogue DBs
• distributed shared structures

• just enough synchronisation

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

• Updates local and mostly append (mostly non-Transactional)

• Coordination & Catalogue DBs
• distributed shared structures

• just enough synchronisation

• Fine-grained local protection & authorisation

Tuesday, 17 July 12

Data-Intensive Strategies 2

• Exploit very large scale parallelism and distribution
• many subtasks at modest rate per task in large numbers

• NOT tightly coupled parallelism!!!

• distribution for availability, ownership & persistence

• proximity to data sources or destinations for speed

• Replicate
• for more parallelism and for durable persistence

• Most data WORM (Write Once Read Many)
• or WORN (Write Once Read Never) - automatically eliminate or clean up

• Updates local and mostly append (mostly non-Transactional)

• Coordination & Catalogue DBs
• distributed shared structures

• just enough synchronisation

• Fine-grained local protection & authorisation

• Statistical and quantised accounting

Tuesday, 17 July 12

Data-Intensive Strategies 3

Tuesday, 17 July 12

Data-Intensive Strategies 3

• High-level notations for describing methods /composing
tasks
• with well-developed optimised transformations before execution
• query languages: SQL/AQL, (Xquery &SPARQL), ...
• workflow languages: Kepler, Pegasus, DISPEL, ...
• MapReduce: PigLatin, ZigZag, ...

Tuesday, 17 July 12

Data-Intensive Strategies 3

• High-level notations for describing methods /composing
tasks
• with well-developed optimised transformations before execution
• query languages: SQL/AQL, (Xquery &SPARQL), ...
• workflow languages: Kepler, Pegasus, DISPEL, ...
• MapReduce: PigLatin, ZigZag, ...

• Providers + Community + User definition of (libraries of) tasks
• your signal processing, geophysics & data-presentation steps
• your existing code & preferred languages

Tuesday, 17 July 12

Data-Intensive Strategies 3

• High-level notations for describing methods /composing
tasks
• with well-developed optimised transformations before execution
• query languages: SQL/AQL, (Xquery &SPARQL), ...
• workflow languages: Kepler, Pegasus, DISPEL, ...
• MapReduce: PigLatin, ZigZag, ...

• Providers + Community + User definition of (libraries of) tasks
• your signal processing, geophysics & data-presentation steps
• your existing code & preferred languages

• Support for the query & workflow lifetime: new research objects
• Creation Testing Production

RefinementLibrary

Re-use as
a Task

Sharing
Tuesday, 17 July 12

Diversity, Urgency, Complexity,
…

Tuesday, 17 July 12

Diversity, Urgency, Complexity,
…

Tuesday, 17 July 12

Diversity, Urgency, Complexity,
…

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

Tuesday, 17 July 12

Datascopes for the naked mind

6

NRAO/AUI/NSF

Tuesday, 17 July 12

Datascopes for the naked mind

6

NRAO/AUI/NSF

Tuesday, 17 July 12

Datascopes for the naked mind

6

NRAO/AUI/NSF

To reveal evidence in data
you could never see before

Tuesday, 17 July 12

Datascopes for the naked mind

6

NRAO/AUI/NSF

To reveal evidence in data
you could never see before

Changed our place in the universe
Tuesday, 17 July 12

DISPEL

Tuesday, 17 July 12

Data-Intensive Process
Engineering Language

• A language for constructing data-flow graphs
• Nodes are processing elements
• Arcs are data-flow paths

• A language for generating data-flow patterns
• Functions hide detail of graphs
• Functions generate graphs

• A language for discussing data-flow
engineering
• Designed to be read and written by humans
• As well as by programs
• Supports validation and optimisation

Tuesday, 17 July 12

[<select =
"1<= day(inp.first.start)<=5",

project="inp">,
<select =

"6<= day(inp.first.start)<=10",
project="inp">,

<select =
"11<= day(inp.first.start)<=15",

project="inp">,
...]

Merge

inputs
output

Programmable
Filter

Project

outputsinp
rules

distrib

"second.fURI ASC..."

Sort
outp

data

rule

Sort
outp

data

rule

Sort
outp

data

rule

Sort
outp

data

rule

["first,second"]

Tuple
Burst

outpinput

structcols
Seismic
Correl
ator

outputinputs

Tuple
Burst

outpinput

structcols
Seismic
Correl
ator

outputinputs

Tuple
Burst

outpinput

structcols
Seismic
Correl
ator

outputinputs

Tuple
Burst

outpinput

structcols
Seismic
Correl
ator

outputinputs

merger

De
List opinp

De
List opinp

De
List opinp

De
List opinp

inp

outp

CorrFarm

User and application diversity

System complexity

Iterative DISPEL
process

development

Mapping,
optimisation,

deployment and
execution using

OGSA-DAI

Accommodating and facilitating
Several application domains
Several tool sets
Several process representations
Several working practices

DISPEL representation

Composing and providing
Many autonomous resources
One enactment mechanism
A single platform

ADMIRE gateway

Tool level

Enactment
level

Registry

EDIM1

Tuesday, 17 July 12

Trans-
former

outputinput

tr

Results

name

input

res

SQLQuery
data

sq

expression

source

uk.ac.bgs.earthquakes

"SELECT . . . FROM . . . WHERE . . ."

"last 24 hours"

A simple DISPEL graph

Tuesday, 17 July 12

The DISPEL to Generate it

A SIMPLE DISPEL EXAMPLE 47

3.6 A SIMPLE DISPEL EXAMPLE

The following DISPEL request obtains data from a database, transforms it and delivers the
result; the details of how it does this can be found in Chapter 4. We use as a running example
the scenario that data-analysis experts have set up some process elements that perform
major transformational steps in data-intensive processes required by domain experts who
are geophysicists or seismologists using data from the archives of data streamed from
large numbers of seismometers – a thorough treatment of this application can be found in
Chapter 17. This first DISPEL example might correspond to the seismologists reviewing
a sample of data and the effects of a Transformer process element designed for that data to
check on the data selection and quality, and on the functionality of the Transformer they
are using.

1 package book.examples.seismology { //set working context
2 use dispel.db.SQLQuery; //import PE SQLQuery
3 use book.examples.seismo.Transform; //import PE Transform
4 use dispel.lang.Results; //import PE Results
5

6 SQLQuery sq = new SQLQuery; // new instance of SQLQuery
7 Transform tr = new Transform; // new instance of Transform
8 Results res = new Results; // new instance of Results
9

10 sq.data => tr.input; // set up data flow from sq to tr
11 tr.output => res.input; // set up data flow from tr to res
12 |- "uk.ac.bgs.earthquakes" -| => sq.source; // URI of source of data
13 |- "SELECT ... FROM ... WHERE ..." -| => sq.expression; //query gets traces
14 |- "last 24 hours" -| => res.name; //name of results for user
15

16 submit res; // submit for enactment
17 }

Line 1 introduces a package name2. Lines 2 to 4 import predefined process elements (PE)
and lines 6 to 8 make corresponding instances; this is done explicitly so that multiple
instances of a PE may be used in the same DISPEL request. Line 10 connects the output
stream of data from sq to the input of the Transformer instance tr. Lines 12 to 14 construct
streams that are supplied to the specified process-element instance’s inputs. Lines 6 to 14
taken together construct the data-streaming graph shown in Figure 3.4, which is submitted
for enactment by line 16.

SQLquery is a typical PE in that it iterates, consuming values from its input streams and
supplying resulting values to its output streams. That is, each time the SQLquery instance sq
is supplied with URIs (Web addresses) on input source and with SQL query expressions on
expression, it produces a data stream on data that corresponds to the result of the query on
the source. As values arrive on the input to tr they are processed and corresponding values
are emitted on tr’s output and sent as a stream along the connector to the input of res.
All instances of Result deliver, to the client that submitted the DISPEL request, the values
that arrive on their input, with the name supplied on their name. In this case, the name is
"last 24 hours", the data source is "uk.ac.bgs.earthquakes" and the query expression

2Several package names, such as this one, are used solely for the purpose of this book, to keep things simple.

Tuesday, 17 July 12

Who ‘speaks’ DISPEL

Domain
Experts

Data-Analysis
Experts

Data-Intensive
Engineers

Tool Gateway & DISPEL Enactment

Architectural Level

Tuesday, 17 July 12

Processing Elements

Resultsname

input

(f)

Split

outputs
input

(e)

. . .

Deliver
name
input

destination

(c)

Detector
events

(a)

Filter
outputinput

(b)

SQLQuery
data

(d)

expression

source

Tuesday, 17 July 12

Processing Elements

Resultsname

input

(f)

Split

outputs
input

(e)

. . .

Deliver
name
input

destination

(c)

Detector
events

(a)

Filter
outputinput

(b)

SQLQuery
data

(d)

expression

source

Expect well-organised libraries of well-described PEs
Description:

•names, inputs, outputs
•formats & meaning of each input and output
•auto-iteration behaviour, termination & errors
•optimisation properties
•use, relationships and logical properties

Tuesday, 17 July 12

Functions

• Algorithms to generate graphs
• parametric variation
• patterns
• parameters
• subgraphs

• Abstraction and Optimisation
• smart methods for common patterns
• hiding pattern implementation for stability
• late evaluation permits contextual optimisation

Tuesday, 17 July 12

Functions

• Algorithms to generate graphs
• parametric variation
• patterns
• parameters
• subgraphs

• Abstraction and Optimisation
• smart methods for common patterns
• hiding pattern implementation for stability
• late evaluation permits contextual optimisation
Expect well-organised libraries of well-described Functions
Description:

•names, type signature

Tuesday, 17 July 12

Enactment Model

1.DISPEL language processing
1.1. Validation & Import from Registry
1.2. Format & Meaning mis-match handling
1.3. Interpretation to generate graph

2.Graph optimisation & mapping
2.1. Re-ordering & Parallelisation
2.2. Identification of target locations
2.3. Selection of PE implementations / instances
2.4. Partitioning into co-located subgraphs

3.Deployment
4.Execution, Monitoring & Clean up

Tuesday, 17 July 12

DAGMan

Ian	 J.	 Taylor,	 Ewa	 Deelman,	 Dennis	 B.	 Gannon,	 and	 Ma8hew	 Shields.	
Workflows	 for	 e-‐Science:	 Scien1fic	 Workflows	 for	 Grids.	 Springer	 London,	 2007.

Trident

Tuesday, 17 July 12

DISPEL is Different 1

• Spanning Distributed Independent Hosts
• Fragments of one workflow can run in different regimes
• Different security models
• Different file systems
• Different DBMS
• Different Operating Systems
• Different DISPEL implementations

• Agnostic about Size & Scale
• Processing Elements of any size
• Data values in streams of any size
• Streams of any length
• Graphs of any size

Tuesday, 17 July 12

DISPEL is Different 2

• Patterns & Pattern Composition

• Functions define & generate patterns

• Higher-order functions compose patterns

• Functions can be refined to optimise

• Component-Description Driven
• Rich description of components

• Capturing logical properties

• Collecting component-builders’ hints

• Restricted language for workflow longevity

• Only hints and no WF-definition time concrete mappings
• Late mapping permits optimisation and enactment, for the

system is at execution time - much different from definition
time!

Tuesday, 17 July 12

Summary and Conclusions

Tuesday, 17 July 12

Summary

Tuesday, 17 July 12

Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol

Tuesday, 17 July 12

Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol

• Several years of experience
• seven different application domains

Tuesday, 17 July 12

Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol

• Several years of experience
• seven different application domains

• Differences
• functional pattern handling
• multi-scale streams
• restricted information to permit platform evolution

Tuesday, 17 July 12

Summary

• DISPEL is an experimental data-intensive language
• draws on workflows & database query internals
• auto-iteration over values flowing through connections
• agnostic about value sizes - implementation challenge
• controlled access to system information
• optimisation based on description & operation
• distributed termination protocol

• Several years of experience
• seven different application domains

• Differences
• functional pattern handling
• multi-scale streams
• restricted information to permit platform evolution

• Status
• two implementations: to OGSA-DAI & to Java
• much still to do to fully explore the ideas

Tuesday, 17 July 12

ADMIRE – Framework 7 ICT 215024

?

Picture
composition

by
Luke Humphry
based on prior

art by Frans Hals

www.omii.ac.uk

www.ogsadai.org.uk

research.nesc.ac.uk/node/828

www.verce.eu

Tuesday, 17 July 12

http://www.ogsadai.org.uk
http://www.ogsadai.org.uk
http://www.verce.eu
http://www.verce.eu

