The Performance and Cost Variability of Amazon EC2

Gary A. McGilvary

OUTLINE

I. Introduction

2. Cost Variations

3. Performance Variations

4. Conclusions/Future Work

Motivation
Amazon EC2 and SPRINT

End-User Location
Data Transfer Usage Charges

Cloud Load Underutilization Instance Processors

INTRODUCTION

- Investigate the variability of cost and performance
- Optimal cloud configuration
- Cloud platform selection
- Cloud vs HPC
- Business impact

AMAZON EC2

Amazon's Elastic Compute Cloud

Compute

Standard On-Demand Instances
Small (Default)
Large
Extra Large
Micro On-Demand Instances
Micro
High-Memory On-Demand Instance
Extra Large
Double Extra Large
Quadruple Extra Large
High-CPU On-Demand Instances
Medium
Extra Large
Cluster Compute Instances
Quadruple Extra Large
Cluster GPU Instances
Quadruple Extra Large

Size	Memory	Storage	Compute	Cores	1/0	Cost \$
Small	I.7 GB	160 GB	I CU		Moderate	0.085
Large	7.5 GB	850 GB	4 CU's	2	High	0.34
XLarge	I5 GB	1690 GB	8 CU's	4	High	0.68

EC2 Compute Unit

• I EC2 CU: I.0 - I.2 GHz Xeon 2007 processor

AMAZON EC2

Amazon's Elastic Compute Cloud

Network - Regions

AMAZON EC2

Amazon's Elastic Compute Cloud

Network - Availability Zones

IDT

SPRINT

- Simple Parallel R INTerface
 - provides parallel functions of R

НРС	Multi-core desktops	Servers	Shared Memory Machines	Network of Workstations	GPU	Cloud	supercomputers
SPRINT Compatibility	V	V	V	V		/	

- Functions:
 - pcor: parallel correlation (memory/compute-intensive) pcor(t (x, y = x))
 - pmaxT: parallel permutation test (compute-intensive) pmaxT(x, classlabel, B=150000)

OUTLINE

I. Introduction

2. Cost Variations

3. Performance Variations

4. Conclusions/Future Work

Motivation
Amazon EC2 and SPRINT

End-User Location
Data Transfer Usage Charges

Cost vs User Location:

- Instance Location:
 - US East Region
 - us-east-1b
- Submit from: Thailand and UK

Experiment

- Copy of SPRINT pcor data
- SPRINT package installation from EC2 repository
- Execution
- Results: Invoice and Usage report

Cost vs User Location:

\mathfrak{T}	amazon
	web services"

Amazon Web Services
Billing Statement: February 1 - February 28, 2011
Data Printed: February 22, 2011

Name: Gary McGilvary
Email: gary mcgilvary@ed ac.uk

Date Printed: February 23, 2011	Account Number:	ary@ed.ac.uk
Amazan Elastia Camputa Claud		Totals
Amazon Elastic Compute Cloud US East (Northern Virginia) Region		
Amazon EC2 running Linux/UNIX		
\$0.085 per Small Instance (m1.small) instance-hour (or partial hour) Amazon EC2 EBS	10 Hrs	0.85
\$0.00 per GB-month of provisioned storage under monthly free tier	0.024 GB-Mo	0.00
\$0.00 per 1 million I/O requests under monthly free tier	5,422 IOs	0.00
\$0.00 per 10,000 gets (when loading a snapshot) under monthly free tier	2,048 Requests	0.00
Amazon CloudWatch \$0.015 per monitored instance-hour (or partial hour)	5 Hrs	0.08
•	»	0.93
AWS Data Transfer (excluding Amazon CloudFron	nt)	
\$0.000 per GB - data transfer in under the monthly global free tier	0.040 GB	0.00
\$0.000 per GB - data transfer out under the monthly global free tier	0.004 GB	0.00
\$0.010 per GB - regional data transfer in/out/between EC2 Avail Zones or when using public/elastic IP addresses or ELB	0.511 GB	0.01
Taxes		0.01
Estimated Taxes VAT Registration		0.19
(Due March 1, 2011)		3.1 2
Total Charges due on March 1, 2011†		\$1.13

```
<?xml version="1.0" encoding="UTF-8"?>
<ServiceUsage>
   <OperationUsage>
       <ServiceName>AmazonEC2/ServiceName>
       <OperationName>RunInstances
       <UsageType>DataTransfer-In-Bytes
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>4253394</UsageValue>
   </OperationUsage>
   <0perationUsage>
       <ServiceName>AmazonEC2/ServiceName>
       <OperationName>GetMetricStatistics
       <UsageType>Calls</UsageType>
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>20</UsageValue>
   </OperationUsage>
   <0perationUsage>
       <ServiceName>AmazonEC2/ServiceName>
       <OperationName>InterZone-Out
       <UsageType>DataTransfer-Regional-Bytes</UsageType>
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>42708</UsageValue>
   </OperationUsage>
```

Cost vs User Location:

```
<?xml version="1.0" encoding="UTF-8"?>
<ServiceUsage>
   <0perationUsage>
       <ServiceName>AmazonEC2/ServiceName>
       <OperationName>RunInstances
       <UsageType>DataTransfer-In-Bytes
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>4253394</UsageValue>
   </OperationUsage>
   <0perationUsage>
       <ServiceName>AmazonEC2
       <OperationName>GetMetricStatistics
       <UsageType>Calls</UsageType>
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>20</UsageValue>
   </OperationUsage>
   <OperationUsage>
       <ServiceName>AmazonEC2/ServiceName>
       <OperationName>InterZone-Out
       <UsageType>DataTransfer-Regional-Bytes</UsageType>
       <StartTime>02/24/11 12:00:00</StartTime>
       <EndTime>02/24/11 13:00:00</EndTime>
       <UsageValue>42708</UsageValue>
   </OperationUsage>
```

Cost vs User Location:

Location	Cost	Data In	Data Out	Storage	I/O Requests
Thailand	\$2.10	$0.205~\mathrm{GB}$	0.007 GB	0.151 GB	84,103
Scotland	\$2.52	0.274 GB	0.008 GB	0.151 GB	46,523

- Difference in taxation levels
 - Scale with use and expensive for prolonged time periods
- Difference in resource usages
 - dependent on location or cloud load?
- Consequences of user location:
 - Businesses/Individuals in a tax free zone will benefit
 - reduction in performance?

- Run SPRINT's pcor function multiple times
- Small Ubuntu instance
- Regional Data Transfer (RDT)
- Transferred 84.3 MB's from EC2
 Ubuntu Repository to the instance

- Consequences of incorrect data usage recording:
 - some free data transfer!
 - substantial savings for prolonged use!
 - GB's can go unrecorded on Azure

OUTLINE

I. Introduction

2. Cost Variations

3. Performance Variations

4. Conclusions/Future Work

Motivation
Amazon EC2 and SPRINT

End-User Location
Data Transfer Usage Charges

Cloud Load Underutilization Instance Processors

CLOUD LOAD

Cloud Load vs Time of Day?

CLOUD LOAD

Cloud Load vs Time of Day?

Improving High-Performance Computations on Clouds Through Resource Underutilization

- Reserving more resources while using a small % of each
 optimum configuration!
- SPRINT's pcor and pmaxT functions and EC2 Large instances
- Two Cases: (Large: 2 cores at 2 EC2 CU's)
- I. Each SPRINT process per instance (1 core 50%)
 e.g 4 processes = 4 instances
- 2. Each SPRINT process per instance core
- e.g 4 processes = 2 instances (4 cores)

- Two Cases: (Large: 2 cores at 2 EC2 CU's)
- I. Each SPRINT process per instance (I core 50%)
 - e.g 4 processes = 4 instances
- 2. Each SPRINT process per instance core
- e.g 4 processes = 2 instances (4 cores)

Case Study: SPRINT

- Consequences of Underutilization:
 - Reserving more resources will increase costs
 - cost vs performance?
 - Paper: Improving High-Performance Computations on Clouds Through Resource Underutilization
 - "Underutilization improves the expected execution time by two orders of magnitude"
 - "... it is more than 3 times cheaper to use 50% of the resources than 100%"
 - Geared towards finding the optimal cloud configuration
 - Could potentially save businesses/individuals a substantial amount of time and money

How do we determine the utilisation rate, and hence optimal configuration for a job?

INSTANCE PROCESSORS

- Instances deployed on varying processors
- Availability Zone: us-east-Id
 Instance Type: Large
- Remember: EC2 Compute Units (1.0 1.2 GHz, Xeon 2007)
 - Large instance = 2 EC2 CU's per core (2cores), 4.0 -4.8 GHz
 - Large instance has 2 processors

Processor Type	Min Usage	Max Usage
Intel Xeon E5507 2.27 GHz (x2 - 4.54 GHz)	88.1%	100%
Intel Xeon E5645 2.4 GHz (x2 - 4.8 GHz)	83.3%	100%
Intel Xeon E5430 2.66 GHz (x2 - 5.32 GHz)	75.1%	90.22%

INSTANCE PROCESSORS

I core: 2-GHz 2 cores: 4-GHz

INSTANCE PROCESSORS

I core: 2-GHz 2 cores: 4-GHz

CONCLUSIONS

- Dependent on user location, costs may differ as well as resources used
- EC2's data transfer usage mechanism may be incorrect at times
 - cloud load?
- Application performance can vary significantly (execution times)
- Underutilization can increase performance
 - in every case?
 - utilization rate?
- The underlying instance processors affect performance
 - correct EC2 Compute Units specified?

Optimal cloud configuration == increased performance == lowest cost

THANKYOU!

Questions?

gary.mcgilvary@ed.ac.uk