

eFFORT

Earthquake and Failure Forecasting in Real Time from controlled laboratory test to volcanoes and earthquakes

Rosa Filgueira Vicente. 10th January 2012. University of Edinburgh. Data Intensive Research.

eFFORT Introduction

- The seismologists have suggested that the brittle failure of rock samples in the laboratory is analogous to brittle failure associated with volcanic eruptions, earthquakes ...
- Signals observed in the laboratory, could be used to forecast the timing of hazard events.

The failure forecasting project eFFORT goals:

- Determine the **predictability** of brittle failure of rock samples in the **laboratory experiments**.
- Determine how this **predictability** scales to the greater complexity, physical size, and slower strain-rates of **natural-world** phenomena.
- The project will develop methodologies based on archive data and then apply them in "near realtime" to a variety of synthetic, experimental and natural data.

eFFORT roles and tasks

UCL

Rock Physics:

1. Data Generation:

1.1 Lab Data

1.2 Deep Sea Data

2. Facilitating Data transfer.

Edinburgh Informatics:

1.Data Management

1.1 Data Transfer

1.2 Data Storage

1.3 Data Access

2. Web-based tool:

2.1 Run seismologist

applications/tasks

2.2. Data

visualization

Edinburgh Geosciences:

1. Data Analysis

2. Developing,

implementing and

evaluating

forecasting models

eFFORT roles and tasks

DIR tasks for eFFORT

- 1. Provide an efficient implementation of data management (inter and intra site).
- 2. Provide a portal interface for EFFORT by using RAPID to allow data access, analysis and visualization.

DIR summary for eFFORT

- Initial Data Management tasks:
 - Linux virtual server machine:
 - Host web portal and database
 - Configuration of FTP connection
 - Several scripts to receive data from UCL and write them in a data base.
 - Scripts to read files in TDMS format:
 - Technical data Management solution (proprietary format).
- Prototype of Rapid portlet :
 - Run several python scripts provided by Geosciences.
 - Visualize the results in the web portal.

DIR "to do list" for Effort (I)

- Provide an efficient implementation of data management:
 - Chose and set up a mechanism on the server machine to receive data from Catania.
 - Adapt the send/receive scripts to transfer data in nearly real time.
 - Store each experiment's data on Edinburgh service
 - Run a daily script to check the data received
 - Record all the information related to every experiment.
 - Run statistics daily to determine how many data and files were received in the server machine

DIR "to do list" for Effort (II)

- Adapt the RAPID portlet to allow seismologists run different tasks/applications:
 - Copy the files from the server into the host.
 - Execute and monitor the task/application as it is executing.
 - Copy the results from the host to the server.
 - Visualise the result of the computation in the portal.

DIR challenges

- Storage data from different sources nearly in real time:
 Lab and Catania.
- The experiments could run during months or years:
 - Two types of data for every experiments
 - Time Driven Data: Data are captured in a specified interval (10 seconds -10 minutes). This data should be transferred as soon as they are available in the source machine.
 - Acoustic Emission Data (AE): Could happen at any time and very small intervals (micro seconds).
 - Data are write TDMs format: Need to transform to text format before to storage in the database.
- Data Movement.