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Agent and Multi-Agent Systems 

• An agent is a computer system that acts autonomously in a dynamic,

unpredictable and open environment.



Agent and Multi-Agent Systems 

• A multi-agent system is one that consists of a number of agents,

which interact with one another in order to achieve their goals.



Agent and Multi-Agent Systems 

• To successfully interact, Agents need to:

▫ Exchange information and explantations

▫ Resolve conflicts of opinions and interests

▫ Reach decisions

They need They need 
to engageto engage

inin
argumentargument
(dialogue)(dialogue)



Argumentation for agent communication  

• An argumentation is a basic mechanism for interaction. 

• When agents are collaborative, the argumentation process progresses 
through a dialogue.

• The rules of  agent communication language are called Interaction Protocol.

• Interaction protocols are possible communication scenarios between 
individual agents in multi-agent systems.

Common communication Common communication 
Language 

rules



• In, recent years, significant progress has been made in the
argumentation community for modelling agent communication.

• However, the argumentation community encounters various 
problems:

▫ The lack of shared for an interchange format for arguments

▫ The lack of ability to implement complex systems of argument form high 
level specifications.

Argumentation for agent communication  



Argument Interchange Format 

(AIF)

• The AIF is the result of an international effort which provides a
common language to exchange argumentation concepts among
agents in a MAS.

• It provides an ontology which represents an argument as a network
of linked nodes.



Problems
• However, the AIF dose not solve the implementation problem.

• The AIF language is an abstract language.

• Concerned with only the structure of argument, while implemented multi-
agent systems are concrete and need social constraints via protocols.

• This means that there is a gap between argument specification languages
and multi-agent implementation languages.



Research objectives

Bridge the gap between AIF and agent protocol using a combination of :

1. Transformational synthesis

2. Model checking



First Objective:

Transformational synthesis



Transformational synthesis

1. Propose a new high level control flow specification language
called Dialogue Interaction Diagram (DID), which is an extension
of AIF, used to specify the argument protocol in an abstract way.

2. Synthesis of concrete multi-agent protocols from DID by reusing
reliable and common argument patterns

Part 1
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By using LCC-Argument patterns
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1.Dialogue Interaction Diagram

• Dialogue Interaction Diagram (DID)

• Graphical language 

• DID can be used by designers to describe arguments interaction 
protocol:

1. Dialogue Interaction Diagram for  2 agents (DID)

2. Dialogue Interaction Diagram for N-agent (DIDN) 



Dialogue Interaction Diagram

• DID defines four different rules:

1. Locution rules (permitted moves)

2. Commitment rules

3. Structural rules (reply rules)

4. Precondition rules
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Car safety Example 
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Car safety Example 

Q
Z

My car is safe
(Claim)
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Car safety Example 
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Car safety Example 
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Car safety Example 

Q
Z
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2. Synthesis Concrete Protocols from DID

Build an efficient Interaction protocol in 

the easiest and quickest way by reusing 

common argument patterns

DID

Multi-Agent 

protocol 

(LCC)

By using LCC-Argument patterns
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Tool
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My car is safe
(claim)

Z
Q

a(a(sender,zsender,z)::)::

a(a(receiver,qreceiver,q)::)::

claim("My car is safe") ==>==> a(receive, q)a(receive, q)

claim("My car is safe") <== <== a(send, z)a(send, z)

a(role name, agent ID)M(X) ==> ==> Receiver RoleM(X) <== <== Sender Role

then

then

a(reply,zz)

a(askwhy,qq)

then
role

a(R1,ID1)::
Locution (X) ==> a(R1, ID2)
then
a(R3,ID1).

a(R2,ID2)::
Locution (X) <== a(R2, ID1)
then
a(R4,ID2).
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Techniques editing
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•Techniques editing is a method used to synthesize Prolog clauses



LCC-Argument Pattern (Structure Synthesis)
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Starter pattern (S-P)

a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).

a(RQ1(KBQ,CSQ),IDQ)::

SL(X) <==a(RZ1(KBZ,CSZ),IDZ)
then
a(RQ2(KBQ,CSQ),IDQ)

Sender

Receiver

It is going to be used to start the argument between two agents.



Transfer from DID to LCC

by using Starter Pattern

Dialogue Interaction 
Diagram LCC

Argument  Interaction 
protocol

Starter Pattern 



a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).

a(RQ1(KBQ,CSQ),IDQ)::

SL(X) <== a(RZ1(KBZ,CSZ),IDZ)
then
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a(sendClaimZ(KBZ,CSZ),IDZ)::

a(receiveclaimQ(KBQ,CSQ),IDQ)::

claim(X) ==> a(receiveclaimQ(KBQ,CSQ),IDQ)  AddToCS(X, CSZ)
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a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).
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Second objective:

Model Checking



Model Checking

• Our model checking is used to check the semantics of the AIF
specification against the semantics of the LCC specification.

• Our architecture is general:

▫ AIF (DID)

▫ Patterns

The semantic of the 
AIF specification

The semantic of LCC 
specification



Model Checking
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Conclusion 

• This research describes an approach to bridging the gap between argument
specification and multi-agent implementation using AIF as an example of
an argumentation language and LCC as an example of a multi-agent
implementation (coordination) language.

• The proposed approach uses a combination of transformational synthesis
and model checking steps to automatically transform the new specification
argument language (DID) to peer-to-peer protocols by using a LCC
techniques-based synthesis method.

• The resulting LCC protocol is validated to prove that the LCC techniques-
based synthesis method is correctly implemented and to demonstrate that
the resulting LCC protocol derived from DID behaves correctly as expected.


