
Ashwag Omar Maghraby,
Dave Robertson,

Adela Grando and

Michael Rovatsos

Bridging the Specification-
Protocol Gap in Argumentation

E-mail : A.O.Maghraby@sms.ed.ac.uk

Website: http://homepages.inf.ed.ac.uk/s0961321/index.html

Outline

• Introduction

• Argument Interchange Format

• Research objectives

▫ Lightweight Coordination Calculus (LCC)

▫ Techniques editing

▫ CPNs

• Conclusion

Introduction

Standalone

Computer

system

Distributed,
open and dynamic

computer systems

Some

autonomy

Some
degree of

autonomy

Abilities to communicate and Abilities to communicate and

negotiate on behalf of human

user

Agent TechnologyAgent Technology

Agent and Multi-Agent Systems

• An agent is a computer system that acts autonomously in a dynamic,

unpredictable and open environment.

Agent and Multi-Agent Systems

• A multi-agent system is one that consists of a number of agents,

which interact with one another in order to achieve their goals.

Agent and Multi-Agent Systems

• To successfully interact, Agents need to:

▫ Exchange information and explantations

▫ Resolve conflicts of opinions and interests

▫ Reach decisions

They need They need
to engageto engage

inin
argumentargument
(dialogue)(dialogue)

Argumentation for agent communication

• An argumentation is a basic mechanism for interaction.

• When agents are collaborative, the argumentation process progresses
through a dialogue.

• The rules of agent communication language are called Interaction Protocol.

• Interaction protocols are possible communication scenarios between
individual agents in multi-agent systems.

Common communication Common communication
Language

rules

• In, recent years, significant progress has been made in the
argumentation community for modelling agent communication.

• However, the argumentation community encounters various
problems:

▫ The lack of shared for an interchange format for arguments

▫ The lack of ability to implement complex systems of argument form high
level specifications.

Argumentation for agent communication

Argument Interchange Format

(AIF)

• The AIF is the result of an international effort which provides a
common language to exchange argumentation concepts among
agents in a MAS.

• It provides an ontology which represents an argument as a network
of linked nodes.

Problems
• However, the AIF dose not solve the implementation problem.

• The AIF language is an abstract language.

• Concerned with only the structure of argument, while implemented multi-
agent systems are concrete and need social constraints via protocols.

• This means that there is a gap between argument specification languages
and multi-agent implementation languages.

Research objectives

Bridge the gap between AIF and agent protocol using a combination of :

1. Transformational synthesis

2. Model checking

First Objective:

Transformational synthesis

Transformational synthesis

1. Propose a new high level control flow specification language
called Dialogue Interaction Diagram (DID), which is an extension
of AIF, used to specify the argument protocol in an abstract way.

2. Synthesis of concrete multi-agent protocols from DID by reusing
reliable and common argument patterns

Part 1

DID

Multi-Agent

protocol

(LCC)

By using LCC-Argument patterns

1 2
Automatic

transformation

1.Dialogue Interaction Diagram

• Dialogue Interaction Diagram (DID)

• Graphical language

• DID can be used by designers to describe arguments interaction
protocol:

1. Dialogue Interaction Diagram for 2 agents (DID)

2. Dialogue Interaction Diagram for N-agent (DIDN)

Dialogue Interaction Diagram

• DID defines four different rules:

1. Locution rules (permitted moves)

2. Commitment rules

3. Structural rules (reply rules)

4. Precondition rules

Claim(X)

startClaimQstartClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

argue(Pre)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

retract(X)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

why(Pre)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

concede(X)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

argue(Def)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

AddToCS

(X,CS)

CS =

CS - {X}

1

2

CannotFindpremise

(X, KB)

AddToCS

(Pre, CS)

FindInKBorCS

(Pre,KB, CS)
1

2

AddToCS

(Def, CS)

1

2

Def =

FindDefeats

(Pre,KB,CS)

AddToCS

(Pre,X,CS)

2

1

Pre=
FindPremise
(X, KB, CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Recursive Locution(RL)

Recursive Locution(RL)

Termination Locution(TL(

DID(2 Agents)

QQ

QQ

Locution Icon

Recursive
condition

Locution Type

receiver
condition

sender
condition

Sender
Information

Receiver
Information

Recursive
argument

Locution name

Role name

Role arguments

Agent ID

Role name

Role arguments

Agent ID

StartingStarting
Termination
Intermediate

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

argue(Pre)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

retract(X)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

why(Pre)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

concede(X)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

argue(Def)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

AddToCS

(X,CS)

CS =

CS - {X}

1

2

CannotFindpremise

(X, KB)

AddToCS

(Pre, CS)

FindInKBorCS

(Pre,KB, CS)
1

2

AddToCS

(Def, CS)

1

2

Def =

FindDefeats

(Pre,KB,CS)

AddToCS

(Pre,X,CS)

2

1

Pre=
FindPremise
(X, KB, CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Intermediate Locution(IL)

Intermediate Locution(IL)

Termination Locution(TL(

DID(2 Agents)

QQ

QQ

Car safety Example

Q
Z

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

AddToCS

(X,CS)

Starting Locution(SL)

DID(2 Agents)

Car safety Example

Q
Z

My car is safe
(Claim)

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

AddToCS

(X,CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Intermediate Locution(IL)

DID(2 Agents)

QQ

Car safety Example

Q

Why is your car safe?
(Why)

Z

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

argue(Pre)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

retract(X)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

AddToCS

(X,CS)

CS =

CS - {X}

1

2

CannotFindpremise

(X, KB)

AddToCS

(Pre,X,CS)

2

1

Pre=
FindPremise
(X, KB, CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Intermediate Locution(IL)

Intermediate Locution(IL)

Termination Locution(TL(

DID(2 Agents)

QQ

Car safety Example

Q
Z

Since it has an airbag
(argue)

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

argue(Pre)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

retract(X)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

why(Pre)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

concede(X)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

argue(Def)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

AddToCS

(X,CS)

CS =

CS - {X}

1

2

CannotFindpremise

(X, KB)

AddToCS

(Pre, CS)

FindInKBorCS

(Pre,KB, CS)
1

2

AddToCS

(Def, CS)

1

2

Def =

FindDefeats

(Pre,KB,CS)

AddToCS

(Pre,X,CS)

2

1

Pre=
FindPremise
(X, KB, CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Intermediate Locution(IL)

Intermediate Locution(IL)

Termination Locution(TL(

DID(2 Agents)

QQ

QQ

Car safety Example

Q
Z

I agree that your car is safe
(concede)

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

argue(Pre)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

retract(X)

replyToWhyQreplyToWhyZ

X,KBQ, CSQX,KBZ, CSZ

IDQIDZ

why(Pre)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

concede(X)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

argue(Def)

replyToArgueZreplyToArgueQ

X,Pre,KBZ, CSZX,Pre,KBQ, CSQ

IDZIDQ

AddToCS

(X,CS)

CS =

CS - {X}

1

2

CannotFindpremise

(X, KB)

AddToCS

(Pre, CS)

FindInKBorCS

(Pre,KB, CS)
1

2

AddToCS

(Def, CS)

1

2

Def =

FindDefeats

(Pre,KB,CS)

AddToCS

(Pre,X,CS)

2

1

Pre=
FindPremise
(X, KB, CS)

Termination Locution(TL(

Starting Locution(SL)

FindInKBorCS

(X, KB, CS)
1

2

AddToCS

(X,CS)

Intermediate Locution(IL)

Intermediate Locution(IL)

Termination Locution(TL(

DID(2 Agents)

QQ

QQ

2. Synthesis Concrete Protocols from DID

Build an efficient Interaction protocol in

the easiest and quickest way by reusing

common argument patterns

DID

Multi-Agent

protocol

(LCC)

By using LCC-Argument patterns

1 2
Automatic

transformation

Tool

Dialogue Interaction
Diagram

Argument
Interaction protocol

 Generate Interaction
Protocol Tool

Argument patterns

AIF Simple Simple

Dependent on a particular language Dependent on a particular language

Independent of any particular Independent of any particular
algorithm or problem domain

The patterns supported by The patterns supported by
Techniques editing method

Lightweight Coordination Lightweight Coordination
Calculus

(LCC)

My car is safe
(claim)

Z
Q

a(a(sender,zsender,z)::)::

a(a(receiver,qreceiver,q)::)::

claim("My car is safe") ==>==> a(receive, q)a(receive, q)

claim("My car is safe") <== <== a(send, z)a(send, z)

a(role name, agent ID)M(X) ==> ==> Receiver RoleM(X) <== <== Sender Role

then

then

a(reply,zz)

a(askwhy,qq)

then
role

a(R1,ID1)::
Locution (X) ==> a(R1, ID2)
then
a(R3,ID1).

a(R2,ID2)::
Locution (X) <== a(R2, ID1)
then
a(R4,ID2).

ZZ
QQ

Tool

Dialogue Interaction
Diagram

Argument
Interaction protocol

 Generate Interaction
Protocol Tool

Argument patterns

Techniques editing
Skeleton

Pattern 1

Pattern 2

Pattern 3

-
-

Additions

-
-

Addition 1Addition 1

Addition2Addition2

Addition3Addition3

Pattern 1

Addition2Addition2

Addition3Addition3
Final

program

•Techniques editing is a method used to synthesize Prolog clauses

LCC-Argument Pattern (Structure Synthesis)

Four for N-agentTwo for 2 agents

Starter pattern (S-P)

a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).

a(RQ1(KBQ,CSQ),IDQ)::

SL(X) <==a(RZ1(KBZ,CSZ),IDZ)
then
a(RQ2(KBQ,CSQ),IDQ)

Sender

Receiver

It is going to be used to start the argument between two agents.

Transfer from DID to LCC

by using Starter Pattern

Dialogue Interaction
Diagram LCC

Argument Interaction
protocol

Starter Pattern

a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).

a(RQ1(KBQ,CSQ),IDQ)::

SL(X) <== a(RZ1(KBZ,CSZ),IDZ)
then
a(RQ2(KBQ,CSQ),IDQ)

a(sendClaimZ(KBZ,CSZ),IDZ)::

a(receiveclaimQ(KBQ,CSQ),IDQ)::

claim(X) ==> a(receiveclaimQ(KBQ,CSQ),IDQ)  AddToCS(X, CSZ)

claim(X) <== a(sendClaimZ((KBZ,CSZ),IDZ)

Claim(X)

receiveClaimQsendClaimz

KBQ, CSQKBz, CSz

IDQIDz

AddToCS

(X,CS)

Starting Locution(SL)

a(RZ1(KBZ,CSZ),IDZ)::

SL(X) ==> a(RQ1(KBQ,CSQ),IDQ)  C1(X, CSZ)
then
a(RZ2 (KBZ,CSZ),IDZ).

a(RQ1(KBQ,CSQ),IDQ)::

SL(X) <== a(RZ1(KBZ,CSZ),IDZ)
then
a(RQ2(KBQ,CSQ),IDQ)

a(startClaimZ(KBZ,CSZ),IDZ)::

a(startclaimQ(KBQ,CSQ),IDQ)::

claim(X) ==> a(receiveclaimQ(KBQ,CSQ),IDQ)  AddToCS(X, CSZ)

claim(X) <== a(sendClaimZ((KBZ,CSZ),IDZ)

then
a(replyToClaimZ(KBZ,CSZ),IDZ).

then
a(replyToClaimQ(X,KBQ,CSQ),IDQ).

why(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

concede(X)

replyToClaimZreplyToClaimQ

X,KBZ, CSZX,KBQ, CSQ

IDZIDQ

Termination Locution(TL(
Recursive Locution(RL)

Second objective:

Model Checking

Model Checking

• Our model checking is used to check the semantics of the AIF
specification against the semantics of the LCC specification.

• Our architecture is general:

▫ AIF (DID)

▫ Patterns

The semantic of the
AIF specification

The semantic of LCC
specification

Model Checking
Part 1

DID

Multi-Agent
protocol

(LCC)

1 2
Automatic

transformation

Automatic

transformation

Part 2

DID properties DID properties
(Standard ML
specification)

Automatic
creation

Automatic
creation

CPN modelCPN model

(CPNXML)

Verification process
(General behaviour
property checking

code in ML)

Automatic

construction

Automatic

construction

Automatic

transformation

Result

(True /False)

Result

(True /False)

State space State space

1

2

3

4

Conclusion

• This research describes an approach to bridging the gap between argument
specification and multi-agent implementation using AIF as an example of
an argumentation language and LCC as an example of a multi-agent
implementation (coordination) language.

• The proposed approach uses a combination of transformational synthesis
and model checking steps to automatically transform the new specification
argument language (DID) to peer-to-peer protocols by using a LCC
techniques-based synthesis method.

• The resulting LCC protocol is validated to prove that the LCC techniques-
based synthesis method is correctly implemented and to demonstrate that
the resulting LCC protocol derived from DID behaves correctly as expected.

