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Introduction to ADMIRE - Basics 

•  ADMIRE – Advanced Data Mining and Integration 
Research for Europe 

•  7th Framework Program 

•  Commenced in February 2008 over 36 months. 

•  €4.3 million in costs, and €3 million in EC funding 



Introduction to ADMIRE - Basics 

•  University of Edinburgh, UK (Coordinator)  
•  NeSC - National e-Science Centre 
•  EPCC - Edinburgh Parallel Computing Centre 

•  Fujitsu Labs of Europe, UK 
•  University of Vienna, Austria 

•  Institute of Scientific Computing 

•  Universidad Politécnica de Madrid, Spain 
•  Ontology Engineering Group 

•  Slovak Academy of Sciences, Slovakia 
•  Institute of Informatics 

•  ComArch S.A., Poland 



Introduction to ADMIRE - Vision 

•  Benefits 
•  Provide power to users and developers of data mining and 

integration processes over large scale-out of heterogeneous, 
distributed data 

•  Accelerate access to and increase the benefits from data 
exploitation 

•  Strategy 
•  recast a selection of existing analysis and mining algorithms to 

enable them to take best advantage of its distributed-
computing framework 

•  employ a parallel processing pipeline approach for data-
streaming style process to speed up data process enormously 



Introduction to ADMIRE - Architecture 



Introduction to ADMIRE - ADMIRE Framework 



DISPEL – Data Intensive Systems Process-Engineering Language 

•  Data-intensive distributed systems 

•  Connection point of complex application requests and 
complex enactment systems 
•  Benefit: method development, engineering and evolution of 

supported practices can take place independently in each 
world 

•  Describes enactment requests for streaming-data 
workflows processes 

•  “Process-engineering time” – transform and optimize 
process in preparation for enactment period 



DISPEL: Simple Example 

Creating connections 

String sql1 = "SELECT * FROM some_table"; 
String sql2 = “SELECT * FROM table2”; 
String resource = "128.18.128.255"; 
 
SQLQuery query = new SQLQuery; 
 |- sql1, sql2 -| => query.expression; 
 |- resource -| => query.resource; 
 
Tee tee = new Tee; 
query.result => tee.connectInput; 
 

Creating streams of literals 



DISPEL – real use 
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ADMIRE registry – What is it? 

•  The ADMIRE registry is in charge of registering 
Processing Element descriptions 

•  In the registry the description of a PE contains: 
•  A unique name 
•  A short definition of what they do 
•  A precise description of their input and output streams 

•  a structure of Connec&ons	
  
•  The (S&D)type propagation rules from inputs to outputs 
•  A precise description of their properties that may permit 

or limit optimisation 
•  Their known subtype hierarchy 
•  Information about the PEs (author, organisation, etc.) 

Work in 
progress 



The ADMIRE Registry 

•  Descriptions of PEs are stored in RDF (we are talking 
about data) 

•  The RDF graph reflects all the PE structure (in 
DISPEL) 
•  Connections 
•  STypes 
•  DTypes 
•  Annotation properties 

•  Author 
•  Description 
•  Organisation 
•  Version 

•  Some modifiers 
•  Propagation Rules are stored implicitly in the data model 

(see next slide) 



The ADMIRE registry - A network of Ontologies 

•  For describing the data we use a network of ontologies 
(we are talking about the model) 

•  Data Mining Ontology (CRISP-DMI and DataMining) 
•  It defines the vocabulary related to DMI, allowing end-users to 

understand the semantics of DMI process components. 

•  Platform and Operational Ontology (the conceptual level 
and the instances) 
•  They define the terminology needed for describing processing 

elements of the platform (technology-independent, generic 
services, datasets, etc.).  

•  Domain Ontologies 
•  They define the vocabulary and relations in the domain use cases 



The ADMIRE registry - Language Processing 
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The ADMIRE Registry – An example 

•  Data 
•  Ontology 
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The ADMIRE Registry 



ADMIRE Registry – How it works 

•  RDFResource: OGSA-DAI data resource with 
activities for PE query and update 

       ProcessingElementDescriptor	
  lookupProcessingElement(String	
  name);	
  
	
  	
  	
  	
  List<ProcessingElementDescriptor>	
  lookupProcessingElementList();	
  	
  	
  
	
  	
  	
  	
  List<String>	
  lookupProcessingElementsName();	
  
	
  	
  	
  	
  void	
  registerProcessingElement(	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ProcessingElementDescriptor	
  descriptor,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  String	
  implementation)	
  
	
  	
  	
  	
  	
  	
  	
  	
  throws	
  ProcessingElementAlreadyExistsException,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  RegistrationFailedException;	
  



ADMIRE Registry – How it works 

•  Interfaces for 
•  Registering and querying PEs:  
•  Registering and querying STypes and DTypes  
•  Registering and querying functions 
•  Registering and querying annotations (author, etc.) 
•  Registering and querying generic elements 
•  Inference over the domain ontologies (Type checking) 



ADMIRE Registry – How it works 

•  Basically an OGSA-DAI activity for updating the RDF 
database 

•  And a set of SPARQL queries to query the data 
•  Plus a connection to a Description Logic reasoner for 

type checking 



A.Out 
=  

B.in 

A. 
out 
 
 

B.in 

A.out B.in 

B.in A.out 

Type checking cases 

•  a) A.out = B.in 
 
 
•  b) A.out in B.in 

•  c) A.out not disjoint with B.in 

•  d) A.out disjoint with B.in 



Crawler	
  

NamedEn&ty	
  
Recogniser	
  

ImageAnalyser	
  

En&tyMergeJoin	
  

1.	
  [String]	
  
[dispel:Term]	
  

2.	
  Output	
  [<String,	
  Float>]	
  
[<dispel:URL,	
  db:Confidence]	
  

2.	
  Output	
  [<Float[][],	
  
Float>]	
  
[<dispel:ImageURL,	
  
db:Confidence]	
   Input:	
  [<Float[][]>]	
  

[<dispel:Image,	
  db:Confidence]	
  

Input:	
  [<String,	
  Float>]	
  
[<dispel:URL,	
  
db:Confidence]	
  

5.	
  Output	
  [Float[][],	
  
[<String,String>]]	
  
[<dispel:Image,	
  
[<Thing,owl:Class>]]	
  

4.	
  Output	
  [<String,	
  [String,	
  String]
>]	
  
[<dispel:text,	
  [dispel:Term,	
  
owl:Class]>]	
   6.	
  Output	
  [<[String],	
  [<String,	
  

String>]	
  
[<[dispel:Resource],	
  [<Thing,	
  
owl:Class>]	
  

Input	
  [<String,	
  [String,	
  String]>]	
  
[<dispel:text,	
  [dispel:Term,	
  
owl:Class]>]	
  

1.  Input: [US, politics, Obama] 
2.  Output: [<http://data.gob/term1.html, 0,96>, ...] 
3.  Output: [<http://images.google.com/img1.jpg, 0,97>, ...] 
4.  Output: [<http://data.gov/obama.html, [<Obama, person>, <white house, Organisation>, ...]>] 
5.  Output: [<http://images.google.com/obama1.jpg,  [<obama, Person>, <WhiteHouse, Organisation>]>] 
6.  Output: [<http://data.gov/obama, http://images.google.com/obama1.jpg>],[<dbpedia:obama, 

dbpedia:Person>, <dbpedia:WhiteHouse, dbpedia:Organisation>] 
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The ADMIRE Registry – Who uses it? 

•  The ADMIRE gateway 
•  The ADMIRE gateway receives the DISPEL code and is in 

charge of compiling and executing it 
•  In compile time the ADMIRE gateway contacts the registry 

importing all PEs used in that DISPEL code 
•  The gateway checks  

•  SType compatibility 
•  DType compatibility checking and propagation 

•  The Gateway submits the DISPEL code  



The ADMIRE Registry – Who uses it? 

•  The process designer 
•  It is the user interface of ADMIRE 
•  Graphical interface for designing DMI processes 
•  Registry view: 

•  Lists the PEs available with all their information 



The ADMIRE Registry – Who uses it? 



The ADMIRE Registry – Who uses it? 



Who uses the registry? - ADMIRE myExperiment 

•  Collaborative portal for ADMIRE 
•  Users can create their PEs, store them in the registry 

and share them within the community 
•  myExperiment based 
•  Basically it show all the information in the registry in a 

web-based portal 



Who uses the registry? - ADMIRE myExperiment 



Who uses the registry? - ADMIRE myExperiment 



Who uses the registry? - ADMIRE myExperiment 
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Future work 

•  Type checking 
•  Currently basic type checking 
•  In the life time of ADMIRE basic type checking and 

propagation 
•  Reasoning needs large amounts of computational resources 
•  Large amount of domain ontologies to reason with them 
•  Compatibilities issues between ontologies, modules, imports 

of ontologies, etc. 
•  All in a distributed fashion 
•  Extend the current  



Future work 

•  Distributed registry 
•  All sources are distributed 
•  Many registries may exist in time and work already done 
•  Provide a single point of accessing all the possible registries 

•  Standards 
•  SPARQL 1.1 

•  Extend the registry for using SPARQL 1.1 Update and 
Fed extension 

•  WS-DAI-RDF  
•  Provide common methods to access the RDF data in the 

registry 
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