
ADMIRE Registry

15th April, 2011, Informatics Forum, Edinburgh
Carlos Buil Aranda, cbuil@fi.upm.es

Facultad de Informática, Universidad Politécnica de Madrid
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid

http://www.oeg-upm.net
Phone: +34.91.3366605, Fax: +34.91.3524819

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

Introduction to ADMIRE - Basics

•  ADMIRE – Advanced Data Mining and Integration
Research for Europe

•  7th Framework Program

•  Commenced in February 2008 over 36 months.

•  €4.3 million in costs, and €3 million in EC funding

Introduction to ADMIRE - Basics

•  University of Edinburgh, UK (Coordinator)
•  NeSC - National e-Science Centre
•  EPCC - Edinburgh Parallel Computing Centre

•  Fujitsu Labs of Europe, UK
•  University of Vienna, Austria

•  Institute of Scientific Computing

•  Universidad Politécnica de Madrid, Spain
•  Ontology Engineering Group

•  Slovak Academy of Sciences, Slovakia
•  Institute of Informatics

•  ComArch S.A., Poland

Introduction to ADMIRE - Vision

•  Benefits
•  Provide power to users and developers of data mining and

integration processes over large scale-out of heterogeneous,
distributed data

•  Accelerate access to and increase the benefits from data
exploitation

•  Strategy
•  recast a selection of existing analysis and mining algorithms to

enable them to take best advantage of its distributed-
computing framework

•  employ a parallel processing pipeline approach for data-
streaming style process to speed up data process enormously

Introduction to ADMIRE - Architecture

Introduction to ADMIRE - ADMIRE Framework

DISPEL – Data Intensive Systems Process-Engineering Language

•  Data-intensive distributed systems

•  Connection point of complex application requests and
complex enactment systems
•  Benefit: method development, engineering and evolution of

supported practices can take place independently in each
world

•  Describes enactment requests for streaming-data
workflows processes

•  “Process-engineering time” – transform and optimize
process in preparation for enactment period

DISPEL: Simple Example

Creating connections

String sql1 = "SELECT * FROM some_table";
String sql2 = “SELECT * FROM table2”;
String resource = "128.18.128.255";

SQLQuery query = new SQLQuery;
 |- sql1, sql2 -| => query.expression;
 |- resource -| => query.resource;

Tee tee = new Tee;
query.result => tee.connectInput;

Creating streams of literals

DISPEL – real use

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

ADMIRE registry – What is it?

•  The ADMIRE registry is in charge of registering
Processing Element descriptions

•  In the registry the description of a PE contains:
•  A unique name
•  A short definition of what they do
•  A precise description of their input and output streams

•  a structure of Connec&ons	

•  The (S&D)type propagation rules from inputs to outputs
•  A precise description of their properties that may permit

or limit optimisation
•  Their known subtype hierarchy
•  Information about the PEs (author, organisation, etc.)

Work in
progress

The ADMIRE Registry

•  Descriptions of PEs are stored in RDF (we are talking
about data)

•  The RDF graph reflects all the PE structure (in
DISPEL)
•  Connections
•  STypes
•  DTypes
•  Annotation properties

•  Author
•  Description
•  Organisation
•  Version

•  Some modifiers
•  Propagation Rules are stored implicitly in the data model

(see next slide)

The ADMIRE registry - A network of Ontologies

•  For describing the data we use a network of ontologies
(we are talking about the model)

•  Data Mining Ontology (CRISP-DMI and DataMining)
•  It defines the vocabulary related to DMI, allowing end-users to

understand the semantics of DMI process components.

•  Platform and Operational Ontology (the conceptual level
and the instances)
•  They define the terminology needed for describing processing

elements of the platform (technology-independent, generic
services, datasets, etc.).

•  Domain Ontologies
•  They define the vocabulary and relations in the domain use cases

The ADMIRE registry - Language Processing

Language
Type Focus

Structural
Type Focus
Structural

Type Focus

Domain Type
Focus

Structural
Type Focus

Domain Type
Focus

Domain Type
Focus

Platform
Ontology

Domain
Ontologies

Data
Mining

Ontology

The ADMIRE Registry – An example

•  Data
•  Ontology

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

The ADMIRE Registry

ADMIRE Registry – How it works

•  RDFResource: OGSA-DAI data resource with
activities for PE query and update

 ProcessingElementDescriptor	
 lookupProcessingElement(String	
 name);	

	
 	
 	
 	
 List<ProcessingElementDescriptor>	
 lookupProcessingElementList();	
 	
 	

	
 	
 	
 	
 List<String>	
 lookupProcessingElementsName();	

	
 	
 	
 	
 void	
 registerProcessingElement(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ProcessingElementDescriptor	
 descriptor,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 implementation)	

	
 	
 	
 	
 	
 	
 	
 	
 throws	
 ProcessingElementAlreadyExistsException,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 RegistrationFailedException;	

ADMIRE Registry – How it works

•  Interfaces for
•  Registering and querying PEs:
•  Registering and querying STypes and DTypes
•  Registering and querying functions
•  Registering and querying annotations (author, etc.)
•  Registering and querying generic elements
•  Inference over the domain ontologies (Type checking)

ADMIRE Registry – How it works

•  Basically an OGSA-DAI activity for updating the RDF
database

•  And a set of SPARQL queries to query the data
•  Plus a connection to a Description Logic reasoner for

type checking

A.Out
=

B.in

A.
out

B.in

A.out B.in

B.in A.out

Type checking cases

•  a) A.out = B.in

•  b) A.out in B.in

•  c) A.out not disjoint with B.in

•  d) A.out disjoint with B.in

Crawler	

NamedEn&ty	

Recogniser	

ImageAnalyser	

En&tyMergeJoin	

1.	
 [String]	

[dispel:Term]	

2.	
 Output	
 [<String,	
 Float>]	

[<dispel:URL,	
 db:Confidence]	

2.	
 Output	
 [<Float[][],	

Float>]	

[<dispel:ImageURL,	

db:Confidence]	
 Input:	
 [<Float[][]>]	

[<dispel:Image,	
 db:Confidence]	

Input:	
 [<String,	
 Float>]	

[<dispel:URL,	

db:Confidence]	

5.	
 Output	
 [Float[][],	

[<String,String>]]	

[<dispel:Image,	

[<Thing,owl:Class>]]	

4.	
 Output	
 [<String,	
 [String,	
 String]
>]	

[<dispel:text,	
 [dispel:Term,	

owl:Class]>]	
 6.	
 Output	
 [<[String],	
 [<String,	

String>]	

[<[dispel:Resource],	
 [<Thing,	

owl:Class>]	

Input	
 [<String,	
 [String,	
 String]>]	

[<dispel:text,	
 [dispel:Term,	

owl:Class]>]	

1.  Input: [US, politics, Obama]
2.  Output: [<http://data.gob/term1.html, 0,96>, ...]
3.  Output: [<http://images.google.com/img1.jpg, 0,97>, ...]
4.  Output: [<http://data.gov/obama.html, [<Obama, person>, <white house, Organisation>, ...]>]
5.  Output: [<http://images.google.com/obama1.jpg, [<obama, Person>, <WhiteHouse, Organisation>]>]
6.  Output: [<http://data.gov/obama, http://images.google.com/obama1.jpg>],[<dbpedia:obama,

dbpedia:Person>, <dbpedia:WhiteHouse, dbpedia:Organisation>]

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

The ADMIRE Registry – Who uses it?

•  The ADMIRE gateway
•  The ADMIRE gateway receives the DISPEL code and is in

charge of compiling and executing it
•  In compile time the ADMIRE gateway contacts the registry

importing all PEs used in that DISPEL code
•  The gateway checks

•  SType compatibility
•  DType compatibility checking and propagation

•  The Gateway submits the DISPEL code

The ADMIRE Registry – Who uses it?

•  The process designer
•  It is the user interface of ADMIRE
•  Graphical interface for designing DMI processes
•  Registry view:

•  Lists the PEs available with all their information

The ADMIRE Registry – Who uses it?

The ADMIRE Registry – Who uses it?

Who uses the registry? - ADMIRE myExperiment

•  Collaborative portal for ADMIRE
•  Users can create their PEs, store them in the registry

and share them within the community
•  myExperiment based
•  Basically it show all the information in the registry in a

web-based portal

Who uses the registry? - ADMIRE myExperiment

Who uses the registry? - ADMIRE myExperiment

Who uses the registry? - ADMIRE myExperiment

Outline

•  Introduction to ADMIRE

•  The ADMIRE Registry – What is it?

•  The ADMIRE Registry – How it works?

•  The ADMIRE Registry – Who uses it?

•  Future work

Future work

•  Type checking
•  Currently basic type checking
•  In the life time of ADMIRE basic type checking and

propagation
•  Reasoning needs large amounts of computational resources
•  Large amount of domain ontologies to reason with them
•  Compatibilities issues between ontologies, modules, imports

of ontologies, etc.
•  All in a distributed fashion
•  Extend the current

Future work

•  Distributed registry
•  All sources are distributed
•  Many registries may exist in time and work already done
•  Provide a single point of accessing all the possible registries

•  Standards
•  SPARQL 1.1

•  Extend the registry for using SPARQL 1.1 Update and
Fed extension

•  WS-DAI-RDF
•  Provide common methods to access the RDF data in the

registry

ADMIRE Registry

15th April, 2011, Informatics Forum, Edinburgh
Carlos Buil Aranda, cbuil@fi.upm.es

Facultad de Informática, Universidad Politécnica de Madrid
Campus de Montegancedo sn, 28660 Boadilla del Monte, Madrid

http://www.oeg-upm.net
Phone: +34.91.3366605, Fax: +34.91.3524819

