
A Storing Scheme and
A Merge Join Algorithm

for RDF Query Processing
Akiyoshi MATONO

National Institute of Advanced
Industrial Science and Technology(AIST)

Japan

Contents

• Background and Motivation
• Two Approaches

– An RDF Storing Scheme
• Classification of RDF Databases
• Introduction of our Proposed Storing Scheme
• Experimental Evaluation

– A Merge Join Algorithm
• Extension of Bloom Filter
• Extension of B+ Tree
• Introduction of our Proposed Join Algorithm
• Experimental Evaluation

Background
• RDF (Resource Description Framework)

– RDF is proposed for realizing the Semantic Web vision.
– RDF is flexible and concise model for representing

metadata of resources.
– RDF data consists of a set of RDF triples.
– A statement of a resource is described by an RDF triple.
– A triple is composed of a subject, a predicate, and an

object.

http://example.com/ Akiyoshi MATONO
creator

subject predicate object

Motivation

• Importance of RDF databases
– RDF data is increasing rapidly

• e.g.) Linked Open Data had grown
to 31 billion RDF triples (Sep 11’)

• Efficient search is an essential issue.
– RDF query is complex.

• The structure of RDF data is a directed graph.
– RDF query is equal to extract sub-graphs from an RDF graph.

• SPARQL
– a standard for RDF query language
– a syntactically-SQL-like language for querying RDF graphs via

pattern matching

LOD cloud diagram

Two Approaches
• Paragraph Table

– A storing scheme of RDF data into relational tables.
– RDF data is stored after performing some join operations to reduce the

number of the join operations when query processing.
– Paragraph Table determines which joins should be connected before

storing them based on the structure of given RDF documents.
• Bloom Filter Merge Join

– A merge join algorithm for low-selectivity
• In RDF data, low-selectivity join operations are frequently used.

– BFMJ can reduce disk I/O cost by skipping unnecessary parts.
– BFMJ traverses two B+ trees which comparing two nodes on them to

check whether the sets of the descendant keys are disjoint.
– We extend bloom filter to be suitable for disjoint test which is a test

whether two sets contain intersection or not.
– We extend B+ tree to make each internal node possess the extended

bloom filters to represent its descendant keys.

Classification of RDF databases

• Many RDF databases have been proposed.
– e.g. Jena, Sesame, RDF-3X, Virtuoso, D2R

• RDB is used as its back-end storage systems.
• Storage schemes can be classified into three

based on the structure of the back-end layout.
– Triple store
– Vertical partitioning
– Property table

RDF storage scheme: triple store

• Schema layout
– The simplest storage scheme
– One relational table with three columns
– Each triple is stored into each row.

• Features
– Many self-join operations are required to

construct answers.
– Join ordering cannot apply to it because it

cannot estimate the statistics of each
predicate.

– The table becomes so huge that the
performance of selection operation also
declines.

Subject Predicate Object
id:codd type FullProfessor
id:codd name Codd
id:codd teach id:course1
id:course1 name AAA
id:course1 room 0123
id:codd teach id:course2
id:course2 name BBB
id:course2 room 0124
id:codd email codd@...
id:jim type AssistantProfessor
id:xxx type Paper
id:xxx name XXX
id:xxx author id:codd
id:yyy type Book
id:yyy name YYY
id:yyy author id:codd
id:yyy author id:jim

Triple store

RDF storage scheme: vertical partitioning

• Schema layout
– Consists of a set of two-column tables

• 1st column contains the subjects
• 2nd column contains the objects

– Each table is created for each predicate
• # tables = # kinds of predicates

• Features
– It can maintain the statistics about predicates.

• The join ordering can be used.
• The query performance is better than that of triple

store.

– It also decomposes RDF data into RDF triples.
• # joins required in a query is the same as that of triple

store.

Vertical partitioning
resource type
id:codd FullProfessor
id:jim AssistantProfessor
id:xxx Paper
id:yyy Book

resource name
id:codd Codd
id:course1 AAA
id:course2 BBB
id:xxx XXX
id:yyy YYY

resource teach
id:codd id:course1
id:codd id:course2

resource room
id:course1 0123
id:course2 0124

resource email
id:codd codd@...

resource author
id:xxx id:codd
id:yyy id:codd
id:yyy id:jim

RDF storage scheme: property table

• Schema layout
– It’s composed of a set of multiple

column tables
– A tuple in a table consists of a set

of adjacent triples.
– Some join operations have been

performed before storing them.

• Features
– It can reduce # of join operations
– There are some variations

• In a typical approach, all triples
which have the same subject are
stored into a tuple.

• Our proposed paragraph table is
one of the property table
approaches.

resource type name teach email
id:codd FullProfessor Codd {id:course1, id:course2} codd@...
id:jim AssistantProfessor

resource name room
id:course1 AAA 0123
id:course2 BBB 0124

resource type name author
id:xxx Paper XXX {id:codd}
id:yyy Book YYY {id:codd, id:jim}

Property table

Concept of Our Proposal

c1 c2 c3 c4 c5 c6 c7
id:codd FullProfessor Ted id:course1 AAA 0123 ted@...
id:codd FullProfessor Ted id:course2 BBB 0124 ted@...
id:jim Assistant

Professor
...

c1 c2 c3 c4
id:xxx Paper XXX id:codd
id:yyy Book YYY id:codd
id:yyy Book YYY id:jim

: RDF paragraph
<rdf:RDF ...>

<FullProfessor rdf:about=“id:codd”>
<name>Codd</name>
<teach rdf:resource=“id:course1”>

<name>AAA</name>
<room>0123</room>

</teach>
<teach rdf:resource=“id:cource2”>

<name>BBB</name>
<room>0124</room>

</teach>
<email>ted@...</email>

</FullProfessor>
<AssistantProfessor rdf:about=“id:jim”>

:
</AssistantProfessor>
:
<Paper rdf:about=“id:xxx”>

<name>XXX</name>
<author rdf:about=“id:codd”/>

</Paper>
<Book rdf:about=“id:yyy”>

<name>YYY</name>
<author rdf:about=“id:codd”/>
<author rdf:about=“id:jim”/>

</Book>
</rdf:RDF>

RDF documents

paragraph table: t1

paragraph table: t2

– RDF document
• is described in structured language, such as RDF/XML, n-

triples and turtle, etc.
• consists of a set of fragments (RDF paragraph)

– Paragraph table
• stores RDF paragraphs into their corresponding relational

tables as they are, without decomposition and connection.

Paragraph Table
c1 c2 c3 c4 c5 c6 c7
id:codd FullProfessor Ted id:course1 AAA 0123 ted@...
id:codd FullProfessor Ted id:course2 BBB 0124 ted@...
id:jim Assistant

Professor
...

c1 c2 c3 c4
id:xxx Paper XXX id:codd
id:yyy Book YYY id:codd
id:yyy Book YYY id:jim

Paragraph table: t1

Paragraph table: t2

tid1 cid1 tid2 cid2
t1 c1 t2 c4
t2 c4 t1 c1
t1 c1 t1 c1
t1 c4 t1 c4
t2 c1 t2 c1
t2 c4 t2 c4

Connection table

tid subject predicate object
t1 c1 type c2
t1 c1 name c3
t1 c1 teach c4
t1 c4 name c5
t1 c4 room c6
t1 c1 email c7
t2 c1 type c2
t2 c1 name c3
t2 c1 author c4

Schema table

• Schema layout
– Not only paragraph tables but also a schema

table and a connection table.
– Schema table is used to map the structure of

RDF paragraph to table columns.
– Connection table stores the information of

columns in which their values can be
connected, because materialization of values
which are possible to join to other values are
not yet completely finished.

• Feature
– Our approach is classified as a property table.
– It can also reduce # join operations.
– We believe that the storing structure

resembles the query structure.
• RDF paragraph is structured to be easily

understood by human.
• The query is structured in human-readable too.

The values in these
columns may be joined.

t1 c1 t2 c4

t1 c1 type c2
t1 c1 name c3
t1 c1 teach c4
t1 c4 name c5
t1 c4 room c6
t1 c1 email c7

c1

c2

c3

c4

c5

c6
type

name

teach

name
room

The structure of the paragraphs
in this table

c7email

Experimental Evaluation
• Environment

– CPU: Intel Core2 Quad Q9450 (2.66 GHz)
– main memory size: 4 Gbytes
– OS: Ubuntu Linux 10.04 (kernel 2.6.32)
– HDD: 500BG, SATA, 7200rpm, cache=16MB, seek time=14ms, transfer

rate=1546Mbps, latency =4.17ms
• Dataset & Query

– LUBM benchmark(64, 128, 256, 512 docs)
• An RDF document contains 8512 triples and its data size is 68 KByte.

– We used query 1, 2, 4, 7, 8, 9, and 14, because the other queries are
designed for inference query.

• Approaches
– Triple store
– Vertical partitioning
– Property table(Simple, FlexTable[1], DataCentric[2], and Proposal)

[1] Wang, Y et. al.: Using a dynamic relation model to store RDF data. DASFAA 2010
[2] Levandoski, J.J. et. al.: RDF data-centric storage. ICWS 2009

Results

Query 2

Query 4

Query 7

Query 8

Query 9

Query 14

Query 1

1E+0

1E+1

1E+2

1E+3

1E+4

64 docs 128 docs 256 docs 512 docs

TripleStore

VertPart

SimpleProp

FlexTable

DataCentric

Proposal

1E+2

1E+3

1E+4

1E+5

64 docs 128 docs 256 docs 512 docs

1E+1

1E+2

1E+3

1E+4

1E+5

64 docs 128 docs 256 docs 512 docs

1E+1

1E+2

1E+3

1E+4

1E+5

64 docs 128 docs 256 docs 512 docs

1E+2

1E+3

1E+4

1E+5

1E+6

64 docs 128 docs 256 docs 512 docs

1E+1

1E+2

1E+3

1E+4

64 docs 128 docs 256 docs 512 docs

1E+1

1E+2

1E+3

1E+4

64 docs 128 docs 256 docs 512 docs

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

64 docs 128 docs 256 docs 512 docs

When some queries, our approach
overcomes the other approaches.

Our approach is the fastest
when 512 documents.

The sum of the times of all queries

Processing tim
e [m

s]

Summary of Paragraph Table

• We proposed an RDF storing scheme (Paragraph Table)
– The concept of this approach is based on that the structure of

input data resembles that of queries.
– Paragraph Table stores RDF paragraphs into their corresponding

relational tables as they are without decomposing or connection.

• We evaluated our approaches through some experiments
– In the summation of the processing times of all queries,

our approach is the fastest when the number of documents is the
largest.

– I think I have to do more experiments using other benchmarks.

Two Approaches
• Paragraph Table

– A storing scheme of RDF data into relational tables.
– RDF data is stored after performing some join operations to reduce the

number of the join operations when query processing.
– Paragraph Table determines which joins should be performed based on the

structure of given RDF documents.
• Bloom Filter Merge Join

– A merge join algorithm for low-selectivity
• In RDF data, join operations for low-selectivity are frequently used.

– BFMJ can reduce I/O cost by skipping unnecessary parts.
– We extend bloom filter to be suitable for disjoint test which is a test

whether two sets contain intersection or not.
– We extend B+ tree to make each internal node possess the extended

bloom filters to represent its descendant keys.
– BFMJ traverses the two extended B+ trees while comparing two nodes on

them to check whether the sets of the descendant keys are disjoint.

Low-selectivity Join in RDF
• In RDF, join operations for low-selectivity are frequently used.

– RDF uses global IDs to identify resources.
– If resources in different projects are assigned to the same ID, they must

be the same resource.
– Even if two projects may have little relationship, we must perform join

operation between them, because there may be the same resources.

BBC
Music

Geo
Data

Maybe no relation

BBC Music Geo Data

Join operation must be done
to assure there is no relation

• Sort merge join scans both sorted list, so extra unnecessary disk I/O traffic
is caused when a low-selectivity join.

• Bloom filter merge join can skip unnecessary blanches in two B+ trees, in
order to reduce disk I/O cost,

• We propose an extended B+ tree, each node of which has not only index
information but alto bloom filters to be used for disjoint test between
descendant keys.

• We propose an extended bloom filter that can be used to check disjoint
between two sets.

sorted
list

Concept of Bloom Filter Merge Join

Sort merge join BMF join

sorted
list

B+Tree B+Tree BMF join checks whether the
two sets of descendant of the
two nodes are disjoint or not
using bloom filters in the
nodes.

Add { , , }

Bloom Filter
• Features

– A space-efficient probabilistic data structure that is used to test whether an element is a member of a set.
– False positives are possible, but false negatives are not

• Preparation
– a bit array of m bits. All set to 0, if the bloom filter is empty.
– k different hash functions, each of which maps element to one of the m array positions

• To add an element
– feed it to each of the k hash functions to get k array positions.
– set the bits at all these positions to 1.

• To query for an element (IOW, test whether it is in a set)
– feed it to each of the k hash functions to get k array positions.
– If any of the bits at these positions are 0, the element is not in the set.
– If all are 1, then either the element is in the set, or the bits have been set to 1 during the insertion of other

elements (false positive).

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x y z

Query {w}

1 1 1 1 1 1 1 1

w is not the set, because one position is 0.

Disjoint Test using Bloom Filters
To test if 2 sets are disjoint or not using only bloom filters without the original data

• To test if 2 sets are disjoint using original bloom filters
1. Perform bit AND operation between the two bit arrays.
2. If the bit array of the result contains 1-bits less than k, then it assures that the

2 sets are disjoint.
• In general, parameters of a bloom filter is determined to fulfill that the

probability that a bit is 1 is 1/2.
– Because of the space-efficiency.

• After the bit AND operation, the result’s probability that a bit is 1 is 1/4.
• There are few cases in which the number of 1-bits is less than k.
• Therefore, the original bloom filters cannot be used for disjoint test.

0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1

1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1

The number of 1-bits is 4. It is larger than 3, thus we cannot know if they are disjoint

Use 3 hash functions.
The rate of 1-bits is 1/2.

Extended Bloom Filter
• Divide a bit array into k sub bit arrays.

• Add an extension bit array.

– When an element x is added, k bits are set to 1.
• 3 bits {4, 14, 18} are set to 1.

– We don’t know whether the 3 bits are set to 1 by an element using the
original bit array only.

– The extension bit array is used to assure that the 3 bits is set to 1 by an
element.

– We prepare functions fd and fe which input the positions of the 3 bits and
output the positions in the extension bit array.

• fd ({4, 14, 18}) = 25, fe ({4, 14, 18}) = 35

– Then we set the bits of the results of the functions.

0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0

hash function cfbfaf hash function hash function

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

extension bit array

0 0

hash function cfbfaf hash function hash function

1 1 1x
dfhash function efhash function

4 14 18
11

Disjoint Test using Extended Bloom Filter
• Perform bit AND operation between 2 extended bloom filters.
• Get the positions of 1-bits in the front part.

– {1, 6} and {10, 15}

• Generate all possible combinations from the positions.
– (1,10), (1, 15), (6,10), and (6, 15)

• Input each combination into the rear functions fc and fd
– (21, 25), (17, 31), (20, 30), and (23, 29)

• Check whether both bits of each pair are set to 1.
– If there exists any pair which both bits are set to 1, then they may be not disjoint.
– If, for all pairs, at least one bit is set to 0, then they must be disjoint.

0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

hash function cfbfaf hash function hash function dfhash function

1 6 10 15

1 1 6 610 15 10 15

21 2517 20 23 29 30 31

21 25

17

20

23 29

30

31

1 0

0 0

0 1

1 0

At least one bit is 0,
so they are disjoint.

3 7 8

Extended B+ Tree
Original B+ Tree
• B+ tree consists of 2 type nodes; Internal nodes

and Leaf nodes.
• Internal nodes point to other nodes in the tree.
• Leaf nodes point to data using data pointers.
• Leaf nodes also contain a sibling pointer.
• Both nodes contain keys that are used to guide

the search for entries in the index.

Extended B+ Tree (Bloom B+ Tree)
• Internal nodes contains our extended bloom

filters, each of which represents a set of the
descendant keys.

• Using the bloom filters, we can infer absence of a
key before accessing leaf nodes.

5

1 3 5 6 7 8 9 12

Internal node

Child pointer

Search key value

Key value Data pointer Leaf nodeSibling pointer

3 7 8

5

1 3 5 6 7 8 9 12

00111001 00100001 00111001 10000010 00111001

00111001000100 00111001010001

Extended bloom filter

The data can be joined.There is no intersection.

Not be accessed

Bloom Filter Merge Join

3 7 8

5

1 3 5 6 7 8 9 12

00111001 00100001 00111001 10000010 00111001

00111001000100 00111001010001

4 9 13

6

1 4 6 7 9 13 15 16

00111001 00100001 00111001 10000010 00111001

00111001000100 001110010100011,3,5

1,3 5 6,7 8 9,12

6,7,8,9,12

1,4 6 7,9 13 15,16

1,4,6 7,9,13,15,161,3,5 1,4,6

There is an intersection.

• Traverse B+ trees while comparing between the bloom filters of internal nodes.
• If there is an intersection, then the focuses are moved to their child nodes.
• If there is an intersection and the child nodes are leaf nodes, then their data can be

joined.
• If there is no intersection, the focus of the smaller node is moved to the sibling node of

the ancestor node.
• Thus, the descendant nodes of the smaller node are never accessed.

Therefore, many nodes can be skipped if the join selectivity is very low.
We can reduce the disk I/O cost to read unnecessary nodes.

1,3 1,4

1 1

5 6

6,7,8,9,12

The smaller node is moved
to the sibling of the ancestor

Experimental Evaluation

• Experiments
– Performance evaluation for the extended bloom filter

• Error rate of member test using a set and non members,
which is primary usage of a bloom filter.

• Error rate of disjoint test using two disjoint sets.

– Performance evaluation for the bloom filter merge join
• Processing time for various probabilities of join selectivity.
• Processing time for various error rates of member test of bloom filters.

• Experimental environment
– Machine：CPU: Intel Core2 Quad Q9450 (2.66 GHz),

main memory size: 4 Gbytes, OS: Ubuntu Linux 10.04 (kernel 2.6.32)
– Storage：SSD: Intel X25-M Mainstream
– Implement：using an open source B+ tree (JDBM) for Java

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E-6 1E-5 1E-4 1E-3 1E-2

Original
F2
F4
F2R1
F2R2
F4R2
F2R4
F2R6
F2R8
F2R10

Experimental Results of Bloom Filters
Error Rate of Member Test

Error rate (parameter)

Error rate (actual m
easurem

ent)

In most cases, the actual
measurement matches the
parameter of the error rate.

If the number of the rear parts is
large, the actual result is different
from the parameter.

These cases are good
for member test.

FxRy = a bit array is divided into x front parts and y rear parts.
Original = the original bloom filter

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

Original
F2
F4
F2R1
F2R2
F4R2
F2R4
F2R6
F2R8
F2R10

Experimental Results of Bloom Filters
Error Rate of Disjoint Test

#elements of each set

Error rate of disjoint test

F2R2 is the best performance

These cases were not good
in the previous experiment

Original is
not suitable

for disjoint test

The low
er the error rate is, the better the case is.

Experimental Results of Bloom Filter Merge Join

• Compare between our bloom filter merge join(BFMJ) and sort merge join(SMJ).
• The processing time of SMJ is always constant.
• When the join selectivity and the error rate of the member test are low, our

approach overcomes the sort merge join.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1% 0.1% 0.01% 0.001% 0.0001%

BFMJ
SMJ

Join selectivity

Processing tim
e [m

s]

Error rate of member test

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7

BFMJ

SMJ

Summery of Bloom Filter Merge Join

• We proposed a merge join algorithm for low-selectivity join
query.
– We proposed an extended bloom filter for disjoint test.
– We extended B+ tree to make each internal node possess the

extended bloom filters in order to represent its descendant keys.
– Our proposed join algorithm can traverse the extended B+ trees while

comparing two nodes in order to check whether an intersection exists
in the descendant keys.

• We evaluated our approaches through some experiments
– Our extended bloom filter can be used for disjoint test.
– Our proposed merge join is better than the sort merge join when the

join-selectivity is low, because our approach can reduce the disk I/O
cost by skipping unnecessary parts of the B+ trees.

Conclusion
• We proposed 2 approaches for RDF query processing

– Paragraph Table is an RDF storing scheme that is based on the
structure of RDF documents.

– Bloom filter merge join is a merge join algorithm that is suitable
when the join selectivity is low.

• Future works
– We will extend the Paragraph Table to apply it to a distributed

and parallel environment.
– We will apply the technology of the extended bloom filter to a

hash join algorithm in MapReduce in order to reduce the
amount of transfer data.

– We want to integrate the technologies of paragraph table and
the bloom filter merge join.

	A Storing Scheme and �A Merge Join Algorithm �for RDF Query Processing
	Contents
	Background
	Motivation
	Two Approaches
	Classification of RDF databases
	RDF storage scheme: triple store
	RDF storage scheme: vertical partitioning
	RDF storage scheme: property table
	Concept of Our Proposal
	Paragraph Table
	Experimental Evaluation
	Results
	Summary of Paragraph Table
	Two Approaches
	Low-selectivity Join in RDF
	Concept of Bloom Filter Merge Join
	Bloom Filter
	Disjoint Test using Bloom Filters�To test if 2 sets are disjoint or not using only bloom filters without the original data
	Extended Bloom Filter
	Disjoint Test using Extended Bloom Filter
	Extended B+ Tree
	Bloom Filter Merge Join
	Experimental Evaluation
	Experimental Results of Bloom Filters�Error Rate of Member Test
	Experimental Results of Bloom Filters�Error Rate of Disjoint Test
	Experimental Results of Bloom Filter Merge Join
	Summery of Bloom Filter Merge Join
	Conclusion

