A Storing Scheme and
A Merge Join Algorithm

for RDF Query Processing

Akiyoshi MATONO

National Institute of Advanced
Industrial Science and Technology(AIST)

Japan

Contents

e Background and Motivation

e Two Approaches
— An RDF Storing Scheme

e Classification of RDF Databases
e Introduction of our Proposed Storing Scheme
e Experimental Evaluation

— A Merge Join Algorithm
e Extension of Bloom Filter
e Extension of B+ Tree
* Introduction of our Proposed Join Algorithm
e Experimental Evaluation

Background

RDF (Resource Description Framework)
— RDF is proposed for realizing the Semantic Web vision.

— RDF is flexible and concise model for representing
metadata of resources.

— RDF data consists of a set of RDF triples.
— A statement of a resource is described by an RDF triple.
— A triple is composed of a subject, a predicate, and an

object.

[] creator)[]

\\ A A J
Y Y Y

subject predicate object

Motivation

* |Importance of RDF databases

— RDF data is increasing rapidly

e e.g.) Linked Open Data had grown
to 31 billion RDF triples (Sep 11’)

e Efficient search is an essential issue.

— RDF query is complex.

e The structure of RDF data is a directed graph.
— RDF query is equal to extract sub-graphs from an RDF graph.

 SPARQL

— a standard for RDF query language

— a syntactically-SQL-like language for querying RDF graphs via
pattern matching

\e - « =N=l= Y, : e 3
== = - e —Erare -
E : 1:'" 'h:’.,"—{}l_ : = = & o ".. .

LOD cloud diagram

Two Approaches
Q?Paragraph Table

— A storing scheme of RDF data into relational tables.

— RDF data is stored after performing some join operations to reduce the
number of the join operations when query processing.

— Paragraph Table determines which joins should be connected before
storing them based on the structure of given RDF documents.

e Bloom Filter Merge Join
— A merge join algorithm for low-selectivity
* In RDF data, low-selectivity join operations are frequently used.
— BFMJ can reduce disk /O cost by skipping unnecessary parts.

— BFMIJ traverses two B+ trees which comparing two nodes on them to
check whether the sets of the descendant keys are disjoint.

— We extend bloom filter to be suitable for disjoint test which is a test
whether two sets contain intersection or not.

— We extend B+ tree to make each internal node possess the extended
bloom filters to represent its descendant keys.

Classification of RDF databases

* Many RDF databases have been proposed.
— e.g. Jena, Sesame, RDF-3X, Virtuoso, D2R
e RDB is used as its back-end storage systems.
e Storage schemes can be classified into three
based on the structure of the back-end layout.
— Triple store
— Vertical partitioning
— Property table

RDF storage scheme: triple store

Triple store

« Schema layout

id:codd type FullProfessor
id:codd name Codd
id:codd teach id:coursel
id:coursel |name AAA
id:coursel [room 0123
id:codd teach id:course2
id:course2 [name BBB
id:course2 |room 0124
id:codd email codd@...
id:jim type AssistantProfessor
id:xxx type Paper
id:xxx name XXX

id:xxx author id:codd
id:yyy type Book

id:yyy name YYY

id:yyy author id:codd
id:yyy author id:jim

— The simplest storage scheme
— One relational table with three columns
— Each triple is stored into each row.

e Features

— Many self-join operations are required to
construct answers.

— Join ordering cannot apply to it because it
cannot estimate the statistics of each
predicate.

— The table becomes so huge that the
performance of selection operation also
declines.

RDF storage scheme: vertical partitioning

Vertical partitioning

resource type

id:codd |FullProfessor
id:jim AssistantProfessor
id:xxx Paper

id:yyy |Book

resource teach

resource name

id:codd |[id:coursel id:codd Codd
id:codd |[id:course2 id:coursel |AAA
id:course2 (BBB
|
. id:xxx XXX
id:coursel |0123 » Yy
id:
id:course2 (0124 vy
m
esource emal id:xxx id:codd
id:codd |codd@... id:iyyy |id:codd
idiyyy |id:jim

e Schema layout

— Consists of a set of two-column tables
e 1st column contains the subjects
* 2nd column contains the objects

— Each table is created for each predicate
e H#tables = # kinds of predicates

e Features

— It can maintain the statistics about predicates.
* The join ordering can be used.

* The query performance is better than that of triple
store.

— It also decomposes RDF data into RDF triples.

e #joins required in a query is the same as that of triple
store.

RDF storage scheme: property table

Property table

resource type name teach email
id:codd [FullProfessor Codd [{id:coursel, id:course2} |codd@...
id:jim AssistantProfessor |...
id:coursel |[AAA 10123 | [id:xxx |Paper [XXX [{id:codd]}
id:course2 |[BBB |0124 | fig:yyy [Book |YYY [{id:codd, id:jim}
e Schema layout e Features

— It’s composed of a set of multiple
column tables

— Atuple in a table consists of a set
of adjacent triples.

— Some join operations have been
performed before storing them.

— It can reduce # of join operations

— There are some variations

* In a typical approach, all triples
which have the same subject are
stored into a tuple.

e QOur proposed paragraph table is
one of the property table
approaches.

-’
f

— RDF documents

</FullProfessor>

</rdf:RDF>

Concept of Our Proposal

<rdf:RDF ...>

<FullProfessor rdf:about="id:codd”>

<name>Codd</name>

<teach rdf:resource=“id:coursel”>
<name>AAA</name>
<room>0123</room>

</teach>

<teach rdf:resource="id:cource2”>
<name>BBB</name>
<room>0124</room>

</teach>

<email>ted@...</email>

<name>XXX</name>
<author rdf:about="id:codd” />

<name>YYY</name>
<author rdf:about="id:codd”/>
<author rdf:about="id:jim” />

)id:codd FullProfessor |Ted |id:coursel |AAA (0123 |ted@...
=»iid:codd |FullProfessor |Ted |id:course2 |BBB (0124 |ted@...

- ——————I

o |- RDF paragraph
A T R4

paragraph table: t1

cl (] c3 c4 c5 c6 c7

id:jim |Assistant
Professor

paragraph table: t2

cl c2 c3 c4
id:xxx |Paper |XXX [id:codd
id:yyy |[Book |YYY |id:codd
id:yyy [Book |YYY [id:jim

— RDF document

e is described in structured language, such as RDF/XML, n-
triples and turtle, etc.

e consists of a set of fragments (RDF paragraph)
— Paragraph table

e stores RDF paragraphs into their corresponding relational
tables as they are, without decomposition and connection.

Paragraph Table

Paragraph table: t1

cl c2 c3 c4 ¢S5 6 c7
)
id:codd |FullProfessor |Ted |id:coursel |AAA |0123 |[ted@... SChema IayOUt
id:codd |FullProfessor |Ted |id:course2 |BBB |0124 |ted@... — Not only paragraph tables but also a schema
id:jim | Assistant table and a connection table.
Professor)
‘ — Schema table is used to map the structure of
The structure of the paragraphs
The values in these in this table RDF paragraph to table columns.
columns may be joined. — Connection table stores the information of

i c2 c5 . . .
Paragraph table: t2 ty, columns in which their values can be
cl €M 13| nape_lcp connected, because materialization of values

id:xxx |Paper | XXX |id:codd
P te which are possible to join to other values are

id:yyy |Book |YYY |id:codd c4 c7 Vet otely firiched
id:yyy |Book |YYY [id:jim not yet compietely rinisned.

Schema table

o
tid subject predicate object Feature

N

tl fcl type c2 — Our approach is classified as a property table.
Connection table . . .
1 jd name }c3 — It can also reduce # join operations.
tidl cidl tid2 cid2 t1 |c1 teach [c4 J _ _
1 lel 12 lea 1 |ca name |c5 — We believe that the storing structure
2 laa 11 a1 t1 |ca Toal o resembles the query structure.
tl |cl [|t1 |ci t1 |cl email c7) * RDF paragraph is structured to be easily
tl |c4 |t1 |c4 t2 |cl type c2 understood by human.
2 jcl |2 |l t2 |cl name c3 The query is structured in human-readable too.
2 |c4 |t2 |c4 t2 |cl author c4

Experimental Evaluation

* Environment
— CPU: Intel Core2 Quad Q9450 (2.66 GHz)
— main memory size: 4 Gbytes
— 0OS: Ubuntu Linux 10.04 (kernel 2.6.32)

— HDD: 500BG, SATA, 7200rpm, cache=16MB, seek time=14ms, transfer
rate=1546Mbps, latency =4.17ms

e Dataset & Query

— LUBM benchmark(64, 128, 256, 512 docs)
e An RDF document contains 8512 triples and its data size is 68 KByte.

— Weused query 1, 2,4,7,8,9, and 14, because the other queries are
designed for inference query.

e Approaches
— Triple store
— Vertical partitioning
— Property table(Simple, FlexTable[1], DataCentric[2], and Proposal)

[1] Wang, Y et. al.: Using a dynamic relation model to store RDF data. DASFAA 2010
[2] Levandoski, J.J. et. al.: RDF data-centric storage. ICWS 2009

1E+5

1E+4

1E+3

1E+2

1E+5

1E+4

1E+3

1E+2

1E+1

© 1lE+4
-
3
™ 1E+3 P
wn
L,
ég 1E42 -
-
3 1E+1
D
'3 1640 : : :
wn
— 64 docs 128 docs 256 docs 512 docs
Query 1
1E+45
1E+4
1E+3
o— 1E+2
T T T 1E+1
64 docs 128 docs 256docs 512 docs
Query 2

——
——
T T T 1E+2
64 docs 128 docs 256 docs 512 docs
Query 4

Results

==¢=TripleStore
=== \/ertPart
=== SimpleProp
=== FlexTable
=== DataCentric

==@==Proposal

1E+7

1E+6 X

1E+5
1E+4 -

1E43 - \

1E+2 T T T 1
64 docs 128 docs 256 docs 512 docs

The sum of the times of all queries

Our approach is the fastest

when 512 documents.

———

1E+4
v 3
1E+3
1Es] /
T
| 1E+1 T T T

64 docs 128 docs 256 docs

When some queries, our approach
overcomes the other approaches.

512 docs 64 docs 128 docs

Query

256 dglcs

512 docs

) 1E+1 T T T

64 docs 128 docs 256 docs

Query 8

512 docs 64 docs 128 docs 256 docs

Query 14

512 docs

Summary of Paragraph Table

e We proposed an RDF storing scheme (Paragraph Table)

— The concept of this approach is based on that the structure of
input data resembles that of queries.

— Paragraph Table stores RDF paragraphs into their corresponding
relational tables as they are without decomposing or connection.
 We evaluated our approaches through some experiments

— In the summation of the processing times of all queries,
our approach is the fastest when the number of documents is the
largest.

— | think | have to do more experiments using other benchmarks.

Two Approaches

Q-? Bloom Filter Merge Join
— A merge join algorithm for low-selectivity
* In RDF data, join operations for low-selectivity are frequently used.
— BFMJ can reduce I/0 cost by skipping unnecessary parts.

— We extend bloom filter to be suitable for disjoint test which is a test
whether two sets contain intersection or not.

— We extend B+ tree to make each internal node possess the extended
bloom filters to represent its descendant keys.

— BFMJ traverses the two extended B+ trees while comparing two nodes on
them to check whether the sets of the descendant keys are disjoint.

Low-selectivity Join in RDF

* In RDF, join operations for low-selectivity are frequently used.
— RDF uses global IDs to identify resources.

— If resources in different projects are assigned to the same ID, they must
be the same resource.

— Even if two projects may have little relationship, we must perform join
operation between them, because there may be the same resources.

BBC [| [|
Music
| |
=S
Geo
Data

BBC Music Geo Data

Concept of Bloom Filter Merge Join

e Sort merge join scans both sorted list, so extra unnecessary disk 1/0 traffic
is caused when a low-selectivity join.

 Bloom filter merge join can skip unnecessary blanches in two B+ trees, in
order to reduce disk I/O cost,

Sort merge join BMF join

sorted sorted B+Tree
list list '

e We propose an extended B+ tree, each node of which has not only index

information but alto bloom filters to be used for disjoint test between
descendant keys.

e We propose an extended bloom filter that can be used to check disjoint
between two sets.

Bloom Filter

Features
— A space-efficient probabilistic data structure that is used to test whether an element is a member of a set.
— False positives are possible, but false negatives are not
Preparation
— abit array of m bits. All set to O, if the bloom filter is empty.
— k different hash functions, each of which maps element to one of the m array positions
To add an element
— feed it to each of the k hash functions to get k array positions.
— set the bits at all these positions to 1.
To query for an element (IOW, test whether it is in a set)
— feed it to each of the k hash functions to get k array positions.
— If any of the bits at these positions are 0, the element is not in the set.

— Ifall are 1, then either the element is in the set, or the bits have been set to 1 during the insertion of other
elements (false positive).
Add {x,y, z}

__ A
— N ———

oj111|10|1f1j0j0]J1210}J0|0Of1]1]0]1

Disjoint Test using Bloom Filters

To test if 2 sets are disjoint or not using only bloom filters without the original data

To test if 2 sets are disjoint using original bloom filters
1. Perform bit AND operation between the two bit arrays.

2. If the bit array of the result contains 1-bits less than Kk, then it assures that the

2 sets are disjoint.

In general, parameters of a bloom filter is determined to fulfill that the

probability that a bit is 1 is 1/2.
— Because of the space-efficiency.

After the bit AND operation, the result’s probability that a bit is 1 is 1/4.
There are few cases in which the number of 1-bits is less than k.

Therefore, the original bloom filters cannot be used for disjoint test.

oj1j1jo0f1j1j0j0f21y10fj0Jj0J111110]|1
11011110} 12}j1}J]0|10|12}1]0J0]j0]0]1
vV VvV V VvV VvV VvV VvV VvV VvV Vv Vv VvV VvV V VvV V
ojo0j1j0foj1j0j0f12y10§0j0J10]J010]1

"\

Extended Bloom Filter

e Divide a bit array into k sub bit arrays.

hash funftion fa hash furlction fy hash furlction fe

ofofofofofofofofofofofOofOfOfOfO(Of(O|(OfO|(O(O|O|O

 Add an extension bit array.

MNh function fe Mash functionfg~ hash*function fe
X A* Y A * Y b 9 I | _ A -A
0100101000101011001011|£|_0001000

14l | 12 extension bit array

— When an €I"ment X is added I'k_l'mts are set to 1.
e 3 bits {4, 14, 18} are set to 1.

— We don’t know whether the 3 bits are set to 1 by an element using the
original bit array only.

— The extension bit array is used to assure that the 3 bits is set to 1 by an
element.

— We prepare functions f, and f, which input the positions of the 3 bits and
output the positions in the extension bit array.
« f,({4,14,18)) =25, f, ({4, 14,18}) =
— Then we set the bits of the results of the functions.

Disjoint Test using Extended Bloom Filter

e Perform bit AND operation between 2 extended bloom filters.
* Get the positions of 1-bits in the front part.
— {1,6}and {10, 15}
* Generate all possible combinations from the positions.
— (1,10), (1, 15), (6,10), and (6, 15)
* Input each combination into the rear functions f_ and f
— (21, 25), (17, 31), (20, 30), and (23, 29)
e Check whether both bits of each pair are set to 1.

— If there exists any pair which both bits are set to 1, then they may be not disjoint.
— If, for all pairs, at least one bit is set to 0, then they must be disjoint.

hash funftion fa hash furlction fy hash fupction f hash funotiend ¥4
] \
,01234567Y89101112131415161718#23212/23‘ i :l
— 211251 |11

o[1]o]o]1]o[1]o]oJo]2]o]1]o]o]z]ojc]a o] 2]2Ib])]

L1 1 1 | | | | | | | | | | | | I | |]_-II 1731El
1100011001100011CJ_T640(111 |
IV IV VIV I IV VIV v vy ¥ YL . [eog] [oa]
o[1]o]o]o]o[1]o]o]o]1]o]o]o]o]z]olc]o]o 0 / -z.

1 6 10 15 21 31 o

zl E-E- E:TG: —— ! At least one bit is O,

so they are disjoint.

Extended B+ Tree

Original B+ Tree

e B+ tree consists of 2 type nodes; Internal nodes
and Leaf nodes.

* Internal nodes point to other nodes in the tree.

* Leaf nodes point to data using data pointers.

* Leaf nodes also contain a sibling pointer.

e Both nodes contain keys that are used to guide

-I6III7II-‘

g Bl

/

the search for entries in the index.

Extended B+ Tree (Bloom B+ Tree)

* Internal nodes contains our extended bloom
filters, each of which represents a set of the
descendant keys.

* Using the bloom filters, we can infer absence of a [oo111001] [00100001]
¥ X

key before accessing leaf nodes.

5

[00111001000100] |00111001010001]

[oo111001 [10000010] |00111001]

Lelllz]

1>

Lol

gl GNE

1>

L&l

1>

BiEl

Bloom Filter Merge Join

The smaller node is moved
to the sibling of the ancestor

[s[]]I

1,3,5
[3]] [
1,3 5
|

6,7,8,9,12

N

9,12

1,4,6
Jaf] [
1,4 6

7,9,13,15,16

[o]13],
7,9 13
X

N

15,16

I’
EBl

1>

4
Le L7 1]

B

1>

L |
Lell

A
g BRI

¥
Lelilel]

1>

']
Le]

4
g EANEN

1>

[13]]

1>

A

Not be accessed

* Traverse B+ trees while comparing between the bloom filters of internal nodes.
* |f there is an intersection, then the focuses are moved to their child nodes.
* |f there is an intersection and the child nodes are leaf nodes, then their data can be

joined.
 |f there is no intersection, the focus of the smaller node is moved to the sibling node of

the ancestor node.
* Thus, the descendant nodes of the smaller node are never accessed.

Therefore, many nodes can be skipped if the join selectivity is very low.
We can reduce the disk I/O cost to read unnecessary nodes.

Experimental Evaluation

* Experiments
— Performance evaluation for the extended bloom filter

e Error rate of member test using a set and non members,
which is primary usage of a bloom filter.

e Error rate of disjoint test using two disjoint sets.

— Performance evaluation for the bloom filter merge join
* Processing time for various probabilities of join selectivity.
* Processing time for various error rates of member test of bloom filters.

e Experimental environment

— Machine: CPU: Intel Core2 Quad Q9450 (2.66 GHz),
main memory size: 4 Gbytes, OS: Ubuntu Linux 10.04 (kernel 2.6.32)

— Storage:SSD: Intel X25-M Mainstream
— Implement: using an open source B+ tree (JDBM) for Java

(Juswainseaw |enioe) aleJd JOoJJ]

Experimental Results of Bloom Filters

1E-1

Error Rate of Member Test

1E-2 -

1E-3 -

In most cases, the actual
measurement matches the
parameter of the error rate.

1E-4

1E-5 -

1E-6

These cases are good
for member test.

If the number of the rear parts is

large, the actual result is different

1E-7

from the parameter.

1E-6

1E-5 1E-4 1E-3 1E-2
Error rate (parameter)

= a bit array is divided into front parts and

Original = the original bloom filter

f-o—OriginaI

rear parts.

Experimental Results of Bloom Filters
Error Rate of Disjoint Test

#elements of each set | [acsie Seice iciie glars cleioie
iIn the previous experiment

_I

>

= 1

®

2 Original is ——Original
o Wl not suitable =F?

c'—_f r:;n for disjoint test

® Q —-+F4

- | o 0.6 1t -<F2R1
| @

5 ~~F2R2
—+ —h

Y1 g 04 ~-F4R2
) S F2R4)
1 O -+
2 0.2 F2R6
o] / / B >~ €—
D

= [T /‘ —F2R8
D

S 0 ~F2R10,
= 1 10 100 1000 10000

O

Q

0p)

d

5

FZ2R2 is the best performance

Experimental Results of Bloom Filter Merge Join

18,000 16,000
O 16,000 —BFMJ 14,000 -
a =f=SM)J
O 14,000 12,000 i, 3 3 {3 {1 {3 o
o) \
& 12,000 = L= =] — — 10,000
z \
G 10000 8,000
~ 8,000 \
3 \ 6,000
6,000 \
2. 4,000
3 4,000 —¢—BFM!J v
W, 2,000 2,000 ——SV)
0 O T T T T T T
1% 0.1% 0.01% 0.001% 0.0001% 1e-1 18-2 183 16-4 185 1E-6 187
Join selectivity Error rate of member test

e Compare between our bloom filter merge join(BFMJ) and sort merge join(SMJ).
e The processing time of SMJ is always constant.

* When the join selectivity and the error rate of the member test are low, our
approach overcomes the sort merge join.

Summery of Bloom Filter Merge Join

e We proposed a merge join algorithm for low-selectivity join
query.
— We proposed an extended bloom filter for disjoint test.

— We extended B+ tree to make each internal node possess the
extended bloom filters in order to represent its descendant keys.

— Our proposed join algorithm can traverse the extended B+ trees while
comparing two nodes in order to check whether an intersection exists
in the descendant keys.

 We evaluated our approaches through some experiments
— Our extended bloom filter can be used for disjoint test.

— Our proposed merge join is better than the sort merge join when the
join-selectivity is low, because our approach can reduce the disk I/O
cost by skipping unnecessary parts of the B+ trees.

Conclusion

e We proposed 2 approaches for RDF query processing
— Paragraph Table is an RDF storing scheme that is based on the
structure of RDF documents.

— Bloom filter merge join is a merge join algorithm that is suitable
when the join selectivity is low.

e Future works

— We will extend the Paragraph Table to apply it to a distributed
and parallel environment.

— We will apply the technology of the extended bloom filter to a
hash join algorithm in MapReduce in order to reduce the
amount of transfer data.

— We want to integrate the technologies of paragraph table and
the bloom filter merge join.

	A Storing Scheme and �A Merge Join Algorithm �for RDF Query Processing
	Contents
	Background
	Motivation
	Two Approaches
	Classification of RDF databases
	RDF storage scheme: triple store
	RDF storage scheme: vertical partitioning
	RDF storage scheme: property table
	Concept of Our Proposal
	Paragraph Table
	Experimental Evaluation
	Results
	Summary of Paragraph Table
	Two Approaches
	Low-selectivity Join in RDF
	Concept of Bloom Filter Merge Join
	Bloom Filter
	Disjoint Test using Bloom Filters�To test if 2 sets are disjoint or not using only bloom filters without the original data
	Extended Bloom Filter
	Disjoint Test using Extended Bloom Filter
	Extended B+ Tree
	Bloom Filter Merge Join
	Experimental Evaluation
	Experimental Results of Bloom Filters�Error Rate of Member Test
	Experimental Results of Bloom Filters�Error Rate of Disjoint Test
	Experimental Results of Bloom Filter Merge Join
	Summery of Bloom Filter Merge Join
	Conclusion

