

Edinburgh Compute & Data Facility

Services and technologies for Data Intensive Research

- Intro to ECDF
- Version Control
- General Data Store
- Compute
- High Performance Computing Storage
- **GPFS**

ECDF

- What is ECDF?
 - Edinburgh
 - Facility
 - Compute
 - Data
- Formed 2006,
 - cluster service 2007 (eddie)
 - "proper" data service 2010 (ecdfnas)

Primary Service List

- Compute cluster (eddie)*
- General Academic File Store (ecdfnas)*
- Version Control Service (svn, SourcEd)*
- Middleware services (portals, Grid, ...)
- Consultancy services
- User support

Version Control Service

Subversion (svn)

- Massively resilient
 - > 4 copies of every version of every file! Active/active service front ends
- Good for:
 - Source code revision control
 - Collaborative editing
 - "Lab book" style configuration recording
 - "Golden copy" storage of source data

ecdfnas

- "General Purpose Academic File Store"
- Built to be somewhere to keep data
- Massively resilient, high performance, fully integrated, enterprise grade, etc, etc
- Scalable (started at 40TB, now 191TB, in a month 450TB, in 6 months – 750TB-1PB)
- Standard access methods
 - CIFS (samba)
 - NFS

eddie

- Linux "Beowulf" cluster
 - 2992 "Westmere" Intel Xeon CPU cores
 - 7568GB RAM
 - Gigabit ethernet
 - QDR infiniband (816 cores)
- Batch processing (log in, qsub, get results)
- HPC storage...

HPC Storage

- A question of scale...
 - Desktop machine had one processor, and a
 7200rpm SATA hard drive
 - One user, typically one job
 - Multitasking will kill it
 - We have 3000 tasks
 - 3000 hard drives??

Everything-ity

- Performance (ability)
- Reliability
- Manageability
- Integrity
- Usability
- Flexibility
- Security

Performance

- Measured in:
 - Random I/O Operations Per Second (IOPS)
 - MegaBytes per Second throughput (MB/s)
 - Metadata Operations Per Second (MOPs?)
 - User satisfaction
- Needs to be:
 - Fast
 - Responsive
 - Consistent

Reliability

- Downtime is bad
 - Typical task lasts 48 hours
 - One second complete interruption to service gives approx average 24 hours downtime
 - Recovery takes effort
 - Identifying and fixing fault
 - Identifying and re-running failed tasks
 - Checking for consistency
- Fault tolerance, performance and integrity

Manageability

- Single point of management
- Routine maintenance without service disruption
- Single namespace
- Fault tolerance

Integrity

- Multi-process environment requires file locking
- Successful writes must be acknowledged
- Operations should be "atomic"

Usability

- Interactive performance must be fast
- Performance must be consistent
- Interface should be familiar
- Interface should be open

Flexibility

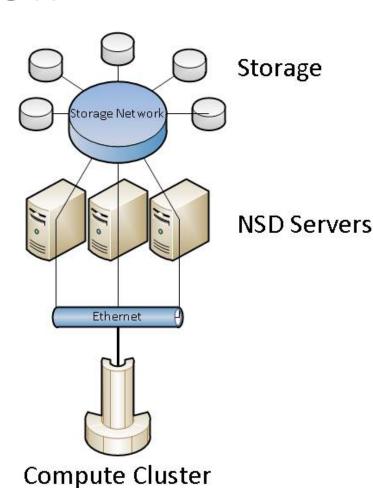
- Should be able to accommodate almost all use cases, current and future
- Should be scalable, upgradable, replaceable

Security

- Must be able to restrict access
- Rigorous authentication and authorisation
- Protection against attack

GPFS

- IBM's General Parallel File System www.ibm.com/systems/software/gpfs/
- Everything-ity
- See also: Lustre, CXFS, pNFS



GPFS Overview

- Based on shared disk accessed simultaneously by multiple servers
- Servers can communicate with the disks through the "NSD" servers
- Brokerage service

Everything-ity

- Performance (ability) "scale-out"
- Reliability inherently parallel
- Manageability single namespace
- Integrity full locking, atomic operations
- Usability standard filesystem presentation
- Flexibility fully posix compliant
- Security access control lists, client node SSL authentication

The Disks

- The disk system is typically the bottleneck
- One SATA drive gives ~80 random IOPS (raw) we need ~30,000 IOPS
- In the past build to capacity, and the

perf _{Year} for p	Typical compute node performance SPECfp2006 Rate (Base)	Typical Hard Drive performance (4k Random IOPS)	Typical Hard Drive Capacity (GB)
free ²⁰⁰⁷	43	76	500
2011	210	76	2000

What we use:

- 2x IBM DS5300 SAN Disk systems
 - 114x 15k rpm Fibre Channel drives
 - 9x 73GB SLC SSD
- Sun StorageTek 6540
 - 110x 7200 rpm 750GB SATA drives
- Sun StorageTek 6540
 - 160x 7200 rpm 1000GB SATA drives

Storage Servers

- Need to move data fast high bandwidth, low latency
- We have eight IBM X3650 servers, with:
 - 2x E5620 2.4GHz Intel Westmere CPUs
 - **48GB RAM**
 - Dual-port 10GE ethernet adapter
 - Dual-port 8GB Fibre Channel HBA

GPFS Setup - Disks

- Tier 0 disk (SSD) holds metadata
 - Filesystem structure, folders, etc
- Tier 1 disk (15k rpm drives) holds "live" data
 - All new files are written here
- Tier 2 disk (7200 rpm drives) hold "bulk" data
 - Data which has aged
 - Large sequential files
- All disks configured in RAID5 pools, with

GPFS Setup - Filesystem

- 512kB Filesystem Block Size
 - Aligned with disk RAID pool stripe width
- 16kB sub-block size
- Metadata replication
- Capacity: 163TB
 - 74TB Tier 1 disk (39,312 RAW IOPS)
 - 88TB Tier 2 disk (20,520 RAW IOPS)
 - 950GB Tier 0 disk (n/a)

Performance

- As part of the acceptance test benchmarks:
 - 2.6 GByte/sec (read or write)
 - 28,000 random read 4k IOPS
 - 11,000 random write 4k IOPS
- Anecdotally "very fast"

Efficient I/O On Eddie

- We give some advice:
 - Don't do lots of small I/O save it up for a big sequential operation.
 - Write performance with 4k operations: 0.02GB/sec
 - Write performance with 512k operations: 1.53GB/sec
 - Read performance: 0.05GB/sec vs 3.3GB/sec
 - Store data in large files
 - Fewer metadata operations per data operation
 - "Easier" data management
 - Faster interactive response

Summary

- For big workloads, build big performance
- Sequential is good
- Use ECDF for all your data needs!