
Dynamic and Adaptive optimization techniques to enhance
the performance of MPI applications by using
HECToR and Eddie clusters.

Author: Rosa Filgueira Vicente

University of Edinburgh

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance
communication operations

5.  Evaluations

2

Introduction- Strategy (1) – Strategy (2) - Evaluation

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance
communication operations

5.  Evaluations

3

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description

  Parallel computation on cluster has become the
most common solution for HPC application.

4

TOP 500
June2011

Introduction- Strategy (1) – Strategy (2) - Evaluation

#!/bin/bash

Problem description

  Cluster is a group of
linked computers, working
together closely thus in
many respects forming a
single computer.

5

Cluster

Interconection System

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description

  On a cluster, one/many
parallel applications
could be running.

6

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description
7

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI

  One of most communication
middleware used is the
standard MPI (Message
Passing Interface).

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description
8

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI Phd.Thesis:

MPICH 1.2

Now : MPICH 2

  One of most communication
middleware used is the
standard MPI (Message
Passing Interface).

  Different implementations:
  MPICH

  OpenMPI

  LAM

  CHIMP-MPI …

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: trend

  Multicore processors
provides a flexible way
to increase the
computation capability
of cluster

  System performance
may be improved with
multicore but
bottleneck from other
components could
reduce the scalability.

9

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: Bottleneck

  Bottleneck :
  I/O subsystem

  Communication
subsystem

10

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: Bottleneck

  I/O Bottleneck:
  I/O requests initiated by

multiple cores and
besides when non-
contiguous disk
accesses is used

11

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: Bottleneck

  Communication
Bottleneck:
  Network used are very

fast and low latency.

  Computational
capability in multicore
very high.

  The frequency of
message increase a lot
 insufficient the
increase of the
bandwidth and latency

12

P1

Cluster

Interconnection System

Parallel Application

P2 … Pn

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: Bottleneck

  Communication and I/O
saturation:
  Scalability problem

  Performance problem

13

Processes Number

Speedup

Real Speedup

Ideal Speedup

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: possible solutions

  1) Improve network
  Expensive.

  Limited to current
technology

14

Cluster

Interconnection System

P1

Parallel Application

P2 … Pn

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: possible solutions

  2) Improve the
applications:
  More effort in the

design

  Not always possible

  The improvement
affects few users

15

P1

Parallel Application

P2 … Pn

Cluster

Interconnection System

Communication Middleware
 MPI

Introduction- Strategy (1) – Strategy (2) - Evaluation

Problem description: possible solutions

  3) Improve the
communication
middleware
  Portability

  Greater user benefited

  Lower Cost

  Transparent:
  Users

  Applications

16

Comunication Middleware
 MPI

Cluster

Interconnection System

P1

Parallel Application

P2 … Pn

Introduction- Strategy (1) – Strategy (2) - Evaluation

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance of
communication operations

5.  Evaluations

17

Introduction- Strategy (1) – Strategy (2) - Evaluation

Main objetives

  Improve the scalability and
the performance of MPI
based applications
executed on Multicore
cluster

  How? Improving the
Middleware MPI

18

Comunication Middleware
 MPI

Cluster

Interconnection System

P1

Parallel Application

P2 … Pn

Introduction- Strategy (1) – Strategy (2) - Evaluation

Specific objectives

1.  Reduction of the number of communications in
collective I/O operations:

a)  Dynamic and Adaptive I/O aggregator pattern

2.  Reduction of transferred data volume in
communications.

a)  Compression techniques by using message passing interface
profiling (PMPI)

19

Introduction- Strategy (1) – Strategy (2) - Evaluation

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance of
communication operations

5.  Evaluations

20

Introduction- Strategy (1) – Strategy (2) - Evaluation

  Parallel scientific applications generate a lot of data to write/
read in/from disk.

  Access pattern:

  Sequential access

  Individual access

  Collective access

21

Strategies for improve the performance of
collective I/O operation

Introduction- Strategy (1) – Strategy (2) - Evaluation

22

22

Sequential I/O

•  All processes send data to one process (usually
process 0), and this process writes it to the file

P1 P2 P3 P0

data

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

23

23

•  Each process writes to a separate file

Individual I/O

P1 P2 P3 P0

data

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

24

24

•  Processes write to shared file
•  Contiguous data

•  Two Phase I/O technique

Collective I/O

P1 P2 P3 P0

data

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

25

25

•  Processes write to shared file
•  Non-Contiguous data

•  Two Phase I/O technique

Collective I/O

P1 P2 P3 P0

data

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

  Two-Phase I/O phases:

  Shuffle: aggregate data into contiguous buffers.

  I/O: transfer contiguous buffer to file system.

  Before these two phases:
  File region is divided into equal contiguous regions

  Called File Domains (FD).

  Each FD is assigned to a subset of compute nodes
(aggregators).
  Each aggregator is responsible for transferring all data from its FD to

the file system.

  Cause of inefficiency: The assignment of FD to aggregators is
independent of data distribution.

26
Two_Phase I/O

Introduction- Strategy (1) – Strategy (2) - Evaluation

  The assignment of FD to aggregators is fixed.
  Independent of data distribution.
  Default aggregator Pattern:

  So many aggregator as nodes.

  Create an array of nodes, ordered by rank (process
identifier in MPI), and assign each aggregator one
process.

  When there are more than process per node:
  The process with the smallest rank is chosen as aggregator.

27
Two_Phase I/O “problem”

Introduction- Strategy (1) – Strategy (2) - Evaluation

Node 0

Example of Two-Phase I/O
28

P0 P3

File to write

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 1

P1 P4

Node 2

P2 P5

Example of Two-Phase I/O
29

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte
File to write

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

Non local data

Local data

P4 File view

P5 File view

Example of Two-Phase I/O
30

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

Non local data

Local data

P4 File view

P5 File view

Aggregator

P0 P1 P2 ranklist

Example of Two-Phase I/O
31

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd 0 Fd 1 Fd 2 Fd_begin

Fd_end

0 32 64

31 63 95

P0 P1 P2 ranklist

Example of Two-Phase I/O
32

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

Aggregator 0
P0

Aggregator 1
P1

Agreggator 2
P2

P0 P1 P2 ranklist

Example of Two-Phase I/O
33

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P1 P2 ranklist

Example of Two-Phase I/O
34

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P1 P2 ranklist

Example of Two-Phase I/O
35

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P1 P2 ranklist

Example of Two-Phase I/O
36

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P1 P2 ranklist

Example of Two-Phase I/O
37

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P1 P2 ranklist

Example of Two-Phase I/O
38

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

Introduction- Strategy (1) – Strategy (2) - Evaluation

0 byte 95 byte

Node 0

P0 P3

Node 1

P1 P4

Node 2

P2 P5

P4 File view

P5 File view

Aggregator

P0 P1 P2 ranklist

Fd_begin

Fd_end

0 32 64

31 63 95

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

Example of Two-Phase I/O
39

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

P4 File view

P5 File view

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Example of Two-Phase I/O
40

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

P4 File view

P5 File view

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P0) Aggregator 1 (P1) Aggregator 2(P2)

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Example of Two-Phase I/O
41

95 byte

Communication: 12 message
72bytes of 96 bytes are transferred among the processes.

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte

P4 File view

P5 File view

Introduction- Strategy (1) – Strategy (2) - Evaluation

Example of Two-Phase I/O
42

The number of communications could be reduced if each aggregator is
assigned to the process more adequate.

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte

P4 File view

P5 File view

Introduction- Strategy (1) – Strategy (2) - Evaluation

43
Example of Two-Phase I/O

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte

P4 File view

P5 File view

44
Example of Two-Phase I/O

File disk

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte

P4 File view

P5 File view

Phd. Thesis Proposal

  Replace the rigid assignment of aggregator by new
one based on the next aggregation-criteria:
  Aggregation by communication number (ACN):

  Each aggregator is assigned to the process who has the
highest number of contiguous data blocks.

  MPICH1.2

45

Introduction- Strategy (1) – Strategy (2) - Evaluation

HPC-Programme Proposal (I)

  Replace the rigid assignment of the aggregators by
one of the next two aggregation-criteria:
  Aggregation by communication number (ACN):

  Each aggregator is assigned to the (New!!) node who has
the highest number of contiguous data blocks.

  (New!!) Aggregation by volume number (AVN):
  Each aggregator is assigned to the node who has more

volume of data.

  (New!!) MPICH2:
  Communication among the cores of the same node by

shared memory.

46

Introduction- Strategy (1) – Strategy (2) - Evaluation

Implementation of the proposal

  The new two dynamic aggregator patters are
implemented in two different ways:
  New version of Two_Phase I/O in MPICH2:

  Locality_Aware_Two_Phase I/O (LA_TwoPhase I/O)

  Library at application level:
  Aggregation_Pattern_Calculation

  The MPI based application call this library to calculate the
aggregators.

  Use MPI-IO Hint (variables can be used to control the
behavior of collective operations) to modified the default
aggregator pattern:
  cb_config_list: Provides explicit control over aggregators.

47

Introduction- Strategy (1) – Strategy (2) - Evaluation

MPICH2 Architecture
48

Application Programmer Interface (API)

Abstract Device Interface (ADI)

Communication Protocol

File
System

MPI Collective

MPI Point to Point

MPI-IO

ADIO

Introduction- Strategy (1) – Strategy (2) - Evaluation

MPICH2 Modification (I)
49

Application Programmer Interface (API)

Abstract Device Interface (ADI)

Communication Protocol

File
System

MPI Collective

MPI Point to Point

MPI-IO

ADIO
LA-TwoPhase I/O

Introduction- Strategy (1) – Strategy (2) - Evaluation

MPICH2 Modification (II)
50

Application Programmer Interface (API)

Abstract Device Interface (ADI)

Communication Protocol

File
System

MPI Collective

MPI Point to Point

MPI-IO

ADIO

Introduction- Strategy (1) – Strategy (2) - Evaluation

Aggregator Pattern
Calculation

MPI-IO
HINT

Example of ACN aggregator pattern
51

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte 0 byte 95 byte

P4 File view

P5 File view

Calculation and recollection of distribution
data (ACN)

ADIOI_Calc_Aggregator P0 0 1 1

ADIOI_Calc_Aggregator P1 1 0 1

ADIOI_Calc_Aggregator P2 1 1 1

ADIOI_Calc_Aggregator P3 0 3 0

Array_data

52

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte 0 byte 95 byte

P4 File view

P5 File view

ADIOI_Calc_Aggregator P3 2 2 0

ADIOI_Calc_Aggregator P3 1 0 1

Calculation and recollection of distribution
data (ACN)

ADIOI_Calc_Aggregator P0 0 1 1

ADIOI_Calc_Aggregator P1 1 0 1

ADIOI_Calc_Aggregator P2 1 1 1

ADIOI_Calc_Aggregator P3 0 3 0

Array_data

53

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

P4 File view

P5 File view

ADIOI_Calc_Aggregator P4 2 2 0

ADIOI_Calc_Aggregator P5 1 0 1

FD0 FD1 FD2

N0 0 4 1

N1 3 2 1

N2 2 1 3

P0 Assigment_matrix_ACN

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Calculation of ACN pattern

P0 Assigment_matrix_ACN

LAP

Aj=Max(Pi,FD)

54

Introduction- Strategy (1) – Strategy (2) - Evaluation

FD0 FD1 FD2

N0 0 4 1

N1 3 2 1

N2 2 1 3

Calculation of ACN pattern

P0 Assigment_matrix_ACN

LAP

Aj=Max(Pi,FD)

P1 P0 P2
New
ranklist

55

Introduction- Strategy (1) – Strategy (2) - Evaluation

FD0 FD1 FD2

N0 0 4 1

N1 3 2 1

N2 2 1 3

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Calculation of ACN pattern

P0 Assigment_matrix_ACN

LAP

Aj=Max(Pi,FD)

P1 P0 P2
New
ranklist

56

Introduction- Strategy (1) – Strategy (2) - Evaluation

FD0 FD1 FD2

N0 0 4 1

N1 3 2 1

N2 2 1 3

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

ADIOI_cb_bcast_rank_map
Aggregator 0

Aggregator 1

Aggregator 2

57

Reduction in the number of
communication with the ACN pattern.

P1 P0 P2 ranklist

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte
95 byte

0 byte
95 byte

P4 File view

P5 File view

1 2 2 2 2 4 5 4 0 3 3 4 3 4 3 2 0 5 1 1 1 1 5 2

Aggregator 0 (P1) Aggregator 1 (P0) Aggregator 2(P2)

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Aggregator 0

Aggregator 1

Aggregator 2

58

Reduction in the number of
communication with the ACN pattern.

P1 P0 P2 ranklist

Introduction- Strategy (1) – Strategy (2) - Evaluation

95 byte

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Aggregator 0

Aggregator 1

Aggregator 2

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 0 byte

P4 File view

P5 File view

59

Reduction in the number of
communication with the ACN pattern.

P1 P0 P2 ranklist

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 0 byte 95 byte

P4 File view

P5 File view

 Two_Phase ACN

12 messages 7 messages
ACN target:
Reduce the number of communications

Calculation and recollection of distribution
data (AVN)

ADIOI_Calc_Aggregator P0 0 1 1

ADIOI_Calc_Aggregator P1 1 0 4

ADIOI_Calc_Aggregator P2 4 1 1

ADIOI_Calc_Aggregator P3 0 4 0

Array_data

60

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte

P4 File view

P5 File view

ADIOI_Calc_Aggregator P4 2 2 0

ADIOI_Calc_Aggregator P5 1 0 2

FD0 FD1 FD2

N0 0 5 1

N1 3 2 4

N2 5 1 3

P0 Assigment_matrix_AVN

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

Calculation of AVN pattern

P0 Assigment_matrix_AVN

LAP

Aj=Max(Pi,FD)

P2 P0 P1
New
ranklist

61

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

ADIOI_cb_bcast_rank_map

FD0 FD1 FD2

N0 0 5 1

N1 3 2 4

N2 5 1 3

Aggregator 0

Aggregator 1

Aggregator 2

62

Reduction in the number of
communication with the AVN pattern.

P2 P0 P1 ranklist

Introduction- Strategy (1) – Strategy (2) - Evaluation

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 95 byte 0 byte

P4 File view

P5 File view

Aggregator 0

Aggregator 1

Aggregator 2
P0 P3 P1 P4 P2 P5

Node 0 Node 1 Node 2

63

Reduction in the number of
communication with the AVN pattern.

P2 P0 P1 ranklist

Introduction- Strategy (1) – Strategy (2) - Evaluation

95 byte

 Two_Phase AVN

72 bytes 40 bytes
AVN target:
Reduce the volume of communications

P0 File view

P1 File view

P2 File view

P3 File view

0 byte 32 byte 64 byte 0 byte

P4 File view

P5 File view

ACN vs AVN

  Which is the best ??
  Depends of the data distribution among the processes.

  Data very distributed, small contiguous data blocks :

  High number of communications
  Best aggregator pattern: ACN

  Data less distributed, big contiguous data blocks:

  High volume of data in the communications
  Best aggregator pattern: AVN

64

 Two_Phase ACN

12 messages 7 messages

 Two_Phase AVN

72 bytes 40 bytes

ACN target:
Reduce the number of communications

AVN target:
Reduce the volume of communications

Introduction- Strategy (1) – Strategy (2) - Evaluation

New Proposal: Intelligent aggregator
pattern for collective I/O pattern

  Select the aggregation-criterion that the reduce
more the communication phase.

  Open question

65

Introduction- Strategy (1) – Strategy (2) - Evaluation

Why two implementation of ACN and
AVN?

  Aggregator patters are implemented in two different
ways:
  New version of Two_Phase I/O in MPICH2:

  Locality_Aware_Two_Phase I/O (LA_TwoPhase I/O)

  Library at application level:
  Aggregation_Pattern_Calculation

  The MPI based application call this library to calculate the
aggregator list.

  The application use one MPI-IO Hint to modified the default
aggregator list:
  cb_config_list: Provides explicit control over aggregators

66

Introduction- Strategy (1) – Strategy (2) - Evaluation

Why two implementation of ACN and
AVN? (II)

  First idea:
  Install my own library of MPICH2 in HECToR.

  Modify the source code of Two_Phase IO (inside MPICH2) to
implement both aggregator patterns
(Locality_Aware_Two_Phase I/O)

  Problem: HECToR No install own MPI library.

  Second idea:
  MPI-IO hints are used to provide information to a MPI program

to assist the performance of the MPI file I/O routines.

  Use cb_config_list hint to indicate to XT MPI my “new
aggregator list”.

  Implement the aggregator patterns at application level.
(Aggregation_Pattern_Calculation)

67

Introduction- Strategy (1) – Strategy (2) - Evaluation

Lists MPI-IO hints supported on Cray XT
systems.

direct_io cb_config_list ind_rd_buffer_size

romio_cb_read romio_no_indep_rw ind_wr_buffer_size

romio_cb_write romio_ds_read cb_nodes

cb_buffer_size romio_ds_write

68

  Problem: cb_confing_list “seems” not work in XT MPI
  Cray developer responsible for MPI-IO recognised my

problem:

  "We have raised a bug on the issue however right
now and there doesn't seem to be an obvious
workaround".

  Solution: Implement both ideas by using Eddie cluster.

Introduction- Strategy (1) – Strategy (2) - Evaluation

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance
communication operations

5.  Evaluations

69

Introduction- Strategy (1) – Strategy (2) - Evaluation

Strategies for improve the performance of
communication operations.

 Strategy to reduce the cost of communication in MPI by using lossless compression
techniques.

Communication system has become one of the major limiting factors

Reduction the performance Reduction the scalability

Program model using in cluster MPI

Communication among the processes by messages

Scientific applications need:

Large number of computer nodes Huge volume of data transferred among the
processes

70

Introduction- Strategy (1) – Strategy (2) - Evaluation

71

  Reduce the cost of communications:
  By MPI messages compression in run-time

  Lossless compressions algorithms

  Compress all MPI primitives.

  We have developed three different strategies:
  Runtime Compression (RC)

  Runtime Adaptive Compression (RAC)

  Guided Strategy (GS)

  Implementation of the strategies by modifying the source
code of MPICH1.2

Phd. Thesis Proposal: Communication
Compression

Introduction- Strategy (1) – Strategy (2) - Evaluation

HPC-Programme Proposal (II)

  Implement Runtime Adaptive Compression (RAC) by using
(New!!) message passing interface profiling (PMPI).

  Why ??

  HECToR No install own MPICH

  DEISA/PRACE Spring School: Tools and Techniques for
Extreme Scalability

  The Scalasca Performance Analysis Toolset PROFILING!!

  New idea: Use the MPI standard profiling interface (PMPI) to
implement the adaptive compression strategy

72

Introduction- Strategy (1) – Strategy (2) - Evaluation

HPC-Programme Proposal (II)

  PMPI allows replacement of MPI routines at link time (not need
to recompile)

  No modification of the source code of the MPI
implementation

  No modification of the source code of the application

  Portable, independent of the MPI implementation (XT MPI,
MPICH2, OPENMPI …).

73

Introduction- Strategy (1) – Strategy (2) - Evaluation

PMPI

  Each standard MPI function can be called with an
MPI_ or PMPI_ prefix.

  PMPI such wrapper functions to customize MPI
behavior: implement RAC strategy

74

User Program
Re-definition
Library

Call MPI_Send MPI_Send

MPI Library

MPI_Send

PMPI_Send

Call MPI_ISend Call MPI_ISend

Introduction- Strategy (1) – Strategy (2) - Evaluation

Example of Use of Profiling Interface
75

// extern.c!
int MPI_Send(void *start, int count, MPI_Datatype datatype, !
int dest, int tag, MPI_Comm comm)!
{!
! printf (“Before send the message to process %d\n”,dest);!
! return PMPI_send(start, count, datatype, dest, tag, comm);!
}!

// my_application.c!
if (my_rank==0)!
{ for (i=0;i<5;i++)!
 ! ! array[i]=i;!
! for (j=1;j<num_processes;j++)!
! ! MPI_Send(array,5,MPI_INT,i,tag,MPI_COMM_WORLD);!
 }!

> mpicc -c extern.c!
> mpicc -c my_application.c!

> mpicc -g my_application.o extern.o -o executable!

Introduction- Strategy (1) – Strategy (2) - Evaluation

Example of Use of Profiling Interface
76

 > mpirun –np 10 ./executable > output.txt!
 > cat output.txt!

 Before send the message to process 1!
 Before send the message to process 2!
 Before send the message to process 3!
 Before send the message to process 4!
 Before send the message to process 5!
 Before send the message to process 6!
 Before send the message to process 7!
 Before send the message to process 8!
 Before send the message to process 9!

Introduction- Strategy (1) – Strategy (2) - Evaluation

Runtime Adaptive Compression
77

  Runtime Adaptive Compression Strategy (RAC), per
message transferred takes two decision:
  Turn on and off the compression.

  Select itself the best compression algorithm:
  LZO, RLE, HUFFMAN, RICE, FPC.

  Learn in run-time from previous messages

  Decision depending on:
  Message feature:

  Datatype and length

  Network performance:
  Latency and bandwidth

  Compression algorithms
Introduction- Strategy (1) – Strategy (2) - Evaluation

Decisions Speedup

  Speedup to decide if send the message with/without
compression.

  So the decission depends:
  Original message transmisision time

  Compressed messaged transmission time

  Compression and decompression time

€

Speedup =
Time_ Sent _Orig.

(Time_ Sent _Compr.+ time_compress.+ time_ decompr.)

78

Introduction- Strategy (1) – Strategy (2) - Evaluation

Decisions Speedup
79

Message

Runtime
Adaptive
CoMPI

Tz < Tn

Network
Behavior
heuristic

Decission

Send message applying
decission

Compression
Behavior
heuristic

Tz=Time_Send_Compressed

Tn=Time_Send_Original

Introduction- Strategy (1) – Strategy (2) - Evaluation

80

€

Speedup =
Time_ Sent _Orig.

(Time_ Sent _Compr.+ time_compress.+ time_ decompr.)

Network
Behavior

Network
Behavior

Compression behavior

Compression
Behavior

Compression
Behavior

Introduction- Strategy (1) – Strategy (2) - Evaluation

Decision Methodology

  Calculate the speedup per message? No high
overhead computation time

  According to Compression Behavior and Network
data Behavior, RAS decides:
  Datatype:

  Integer y Float LZO

  Double LZO or FPC

  Others LZO, RLE, RICE or HUFFMAN

  Message size Decision Threshold:
  Each datatype has its thresholds

  Length_yes_compression

  Length_no_compression

81

Introduction- Strategy (1) – Strategy (2) - Evaluation

Decision Methodology 82

Message

Number
message==0

Compression
algorithm selection

Calculate limits of
compression

Send message
Number message ++

Send message compr.
Check Mistake

Upper
Yes
Compr.

Below
No
Compr.

Between
threshold

Apply limits

Send message
uncompr.
Number uncompr. ++

Reevaluation

Number
messages=0

Number messages++

Compression
algorithm selection

Calculate limits of
compression

Send message

Yes No

Yes Yes Yes

No No

Yes No

Introduction- Strategy (1) – Strategy (2) - Evaluation

Different cases of re-evaluation
83

Low frequency mistakes

Introduction- Strategy (1) – Strategy (2) - Evaluation

84

Low frequency mistakes High frequency mistakes

Different cases of re-evaluation

Introduction- Strategy (1) – Strategy (2) - Evaluation

Different cases of re-evaluation
85

Low frequency mistakes High frequency mistakes

Many reevaluations
 in a short time

Introduction- Strategy (1) – Strategy (2) - Evaluation

New Proposal: PRAcTICaL-MPI

  PRAcTICaL-MPI: PoRtable AdpaTIve Compression
Library

  New compression algorithms:
  Snappy or PFOR

  Evaluate using OPEN MPI, XT MPI.

  Open question

86

Introduction- Strategy (1) – Strategy (2) - Evaluation

Summary

1.  Problem description

2.  Main Objectives

3.  Strategies for improve the performance of collective
I/O operation

4.  Strategies for improve the performance
communication operations.

5.  Evaluation

87

Introduction- Strategy (1) – Strategy (2) - Evaluation

Phd. Thesis evaluation tools

• MPICHGM-1.2.7.15NOGM

• CESVIMA: Magerit
• UC3M: dual core
• UC3M: tetra core
• UC3M: dual core2

•  NAS Parallel •  BISP3D
•  PSRG
•  STEM-II

Real life
applications Benchmarks

Distribution

MPICH
Cluster

88

Introduction- Strategy (1) – Strategy (2) - Evaluation

HPC Programme

• MPICH 2.3
• XT MPI 3.0

• Cray XE6

•  NAS Parallel •  BISP3D
•  PSRG
•  STEM-II

Real life
applications

Benchmarks

Implementation

MPI
Cluster

89

Introduction- Strategy (1) – Strategy (2) - Evaluation

HECToR

High End Computing Terascale Resource

“HECToR is the UK's high-end computing resource,
funded by the UK Research Councils. It is
available for use by academia and industry in the
UK and Europe.”

90

Introduction- Strategy (1) – Strategy (2) - Evaluation

Features on HECToR Phase 2b

•  1856 compute nodes which contain two AMD 2.1
GHz 12-core Opteron processors => 44,544 cores

• Theoretical peak performance of 373 Tflops

• 32 GB main memory per processor, shared
between 24 cores => total memory of 58 TB

•  Gemini interconnect

• 12 IO nodes

91

Introduction- Strategy (1) – Strategy (2) - Evaluation

XE6 24-core Magny Cours node
92

Introduction- Strategy (1) – Strategy (2) - Evaluation

Running Jobs in HECToR
93

#!/bin/bash –login!
#PBS -N My_rosa !
#PBS -l mppwidth=20!
#PBS -l mppnppn=2 !
#PBS -l walltime=00:20:00 !
#PBS -A x01-rfil!

Change to the direcotry that the job was!
 submitted from cd $PBS_O_WORKDIR !

Launch the parallel job !
aprun –n 20 -N 2 ./bisp3d arg1 arg2!

• mppwidth: Request the total number of MPI tasks for your job.
• mppnppn: Tells the scheduler how many processes to place on a node

My example: 20 MPI processes, 2 processes per Node 10 Nodes

Introduction- Strategy (1) – Strategy (2) - Evaluation

EDDIE
94

  The compute component of Edinburgh Compute and
Data Facility (ECDF), known as Eddie, offers a number
of services aimed to satisy as best as possible all
researchers' computational requirements.

Introduction- Strategy (1) – Strategy (2) - Evaluation

Features of EDDIE on Mark2Phase1

  My experiments by using Mark2Phase1

  130 IBM dx360M3 iDataPlex servers:
  Two Intel Xeon E5620 quad-core processors (8 cores per

node).

  Gigabit Ethernet network.

  Now it is available Mark2Phase2:
  156 IBM dx360M3 iDataPlex servers:

  Two Intel Xeon E5645 six-core processors (12 cores per
node).

  Gigabit Ethernet network.

95

Introduction- Strategy (1) – Strategy (2) - Evaluation

Running Jobs in EDDIE
96

#!/bin/sh!
#$ -N My_rosa!
#$ -cwd!
#$ -pe openmpi_smp8_mark2 20!
#$ -l h_rt=00:30:00!

Launch the parallel job !
mpirun –np $NSLOTS ./bisp3d arg1 arg2!

• NSLOTS: Request the total number of MPI tasks for
your job.
• But you can not configure the number of nodes per
core.

My example: 20 MPI processes

Introduction- Strategy (1) – Strategy (2) - Evaluation

Running Jobs in EDDIE
97

#!/bin/sh!
#$ -N My_rosa!
#$ -cwd!
#$ -pe openmpi_smp8_mark2 20!
#$ -l h_rt=00:30:00!

Launch the parallel job !
mpirun –np $NSLOTS ./bisp3d arg1 arg2!

• NSLOTS: Request the total number of MPI tasks for
your job.
• But you can not configure the number of nodes per
core.

My example: 20 MPI processes

The file contained in $PE_HOSFILE have this:

eddie296.ecdf.ed.ac.uk 1
ecdf@eddie296.ecdf.ed.ac.uk UNDEFINED

eddie328.ecdf.ed.ac.uk 2
ecdf@eddie328.ecdf.ed.ac.uk UNDEFINED

eddie335.ecdf.ed.ac.uk 2
ecdf@eddie335.ecdf.ed.ac.uk UNDEFINED

eddie336.ecdf.ed.ac.uk 2
ecdf@eddie336.ecdf.ed.ac.uk UNDEFINED

eddie341.ecdf.ed.ac.uk 3
ecdf@eddie341.ecdf.ed.ac.uk UNDEFINED

eddie350.ecdf.ed.ac.uk 3
ecdf@eddie350.ecdf.ed.ac.uk UNDEFINED

eddie353.ecdf.ed.ac.uk 4
ecdf@eddie353.ecdf.ed.ac.uk UNDEFINED

eddie364.ecdf.ed.ac.uk 3
ecdf@eddie364.ecdf.ed.ac.uk UNDEFINED

Introduction- Strategy (1) – Strategy (2) - Evaluation

BISP3D

  3-Dimensional simulator of BJT and HBT bipolar
devices:
  The goal is to relate electrical characteristics of the device

with its physical and geometrical parameters.

  We have use 3 different different devices
  Each bipolar device it is represented by a mesh.

  Load represent the number of elements per node (in a
mesh).

  Uses Two_Phase IO to write results in disk
  Original BISP3D sequential writes.

  Irregular application (non contiguous data).

98

Introduction- Strategy (1) – Strategy (2) - Evaluation

Evaluations of IO aggregator patterns
(EDDIE)

99

0.80

0.90

1.00

1.10

1.20

1.30

1.40

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh2

0.80

0.90

1.00

1.10

1.20

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh1

0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh3
ACN

AVN

Introduction- Strategy (1) – Strategy (2) - Evaluation

Evaluations of Run Adaptive Compression
(EDDIE)

100

0.9
1

1.1
1.2
1.3
1.4
1.5

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh1

0.8

1

1.2

1.4

1.6

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh2

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh3 Load 100

Load 500

Introduction- Strategy (1) – Strategy (2) - Evaluation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh1

Load 100

Load 500

Evaluations of Run Adaptive Compression
(HECToR)

101

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh1

0

0.5

1

1.5

2

8 16 32 64 128

S
p

ee
d

u
p

Processes

BISP3D-Mesh2

Introduction- Strategy (1) – Strategy (2) - Evaluation

Questions??

  Thanks!!

102

Dynamic and Adaptive optimization techniques to enhance the
performance of MPI applications by using
HECToR and Eddie clusters.

Author: Rosa Filgueira Vicente

University of Edinburgh

Linear Assignment Problem (I)

  LAP computes the optimal assignment of m items to
n elements given an m x n cost matrix.

  Several algorithms have been developed for LAP:
  Hungarian algorithm.
  Jonker and Volgenant algorithm.
  APC and APS Algorithms.

  All algorithms produce the same assignment.
  The difference is the time to compute the optimal

allocation.

3.1 Linear Assigment Problem (II)

106

