Efficient Distributed Cross Match Queries in the Virtual Observatory

Individual Research Project

Pratyusha Doddapaneni

Outline

- Background
- Rationale
- Requirements / Environment
- Design
- Approaches
 - Implementation
 - Analysis
- Discussion
- Summary

Background

- Explosion in amount of data generated
- Problem ?
 - interoperable use of world's astronomical data resources
- Virtual Observatory
 - global electronic access to the astronomical data from the various astronomical databases
 - providing data analysis techniques via standards (TAP, VOTable ...)

Outcome

- Set of recommendations
- Drawn from the inferences
- Pertinent to the results and different metrics considered

Outline

- Background
- Rationale
- Requirements / Environment
- Design
- Approaches
 - Implementation
 - Analysis
- Discussion
- Summary

Data Requirements

- Catalogues
 - UKIDSS DR5
 - SDSS Best DR7
- UKIDSS true near IR counterpart to SDSS
- LAS counterpart of UKIDSS used to perform cross match against SDSS

Computing Environment

- Server machine set up at WFAU, Royal Observatory
 - Windows SQL Server 2008
 - Main memory: 16GB RAM
 - Disk space: Databases spread over 3 RAID5 arrays with 5.45 TB each
- Queries analysed based on elapsed time
 - Using the 'cold' database status

'Cold' database

- Mimicking the state of freshly restarted server
- Forms good basis of comparison of timings
- Achieved using MS-SQL DBCC

DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS
DBCC FREESESSIONCACHE
DBCC FREESYSTEMCACHE

Outline

- Background
- Rationale
- Requirements / Environment
- Design
- Approaches
 - Implementation
 - Analysis
- Discussion
- Summary

Types of queries

- Self match queries (LAS vs. LAS)
 - Indexed
 - Indexed/Un-indexed

- Cross match queries (LAS vs. SDSS)
 - Indexed
 - Indexed/Un-indexed

Metrics for analysis

- With respect to
 - Elapsed times
 - Indexed and un-indexed attributes
 - Scalability
 - Impact of network times on query times

Outline

- Background
- Rationale
- Requirements / Environment
- Design
- Approaches
 - Implementation
 - Analysis
- Discussion
- Summary

Database Based Approaches

Brute Force RA/Dec cut followed by GCD

- Great circle distance
 - shortest path between pair of objects
- Calculations of GCD but only over certain range of values restricted by RA & Dec values
- Advantages
 - Simple & easier to implement
- Disadvantages
 - complex formula
 - Cost ~ O(m*n)

Results

Pre-computed cross-neighbour tables

- Pre-computing join indexes
 - based on spatial proximities

- Extra costs ?
 - generated table ?
 - network costs ?
 - computation & storage costs ?
 - maintenance costs ?

Pre-computed cross-neighbour tables

- Advantages
 - Faster query computation
 - Minimal computation overhead

- Disadvantages
 - Storage costs
 - Initial computation costs
 - Increases with increase in the size of the catalogues
 - Maintenance costs

Results

Costs for generation of the neighbours table

Query times

Attributes

Scalability

Localisation via 'pixel code' followed by GCD

- Encoding the rough position of each source entry
 - Partition the sphere into pixels of appropriate size
 - Localise the position of every source onto the pixel map

- Spatial Indexing Schemes
 - Hierarchical Triangular Mesh (HTM)
 - Hierarchical Equal Area isoLatitude Pixelisation (HEALPix)

Hierarchical Triangular Mesh

- Recursive decomposition of celestial spherical surface into similar sized & shaped triangles
 - Base trixels defined by projection of octahedron faces onto the surface of the sphere

Hierarchical Triangular Mesh

- Advantages
 - Fast object matching
 - Acceptable performance

- Disadvantages
 - Deeper levels

 losing accuracy in the data
 - Possibility of overshooting the recursive level & computationally expensive

Query 1 (Slope =4.99) Query 2 (Slope =5.40) X^{2.5} (Slope =6.56) Results Time (s) Criteria Query 3 (Slope =4.99) Query 4 (Slope =5.40) X^{2.5} (Slope = 6.56) Query times C (s) 2 **Attributes** Scalability Number of objects (10⁵)

Middleware based option

- Plane Sweep Algorithm
 - Line sweep based on declination
 - Geometric operations
 - Complete once sweep is finished

- Pre-processing
 - Sorting the objects based on declination
 - Active list small enough to reside in memory

Cross match between two collection of points

Plane Sweep Algorithm

- Advantages
 - Faster & efficient ~ O(N logM)
 - Low memory footprint
- Disadvantages
 - Inefficient (large, small) catalogue pairs
 - Costs
 - Computational costs
 - I/O costs in data export & ingestion plain text/binary files.

Middleware?

- OGSA-DAI
 - middleware suite to perform queries between distributed catalogues using standards compliant services (TAP, VOTable etc)
 - data from multiple sources and of multiple types can be accessed, updated, combined, filtered, transformed and delivered.
- 3-layer service architecture for VO

Implementation

- Plane sweep implemented as activity in OGSA-DAI
 - Developed by EPCC
- Each kind of query -> separate client application
- Client application
 - Starts a tuple sweep activity
 - Streams tuples from participating tables wrt window size
 - Results streamed back from server to client

```
TupleSweepProduct product = new TupleSweepProduct();

product.addWindowSize(10/3600.0);

product.connectData1Input(query1.getDataOutput());
product.connectData2Input(query2.getDataOutput());
```


Projection criteria \rightarrow Selection criteria \rightarrow Workflow \rightarrow Data source \rightarrow Stream results

Results Time (s) Criteria Query times **Attributes** Time (s) Scalability * Network costs playe

Mixed option — Zones algorithm

- Bucketing the 2D spaces
- Celestial sphere division into zones
- Zone → declination cut on the sphere

Mixed option — Zones algorithm

- Advantages
 - Good for point-near-point queries
 - Portable due to external implementation in SQL
 - Batch oriented spatial join queries excellent performance

- Disadvantages
 - When the radius is 10 times more than the zone height, the algorithm tends to be inefficient

Results

Criteria

Query times

Attributes

Scalability

Results — additional costs

- Building the zone index table
- Building LAS/SDSS cross/self match table
- Addition of the clustered index
- Memory footprint of the generated table
 - Table construction times very high

Impact of Network related costs

- Exact estimation very complex
 - Network bandwidth
 - Topology
 - Network loads
 - Network environment
- Sample experiment
 - Query times differ with time and location
- Naïve estimates justify the magnified scalability factor in plane sweep approach

Outline

- Background
- Rationale
- Project Management
- Requirements / Environment
- Design
- Approaches
 - Implementation
 - Analysis
- Discussion
- Summary

Inferences

- Naïve GCD approach
 - Best approach for very small subsets of objects

- Pre-computed neighbours table
 - Depends on flexibility of end user
 - Steps non automated
 - Burden of maintenance
 - High performance gains

Inferences

- HTM Approach
 - Concise judgement on level of recursion
 - Extremely fast cone searches (w.r.t cross match)
 - Rather diminished performance for range queries
- Plane sweep using OGSA-DAI
 - Major impact with respect to network related costs
 - Very low computation costs
 - Worthwhile in distributed environment.

Inferences

- Zones approach
 - Excellent performance
 - Automatable process of table construction
 - Higher times for construction
 - Regular maintenance (updates)
- Indexed vs. Un-indexed
 - In each case,
 - Queries with un-indexed attributed take up higher times as expected.

Future work

- Larger set of queries
- Comparison of physical I/O statistics
 - In depth network related costs estimation
- Behaviour w.r.t different kinds of RDBMS
- Expand the approaches to HEALPix, advanced HTM indexing strategy etc.

Thank you

Hierarchical Equal Area isoLatitude Pixelisation (HEALPix)

- Mapping sphere to 12 diamond shaped entities
- Binary division of diamond entities into pixels/plane

Hierarchical Equal Area isoLatitude Pixelisation (HEALPix)

- Advantages
 - Operations are exact
 - The level of accuracy offered is very high
 - Offers fast numerical analysis & synthesis of distributed data
- Disadvantages
 - High complexity involved with implementation

Implementation?

- HTM approach in IRP?
 - HTM approach has been well developed & documented
 - Integrates well with the SQL Server
 - Short time span available for the whole project
 - lot of effort on fairly less used & complex HEALPix approach
 - Scope for implementation ?
 - Based on time availability