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brief background

DNA
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DNA subdivided into 
chromosomes

chromosomes further divided 
into regions called genes

~20-25,000 genes in humans 
(exact number still unknown!)

brief background

genes
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brief background

gene-expression (vastly simplified)
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brief background

gene-expression (vastly simplified)
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quantitative PCR
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quantitative PCR
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interested in exploring the noise introduced at each stage of sample-prep 
on reported results

quantitative PCR
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shameless plug #1:
(for further reading)

Kitchen et al.  Methods (2010) vol. 50 (4)

quantitative PCR
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microarray
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gene activity proportional to number
of target molecules captured by bead

microarray
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microarray
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microarray

aim to generate profiles of 
genes that can differentiate 
between disease states

single samples used often 
due to low availability of 
primary material and/or 
limited budget

Sørlie et al. 2003 PNAS
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we’re interested in reproducibility of microarray experiments

microarray quality control consortium (MAQC) engaged in 3-
stage project to assess arrays and RNA-seq

stage 1 [Nat Biotechnol (2006) vol. 24 (9)] looked at cross-
platform and inter-laboratory consistency using dilution series of 
two reference RNA samples

microarray
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microarray

we took a slightly different approach with a specific goal:

profile intra-experiment technical variation

✓ same laboratory

✓ same technology

✓ same type of RNA   
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75 211 26

batch-corrected 
analysis:

67.6%

188 23 7

standard
analysis:

10.6%

32 117 8

74.5%

batch-corrected 
analysis + ref:

microarray
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shameless plug #2:
(for further reading)

Kitchen et al.  BMC Genomics (2010)  vol. 11 (1)

microarray
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microarray

eg:    TGGGAAAGAACACAGAGGAATCCAGCCATTTCCACAGCGTCCAGCTCTGC

current interest is in correlating observed experiment noise with 
specific probe properties:
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microarray

current interest is in correlating observed experiment noise with 
specific probe properties:

for example:

➡ probe position within target gene

➡ number of transcripts consecutively hit by the probe

➡ GC content

➡ CpG count

➡ rough total length of target gene
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microarray
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microarray
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2nd generation sequencing

microarray RNA-seq

systems have already been applied for 
this purpose. The Helicos Biosciences 
tSMS system has not yet been used for 
published RNA-Seq studies, but is also 
appropriate and has the added advantage 
of avoiding amplification of target cDNA. 
Following sequencing, the resulting reads 
are either aligned to a reference genome 
or reference transcripts, or assembled 
de novo without the genomic sequence 
to produce a genome-scale transcription 
map that consists of both the transcrip-
tional structure and/or level of expression 
for each gene.

Although RNA-Seq is still a technology 
under active development, it offers several 
key advantages over existing technologies 
(TABLE 1). First, unlike hybridization-based 
approaches, RNA-Seq is not limited to 
detecting transcripts that correspond 
to existing genomic sequence. For 

example, 454-based RNA-Seq has been 
used to sequence the transcriptome of 
the Glanville fritillary butterfly27. This 
makes RNA-Seq particularly attractive 
for non-model organisms with genomic 
sequences that are yet to be determined. 
RNA-Seq can reveal the precise location 
of transcription boundaries, to a single-
base resolution. Furthermore, 30-bp short 
reads from RNA-Seq give information 
about how two exons are connected, 
whereas longer reads or pair-end short 
reads should reveal connectivity between 
multiple exons. These factors make RNA-
Seq useful for studying complex tran-
scriptomes. In addition, RNA-Seq can also 
reveal sequence variations (for example, 
SNPs) in the transcribed regions22,24.

A second advantage of RNA-Seq 
relative to DNA microarrays is that 
RNA-Seq has very low, if any, background 

signal because DNA sequences can 
been unambiguously mapped to unique 
regions of the genome. RNA-Seq does 
not have an upper limit for quantifica-
tion, which correlates with the number 
of sequences obtained. Consequently, 
it has a large dynamic range of expres-
sion levels over which transcripts can be 
detected: a greater than 9,000-fold range 
was estimated in a study that analysed 16 
million mapped reads in Saccharomyces 
cerevisiae18, and a range spanning five 
orders of magnitude was estimated for 
40 million mouse sequence reads20. By 
contrast, DNA microarrays lack sensitivity 
for genes expressed either at low or very 
high levels and therefore have a much 
smaller dynamic range (one-hundredfold 
to a few-hundredfold) (FIG. 2). RNA-Seq 
has also been shown to be highly accurate 
for quantifying expression levels, as deter-
mined using quantitative PCR (qPCR)18 and 
spike-in RNA controls of known concentra-
tion20. The results of RNA-Seq also show 
high levels of reproducibility, for both 
technical and biological replicates18,22. 
Finally, because there are no cloning steps, 
and with the Helicos technology there is 
no amplification step, RNA-Seq requires 
less RNA sample.

Taking all of these advantages into 
account, RNA-Seq is the first sequencing-
based method that allows the entire 
transcriptome to be surveyed in a very 
high-throughput and quantitative man-
ner. This method offers both single-base 
resolution for annotation and ‘digital’ 
gene expression levels at the genome scale, 
often at a much lower cost than either 
tiling arrays or large-scale Sanger EST 
sequencing.

Challenges for RNA-Seq
Library construction. The ideal method 
for transcriptomics should be able to 
directly identify and quantify all RNAs, 
small or large. Although there are only 
a few steps in RNA-Seq (FIG. 1), it does 
involve several manipulation stages dur-
ing the production of cDNA libraries, 
which can complicate its use in profiling 
all types of transcript.

Unlike small RNAs (microRNAs  
(miRNAs), Piwi-interacting RNAs (piRNAs), 
short interfering RNAs (siRNAs) and many 
others), which can be directly sequenced 
after adaptor ligation, larger RNA mol-
ecules must be fragmented into smaller 
pieces (200–500 bp) to be compatible 
with most deep-sequencing technologies. 
Common fragmentation methods include 
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Figure 1 | A typical RNA-Seq experiment. Briefly, long RNAs are first converted into a library of cDNA 
fragments through either RNA fragmentation or DNA fragmentation (see main text). Sequencing 
adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from 
each cDNA using high-throughput sequencing technology. The resulting sequence reads are aligned 
with the reference genome or transcriptome, and classified as three types: exonic reads, junction reads 
and poly(A) end-reads. These three types are used to generate a base-resolution expression profile for 
each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.
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This rare genetic condition can 
arise constitutionally through 
non-disjunction during meiosis 
that ultimately leads to a 
duplication of a segment or of 
the entire maternal or paternal 
chromosome in the affected 
individual. A form of apparent 
uniparental disomy can arise in 
the course of normal cell 
division (mitosis) through 
mitotic recombination (a rare 
crossover event during mitosis).

arrays, unlike conventional CGH, to detect copy-neutral 
genetic anomalies such as uniparental disomy (UPD) and 
mitotic recombination is important in understanding 
the aetiology of cancer (for example, see REFS 71,72). The 
second advantage of SNP-CGH arrays is their ability to 
collect allelic information on deletions, duplications and 
amplifications. One recent paper that used SNP-CGH 
describes how most observed amplifications in lung 
cancer arise as a result of monoallelic amplification73. It 
will be informative to see whether particular haplotypes 
are associated with increased incidence of monoallelic 
amplifications, LOH or deletions.

A third advantage of SNP-CGH arrays is their ease of 
manufacture and their intrinsic ability to scale to higher 
feature densities with improvements in array manu-
facture. This increase in feature density is important 
for oligonucleotide arrays because, as desribed above, 
oligonucleotide probes generally have intrinsically 
higher noise, which necessitates averaging across 5–10 
probes. The current SNP-CGH array densities of more 
than 500,000 SNPs per slide allow an effective resolu-
tion of less than 50 kb. In the future, arrays with higher 
density will further improve this resolution. In summary, 
the ability of SNP-CGH arrays to make high-resolution 

Box 1 | Primer-on-DNA array technologies

The two basic types of array that are used in genomic analysis are ordered arrays and random arrays. Ordered arrays are 
created by spotting or synthesizing known feature elements in a defined pattern on a planar surface. There are several 
methods for creating such ordered arrays including deposition of oligonucleotides with pins or an ink jet printer (see figure, 
part a, left). Alternatively, in situ oligonucleotide synthesis can be used to generate arrays of defined features by local 
delivery of oligonucleotide synthesis reagents or by local deprotection chemistry using photolithography or 
electrochemical-based deprotection (see figure, part a, right). 
Random arrays are created by self-assembly of bead-based feature elements. In this approach, oligonucleotides are 
individually immobilized on beads, pooled and assembled onto a patterned planar substrate (see figure, part b). 
The identities of the assembled beads are subsequently determined by a hybridization-based stepwise decoding scheme156 
that uses sets of combinatorially labelled complements to the bead sequences. 
Both random and ordered arrays can be either universal or locus-specific probes. A universal-capture probe (see 
figure, part c) binds to its complementary (address) sequence that is present in the products of the genomic assay. 
This address sequence creates a one-to-one correspondence between a locus and a particular feature on the array. 
A locus-specific probe (see figure, part d) is used in direct hybridization assays such as gene-expression assays — 
cDNA — or whole-genome genotyping — genomic DNA (gDNA).
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genetic anomalies such as uniparental disomy (UPD) and 
mitotic recombination is important in understanding 
the aetiology of cancer (for example, see REFS 71,72). The 
second advantage of SNP-CGH arrays is their ability to 
collect allelic information on deletions, duplications and 
amplifications. One recent paper that used SNP-CGH 
describes how most observed amplifications in lung 
cancer arise as a result of monoallelic amplification73. It 
will be informative to see whether particular haplotypes 
are associated with increased incidence of monoallelic 
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A third advantage of SNP-CGH arrays is their ease of 
manufacture and their intrinsic ability to scale to higher 
feature densities with improvements in array manu-
facture. This increase in feature density is important 
for oligonucleotide arrays because, as desribed above, 
oligonucleotide probes generally have intrinsically 
higher noise, which necessitates averaging across 5–10 
probes. The current SNP-CGH array densities of more 
than 500,000 SNPs per slide allow an effective resolu-
tion of less than 50 kb. In the future, arrays with higher 
density will further improve this resolution. In summary, 
the ability of SNP-CGH arrays to make high-resolution 

Box 1 | Primer-on-DNA array technologies

The two basic types of array that are used in genomic analysis are ordered arrays and random arrays. Ordered arrays are 
created by spotting or synthesizing known feature elements in a defined pattern on a planar surface. There are several 
methods for creating such ordered arrays including deposition of oligonucleotides with pins or an ink jet printer (see figure, 
part a, left). Alternatively, in situ oligonucleotide synthesis can be used to generate arrays of defined features by local 
delivery of oligonucleotide synthesis reagents or by local deprotection chemistry using photolithography or 
electrochemical-based deprotection (see figure, part a, right). 
Random arrays are created by self-assembly of bead-based feature elements. In this approach, oligonucleotides are 
individually immobilized on beads, pooled and assembled onto a patterned planar substrate (see figure, part b). 
The identities of the assembled beads are subsequently determined by a hybridization-based stepwise decoding scheme156 
that uses sets of combinatorially labelled complements to the bead sequences. 
Both random and ordered arrays can be either universal or locus-specific probes. A universal-capture probe (see 
figure, part c) binds to its complementary (address) sequence that is present in the products of the genomic assay. 
This address sequence creates a one-to-one correspondence between a locus and a particular feature on the array. 
A locus-specific probe (see figure, part d) is used in direct hybridization assays such as gene-expression assays — 
cDNA — or whole-genome genotyping — genomic DNA (gDNA).
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2nd generation sequencing
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2nd generation sequencing
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correlation

99.6%

99.5%

96.4%

2nd generation sequencing
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2nd generation sequencing
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2nd generation sequencing

first run
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2nd generation sequencing

second run
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2nd generation sequencing

second run - fresh samples
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label-free proteomics

similar, in principle, to RNA-seq:

RNAseq

✓many short fragments

✓assign fragments to parent 
RNA transcript

✓ incomplete reference 

LF-MS/MS proteomics

✓many short fragments

✓assign fragments to parent 
protein

✓very incomplete reference
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label-free proteomics

LF-MS/MS proteomics experiments currently rely on curated 
protein reference databases for peptide assignment

such reliance limits its effectiveness as a discovery tool

from our data, a typical rate of peptide assignment ~30%

Bitton et al. (2010) used an in-silico translation of the entire 
human genome & identified 346 ‘putative’ novel peptides
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future
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integrated RNAseq / proteomics

RNAseq data lends itself perfectly as a source of protein 
reference

perform in-silico translation of RNA known to be present in 
a given set of samples -- map peptides to this reference

RNA/protein expression analysed simultaneously, reduce 
false-positives etc.
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integrated RNAseq / proteomics

our own, very preliminary, very naïve analysis shows promise:
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integrated RNAseq / proteomics

compared to protein 
direction of change:

53% of array probes agree (χ2 pVal=0.886)
71% of exon-level RNA-seq agree (χ2 pVal=0.012)
100% of gene-level RNA-seq agree (only 5 of them...)
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