
Beyond the SAGA
From Simple APIs to
Dynamic Abstractions

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Outline

I. A Simple API for Grid Applications

II. Distributed Programming Abstractions (DPA)

III. A Good Research Idea ?

IV. A Somewhat Concrete Plan

2

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

What is SAGA ?

3

• Simple API for Grid (Distributed) Application

• Open Grid Forum community standard (GFD-R-P.90)

• Describes a language-independent (SIDL), object oriented API
for high-level tasks considered useful in distributed applications,
like job submission, file transfer, communication, etc...

• Implementations of the GFD-R-P.90 standard:

• JSAGA (Centre de Calcul IN2P3/CNRS, Lyon, France)

• JavaSAGA (Vrije Universiteit, Amsterdam, NL)

• C++ / Python Implementation (LSU, Baton Rouge, USA)

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Brief History

• 1988: Start of the Condor project

• 1998: Globus 1.0 released

• 2002: GridLab’s Grid Application Toolkit (GAT)

• 2004: OGF (GGF) SAGA working group formed

• 2006: SAGA C++ development of the reference
implementation starts at Louisiana State University

• 2010: GFD-90 1.0 standard (SAGA) released by OGF

• 2011: SAGA is being deployed across US TeraGrid,
deployment on EGI, FutureGrid and XD is under review

4

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Brief History

• 1988: Start of the Condor project

• 1998: Globus 1.0 released

• 2002: GridLab’s Grid Application Toolkit (GAT)

• 2004: OGF (GGF) SAGA working group formed

• 2006: SAGA C++ development of the reference
implementation starts at Louisiana State University

• 2010: GFD-90 1.0 standard (SAGA) released by OGF

• 2011: SAGA is being deployed across US TeraGrid,
deployment on EGI, FutureGrid and XD is under review

4

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Brief History

• 1988: Start of the Condor project

• 1998: Globus 1.0 released

• 2002: GridLab’s Grid Application Toolkit (GAT)

• 2004: OGF (GGF) SAGA working group formed

• 2006: SAGA C++ development of the reference
implementation starts at Louisiana State University

• 2010: GFD-90 1.0 standard (SAGA) released by OGF

• 2011: SAGA is being deployed across US TeraGrid,
deployment on EGI, FutureGrid and XD is under review

4

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Brief History

• 1988: Start of the Condor project

• 1998: Globus 1.0 released

• 2002: GridLab’s Grid Application Toolkit (GAT)

• 2004: OGF (GGF) SAGA working group formed

• 2006: SAGA C++ development of the reference
implementation starts at Louisiana State University

• 2010: GFD-90 1.0 standard (SAGA) released by OGF

• 2011: SAGA is being deployed across US TeraGrid,
deployment on EGI, FutureGrid and XD is under review

4

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Why a Middleware-Independent API ?

• (Lifetime of applications) > (Lifetime of infrastructure
and interfaces)

• Portability / adaptability = protection of assets

• Opens new opportunities for large-scale distributed
systems research and evaluation

• Newly emerging extreme-scale simulations may have to
span (scale-out) across several different infrastructures

• Distributed computing’s counterpart of MPI ?

5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

LSU’s C++ / Python SAGA

• Designed after the adaptor pattern

• A set of C++ libraries and headers grouped into
functional packages

• Adaptors (plug-ins) that provide access to distributed
middleware (Globus, gLite, Condor, etc...)

• A light-weight runtime/dispatcher that
the right adaptor for an API call
at runtime

• No services, daemons, etc...

6

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

GRAM
Adaptor

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

GRAM
Adaptor

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

(1) Assemble Globus RSL from SAGA job
description.

(2) Connect to GRAM gatekeeper at
login12.hector.ac.uk.

(3) Submit the job.

GRAM
Adaptor

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

(1) Assemble Globus RSL from SAGA job
description.

(2) Connect to GRAM gatekeeper at
login12.hector.ac.uk.

(3) Submit the job.

GRAM
Adaptor

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

How Does it Work ?

7

C++ API

Runtime / Dispatcher

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

File
Adaptors

Job
Adaptors

Replica
Adaptors

Advert
Adaptors

Python API Wrapper

saga::file saga::job saga::replica saga::advert

. . .

. . .

SA
G

A
 C

+
+

 / Python

Grid / Cloud Infrastructure

Distributed Application, Framework, Tool, Portal, etc...

js = saga::job::service
 (“gram://login12.hector.ac.uk”)

jd = saga::job::description(...)
j = js.create_job(jd)
j.run()

(1) See if any of the available adaptors support
the Globus GRAM protocol. (Throw error if not)

(2) Bind Adaptor to API call.

(1) Assemble Globus RSL from SAGA job
description.

(2) Connect to GRAM gatekeeper at
login12.hector.ac.uk.

(3) Submit the job.

GRAM
Adaptor

J

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

API Packages

• saga::advert - Advert Service Access API

• saga::filesystem - Filesystem Access API

• saga::job - Job Submission & Management API

• saga::replica - Replica Catalog Management API

• saga::rpc - Remote Procedure Call API

• saga::sd - Service Discovery API

• saga::stream - Data Stream Client & Server

• API Extensions under development: saga::messaging

8

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Supported Middleware

9

• saga::job - Arc, Amazon EC2, Condor, Eucalyptus, Globus
GRAM (2&5), Fork, gLite, SSH, Nimubs, OGSA BES, PBS
(Pro), Platform LSF, SSH, TORQUE, ...

• saga::filesystem - Globus GridFTP, Hadoop HDFS, Local
Filesystem, SSHFS, ...

• saga::replica - Globus RLS, SQL Replica Service

• saga::advert - SQL Advert Service

• saga::stream - TCP-based

• saga::sd - gLite SD

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• After several years of prototyping, testing and hardening,
we presented SAGA as the holy grail of distributed
computing to the user communities

• Lots of advertising, demos, workshops, tutorials

• But: Uptake very slow and not as expected

• Almost by accident, the problem got solved with the
“SAGA Big-Job” framework

A Small Dilemma ?

10

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• After several years of prototyping, testing and hardening,
we presented SAGA as the holy grail of distributed
computing to the user communities

• Lots of advertising, demos, workshops, tutorials

• But: Uptake very slow and not as expected

• Almost by accident, the problem got solved with the
“SAGA Big-Job” framework

A Small Dilemma ?

10

/*
#---#
gridftpClientToServer.C
#---#
Description : Transfer the data file from client site to each remote site.
and return the status of the file transfer.
#
Input : Source URL string of the source server , and the Destination URL
string of the destination server .
The format for URL string is
Source URL : full path of the file to transferred
Destination URL : gsiftp://server-hostname/fullpathname/ofthefile/tobetransfered
#
Output : Displays whether the transfer is SUCCESSFUL/FAILED.
#
#---#
*/

#include <fcntl.h>
#include"iomanip"

#include"globus_ftp_client.h"
#include"globus_common.h"

#include<iostream>
#include<string>
#include<fstream>

#include"common.C"
#include"globusCallback.C"
using namespace std;
//FILE *fd;
#define MAX_BUFFER_SIZE 2048
#define ERROR -1
#define SUCCESS 0

class GridFTP:public InputConfig,public GlobusCallback {

 globus_ftp_client_handleattr_t hattr;
 globus_ftp_client_operationattr_t oattr;
 globus_ftp_client_handle_t handle;
 globus_byte_t buffer[MAX_BUFFER_SIZE];
 globus_size_t buffer_length ;
 globus_result_t status;
 char * tmpstr;

public :
 GridFTP();
 ~GridFTP();
 int gridftpClientToServer(string ,string);

};

/*---

Function : done_cb(...)

Used : gridftpClientToServer(...),gridftpThirdPartyTransfer(...),gridftpServerToClient(...)

Description : It is a callback function ,it is called when the transfer is
 completely finished, i.e. both the data channel and control channel
 exchange.
 Here it simply sets a global variable (done) to true so the main
 program will exit the while loop.
--*/

namespace gridftp_cb {

! static void done_cb (void *user_arg , globus_ftp_client_handle_t *handle , globus_object_t *err) {

 GridFTP *monitor=(GridFTP*)user_arg;

 ! char * tmpstr;
 ! if (err){
 ! ! cout<<"\t\t Status : File Transferred Failed "<<endl;
 ! cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 ! else
 ! ! cout<<"\t\t Status : File Transferred Successfully"<<endl;

! ! monitor->setDoneValue();
 ! return;
! };

/*--

Function : data_cb(...)

Used : gridftpClientToServer(..)

Description : read or write operation in the FTP Client library is asynchronous.A
 callback of this type is passed to such data operation function calls.
 It is called when the user supplied buffer has been successfully
 transferred to the kernel.
 Note: That does not mean it has been successfully transmitted,instead it
 just reads the next block of data and calls register_write/register_read again.
---*/

static void data_cb (void *user_arg , globus_ftp_client_handle_t *handle,globus_object_t * err, globus_byte_t *buffer,
 globus_size_t length , globus_off_t offset,globus_bool_t eof)
{
 if (err) {
 cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 else {
 if (!eof) {
 FILE *fd = (FILE *) user_arg;
 int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS) {
 cout<<"\n\t\t Error : Function data_cb\n"<<"\t\t Error code :"<< errno<<endl;
 return;
 }
 globus_ftp_client_register_write(handle, buffer,rc,offset + length,feof(fd) != SUCCESS, data_cb, (void *) fd);
 }
 }
 return;
 };

/*---
Class : GridFTP

Function : GridFTP (Constructor of class GridFTP)

Description : Used to
 a) Activate the GridFTP client module
 b) Initialize the mutex lock and condition variables
 c) Initialize the GridFTP client handle
---*/

GridFTP::GridFTP() {

 buffer_length = MAX_BUFFER_SIZE;
 status = (globus_result_t)globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

 if (status != GLOBUS_SUCCESS) {

 tmpstr = globus_object_printable_to_string(globus_error_get(status));
 cout<<"\n\t Error: Failed to load GLOBUS_FTP_CLIENT_MODULE.\n\t Error Code "<<status<<"\n\t"<<tmpstr<<endl;
 exit(1);
 }

};
/*--
Class : GridFTP

Function : ~GridFTP (Destructor of class GridFTP)

Description : Used to
 a) Destroy the GridFTP client handle
 b) Deactivate the GridFTP client module
--*/

GridFTP::~GridFTP() {
 globus_module_deactivate_all();

};
/*--
cLass : GridFTP
Function : gridftpClientToServer(...)
Description : To transfer the file from client site to remote site
Input : a) Source file path which is to transferred
 b) Destination url to store the file
 c) LogFile
---*/

int GridFTP::gridftpClientToServer(string src,string dst) {

 int rc;
 FILE *fd;

 /* Initialize the handle attribute */
 if (globus_ftp_client_handleattr_init(&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to activate the ftp client handleattr\n";
 return 1;
 }

 /* Initialize the operation attribute */
 if (globus_ftp_client_operationattr_init(&oattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize operationattr\n";
 return 1;
 }

 /* Initalize the handle */
 if (globus_ftp_client_handle_init(&handle,&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize the handle\n";
 return 1;
 }

 continueOnCond();

 fd = fopen(src.c_str(),"r");
 if (fd == NULL) {
 cout<<"Error in opening local file"<<src;
 return 1;
 }

 /* Gridftp API call to start the put operation */
 status = globus_ftp_client_put(&handle,dst.c_str(),GLOBUS_NULL,GLOBUS_NULL,gridftp_cb::done_cb,this);
 if (status != GLOBUS_SUCCESS) {

 globus_object_t * err;
 err = globus_error_get(status);
 cout<<endl;
 fprintf(stderr, "\tError : %s", globus_object_printable_to_string(err));
 done = GLOBUS_TRUE;
 }
 else {
 rc = fread(buffer,1,MAX_BUFFER_SIZE,fd);
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 0,
 feof(fd) != SUCCESS,
 gridftp_cb::data_cb,
 (void *) fd);
 }

 /* lock on condition */
 waitOnCond();
 fclose(fd);

 globus_ftp_client_handle_destroy(&handle);
 return 0;
};

/* start of main */
int main(int argc , char **argv) {

 ! int hostCount;
 string destinationUrl,sourceUrl,tempUrl;
 string sourceFile,destinationFile,outputFile,tmpFile;

 /* Creating the object */
 GridFTP gridftp;

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• After several years of prototyping, testing and hardening,
we presented SAGA as the holy grail of distributed
computing to the user communities

• Lots of advertising, demos, workshops, tutorials

• But: Uptake very slow and not as expected

• Almost by accident, the problem got solved with the
“SAGA Big-Job” framework

A Small Dilemma ?

10

/*
#---#
gridftpClientToServer.C
#---#
Description : Transfer the data file from client site to each remote site.
and return the status of the file transfer.
#
Input : Source URL string of the source server , and the Destination URL
string of the destination server .
The format for URL string is
Source URL : full path of the file to transferred
Destination URL : gsiftp://server-hostname/fullpathname/ofthefile/tobetransfered
#
Output : Displays whether the transfer is SUCCESSFUL/FAILED.
#
#---#
*/

#include <fcntl.h>
#include"iomanip"

#include"globus_ftp_client.h"
#include"globus_common.h"

#include<iostream>
#include<string>
#include<fstream>

#include"common.C"
#include"globusCallback.C"
using namespace std;
//FILE *fd;
#define MAX_BUFFER_SIZE 2048
#define ERROR -1
#define SUCCESS 0

class GridFTP:public InputConfig,public GlobusCallback {

 globus_ftp_client_handleattr_t hattr;
 globus_ftp_client_operationattr_t oattr;
 globus_ftp_client_handle_t handle;
 globus_byte_t buffer[MAX_BUFFER_SIZE];
 globus_size_t buffer_length ;
 globus_result_t status;
 char * tmpstr;

public :
 GridFTP();
 ~GridFTP();
 int gridftpClientToServer(string ,string);

};

/*---

Function : done_cb(...)

Used : gridftpClientToServer(...),gridftpThirdPartyTransfer(...),gridftpServerToClient(...)

Description : It is a callback function ,it is called when the transfer is
 completely finished, i.e. both the data channel and control channel
 exchange.
 Here it simply sets a global variable (done) to true so the main
 program will exit the while loop.
--*/

namespace gridftp_cb {

! static void done_cb (void *user_arg , globus_ftp_client_handle_t *handle , globus_object_t *err) {

 GridFTP *monitor=(GridFTP*)user_arg;

 ! char * tmpstr;
 ! if (err){
 ! ! cout<<"\t\t Status : File Transferred Failed "<<endl;
 ! cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 ! else
 ! ! cout<<"\t\t Status : File Transferred Successfully"<<endl;

! ! monitor->setDoneValue();
 ! return;
! };

/*--

Function : data_cb(...)

Used : gridftpClientToServer(..)

Description : read or write operation in the FTP Client library is asynchronous.A
 callback of this type is passed to such data operation function calls.
 It is called when the user supplied buffer has been successfully
 transferred to the kernel.
 Note: That does not mean it has been successfully transmitted,instead it
 just reads the next block of data and calls register_write/register_read again.
---*/

static void data_cb (void *user_arg , globus_ftp_client_handle_t *handle,globus_object_t * err, globus_byte_t *buffer,
 globus_size_t length , globus_off_t offset,globus_bool_t eof)
{
 if (err) {
 cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 else {
 if (!eof) {
 FILE *fd = (FILE *) user_arg;
 int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS) {
 cout<<"\n\t\t Error : Function data_cb\n"<<"\t\t Error code :"<< errno<<endl;
 return;
 }
 globus_ftp_client_register_write(handle, buffer,rc,offset + length,feof(fd) != SUCCESS, data_cb, (void *) fd);
 }
 }
 return;
 };

/*---
Class : GridFTP

Function : GridFTP (Constructor of class GridFTP)

Description : Used to
 a) Activate the GridFTP client module
 b) Initialize the mutex lock and condition variables
 c) Initialize the GridFTP client handle
---*/

GridFTP::GridFTP() {

 buffer_length = MAX_BUFFER_SIZE;
 status = (globus_result_t)globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

 if (status != GLOBUS_SUCCESS) {

 tmpstr = globus_object_printable_to_string(globus_error_get(status));
 cout<<"\n\t Error: Failed to load GLOBUS_FTP_CLIENT_MODULE.\n\t Error Code "<<status<<"\n\t"<<tmpstr<<endl;
 exit(1);
 }

};
/*--
Class : GridFTP

Function : ~GridFTP (Destructor of class GridFTP)

Description : Used to
 a) Destroy the GridFTP client handle
 b) Deactivate the GridFTP client module
--*/

GridFTP::~GridFTP() {
 globus_module_deactivate_all();

};
/*--
cLass : GridFTP
Function : gridftpClientToServer(...)
Description : To transfer the file from client site to remote site
Input : a) Source file path which is to transferred
 b) Destination url to store the file
 c) LogFile
---*/

int GridFTP::gridftpClientToServer(string src,string dst) {

 int rc;
 FILE *fd;

 /* Initialize the handle attribute */
 if (globus_ftp_client_handleattr_init(&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to activate the ftp client handleattr\n";
 return 1;
 }

 /* Initialize the operation attribute */
 if (globus_ftp_client_operationattr_init(&oattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize operationattr\n";
 return 1;
 }

 /* Initalize the handle */
 if (globus_ftp_client_handle_init(&handle,&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize the handle\n";
 return 1;
 }

 continueOnCond();

 fd = fopen(src.c_str(),"r");
 if (fd == NULL) {
 cout<<"Error in opening local file"<<src;
 return 1;
 }

 /* Gridftp API call to start the put operation */
 status = globus_ftp_client_put(&handle,dst.c_str(),GLOBUS_NULL,GLOBUS_NULL,gridftp_cb::done_cb,this);
 if (status != GLOBUS_SUCCESS) {

 globus_object_t * err;
 err = globus_error_get(status);
 cout<<endl;
 fprintf(stderr, "\tError : %s", globus_object_printable_to_string(err));
 done = GLOBUS_TRUE;
 }
 else {
 rc = fread(buffer,1,MAX_BUFFER_SIZE,fd);
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 0,
 feof(fd) != SUCCESS,
 gridftp_cb::data_cb,
 (void *) fd);
 }

 /* lock on condition */
 waitOnCond();
 fclose(fd);

 globus_ftp_client_handle_destroy(&handle);
 return 0;
};

/* start of main */
int main(int argc , char **argv) {

 ! int hostCount;
 string destinationUrl,sourceUrl,tempUrl;
 string sourceFile,destinationFile,outputFile,tmpFile;

 /* Creating the object */
 GridFTP gridftp;

/*
#---#
gridftpClientToServer.C
#---#
Description : Transfer the data file from client site to each remote site
and return the status of the file transfer.
#
Input : Source URL string of the source server , and the Destination URL
string of the destination server .
The format for URL string is
Source URL : full path of the file to transferred
Destination URL : gsiftp://server-hostname/fullpathname/ofthefile/tobetrad
#
Output : Displays whether the transfer is SUCCESSFUL/FAILED.
#
#---#

*/

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• After several years of prototyping, testing and hardening,
we presented SAGA as the holy grail of distributed
computing to the user communities

• Lots of advertising, demos, workshops, tutorials

• But: Uptake very slow and not as expected

• Almost by accident, the problem got solved with the
“SAGA Big-Job” framework

A Small Dilemma ?

10

/*
#---#
gridftpClientToServer.C
#---#
Description : Transfer the data file from client site to each remote site.
and return the status of the file transfer.
#
Input : Source URL string of the source server , and the Destination URL
string of the destination server .
The format for URL string is
Source URL : full path of the file to transferred
Destination URL : gsiftp://server-hostname/fullpathname/ofthefile/tobetransfered
#
Output : Displays whether the transfer is SUCCESSFUL/FAILED.
#
#---#
*/

#include <fcntl.h>
#include"iomanip"

#include"globus_ftp_client.h"
#include"globus_common.h"

#include<iostream>
#include<string>
#include<fstream>

#include"common.C"
#include"globusCallback.C"
using namespace std;
//FILE *fd;
#define MAX_BUFFER_SIZE 2048
#define ERROR -1
#define SUCCESS 0

class GridFTP:public InputConfig,public GlobusCallback {

 globus_ftp_client_handleattr_t hattr;
 globus_ftp_client_operationattr_t oattr;
 globus_ftp_client_handle_t handle;
 globus_byte_t buffer[MAX_BUFFER_SIZE];
 globus_size_t buffer_length ;
 globus_result_t status;
 char * tmpstr;

public :
 GridFTP();
 ~GridFTP();
 int gridftpClientToServer(string ,string);

};

/*---

Function : done_cb(...)

Used : gridftpClientToServer(...),gridftpThirdPartyTransfer(...),gridftpServerToClient(...)

Description : It is a callback function ,it is called when the transfer is
 completely finished, i.e. both the data channel and control channel
 exchange.
 Here it simply sets a global variable (done) to true so the main
 program will exit the while loop.
--*/

namespace gridftp_cb {

! static void done_cb (void *user_arg , globus_ftp_client_handle_t *handle , globus_object_t *err) {

 GridFTP *monitor=(GridFTP*)user_arg;

 ! char * tmpstr;
 ! if (err){
 ! ! cout<<"\t\t Status : File Transferred Failed "<<endl;
 ! cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 ! else
 ! ! cout<<"\t\t Status : File Transferred Successfully"<<endl;

! ! monitor->setDoneValue();
 ! return;
! };

/*--

Function : data_cb(...)

Used : gridftpClientToServer(..)

Description : read or write operation in the FTP Client library is asynchronous.A
 callback of this type is passed to such data operation function calls.
 It is called when the user supplied buffer has been successfully
 transferred to the kernel.
 Note: That does not mean it has been successfully transmitted,instead it
 just reads the next block of data and calls register_write/register_read again.
---*/

static void data_cb (void *user_arg , globus_ftp_client_handle_t *handle,globus_object_t * err, globus_byte_t *buffer,
 globus_size_t length , globus_off_t offset,globus_bool_t eof)
{
 if (err) {
 cout<<"\t\t ERROR :"<<globus_object_printable_to_string(err)<<endl;
 }
 else {
 if (!eof) {
 FILE *fd = (FILE *) user_arg;
 int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS) {
 cout<<"\n\t\t Error : Function data_cb\n"<<"\t\t Error code :"<< errno<<endl;
 return;
 }
 globus_ftp_client_register_write(handle, buffer,rc,offset + length,feof(fd) != SUCCESS, data_cb, (void *) fd);
 }
 }
 return;
 };

/*---
Class : GridFTP

Function : GridFTP (Constructor of class GridFTP)

Description : Used to
 a) Activate the GridFTP client module
 b) Initialize the mutex lock and condition variables
 c) Initialize the GridFTP client handle
---*/

GridFTP::GridFTP() {

 buffer_length = MAX_BUFFER_SIZE;
 status = (globus_result_t)globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

 if (status != GLOBUS_SUCCESS) {

 tmpstr = globus_object_printable_to_string(globus_error_get(status));
 cout<<"\n\t Error: Failed to load GLOBUS_FTP_CLIENT_MODULE.\n\t Error Code "<<status<<"\n\t"<<tmpstr<<endl;
 exit(1);
 }

};
/*--
Class : GridFTP

Function : ~GridFTP (Destructor of class GridFTP)

Description : Used to
 a) Destroy the GridFTP client handle
 b) Deactivate the GridFTP client module
--*/

GridFTP::~GridFTP() {
 globus_module_deactivate_all();

};
/*--
cLass : GridFTP
Function : gridftpClientToServer(...)
Description : To transfer the file from client site to remote site
Input : a) Source file path which is to transferred
 b) Destination url to store the file
 c) LogFile
---*/

int GridFTP::gridftpClientToServer(string src,string dst) {

 int rc;
 FILE *fd;

 /* Initialize the handle attribute */
 if (globus_ftp_client_handleattr_init(&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to activate the ftp client handleattr\n";
 return 1;
 }

 /* Initialize the operation attribute */
 if (globus_ftp_client_operationattr_init(&oattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize operationattr\n";
 return 1;
 }

 /* Initalize the handle */
 if (globus_ftp_client_handle_init(&handle,&hattr) != GLOBUS_SUCCESS) {
 cout<<"\n\t\t ERROR : Failed to initialize the handle\n";
 return 1;
 }

 continueOnCond();

 fd = fopen(src.c_str(),"r");
 if (fd == NULL) {
 cout<<"Error in opening local file"<<src;
 return 1;
 }

 /* Gridftp API call to start the put operation */
 status = globus_ftp_client_put(&handle,dst.c_str(),GLOBUS_NULL,GLOBUS_NULL,gridftp_cb::done_cb,this);
 if (status != GLOBUS_SUCCESS) {

 globus_object_t * err;
 err = globus_error_get(status);
 cout<<endl;
 fprintf(stderr, "\tError : %s", globus_object_printable_to_string(err));
 done = GLOBUS_TRUE;
 }
 else {
 rc = fread(buffer,1,MAX_BUFFER_SIZE,fd);
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 0,
 feof(fd) != SUCCESS,
 gridftp_cb::data_cb,
 (void *) fd);
 }

 /* lock on condition */
 waitOnCond();
 fclose(fd);

 globus_ftp_client_handle_destroy(&handle);
 return 0;
};

/* start of main */
int main(int argc , char **argv) {

 ! int hostCount;
 string destinationUrl,sourceUrl,tempUrl;
 string sourceFile,destinationFile,outputFile,tmpFile;

 /* Creating the object */
 GridFTP gridftp;

/*
#---#
gridftpClientToServer.C
#---#
Description : Transfer the data file from client site to each remote site
and return the status of the file transfer.
#
Input : Source URL string of the source server , and the Destination URL
string of the destination server .
The format for URL string is
Source URL : full path of the file to transferred
Destination URL : gsiftp://server-hostname/fullpathname/ofthefile/tobetrad
#
Output : Displays whether the transfer is SUCCESSFUL/FAILED.
#
#---#

*/

#include <saga/saga.hpp>
#include <iostream>

int main (int argc, char** argv)
{
 try {
 saga::filesystem::file f(std::string(argv[1]));
 f.copy(std::string(argv[2]));
 }
 catch(saga::exception const & e)
 {
 std::cerr << “Error: “ << e.what() << std::endl;
 }
}

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• After several years of prototyping, testing and hardening,
we presented SAGA as the holy grail of distributed
computing to the user communities

• Lots of advertising, demos, workshops, tutorials

• But: Uptake very slow and not as expected

• Almost by accident, the problem got solved with the
“SAGA Big-Job” framework

A Small Dilemma ?

10

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

HTC Tasks

job N

...

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

?

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

SAGA Big-Job

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

SAGA Big-Job

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

Big-Job Worker Big-Job Worker

Big-Job Worker Big-Job Worker

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

SAGA Big-Job

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

Big-Job Worker Big-Job Worker

Big-Job Worker Big-Job Worker

job 1

job 2

job 3

job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

SAGA Big-Job

HTC Tasks

job N

...

Node 1

HPC Cluster

Node 2

Node 2 Node N

Big-Job Worker Big-Job Worker

Big-Job Worker Big-Job Worker

job 1
job 2

job 3
job 4

job 5

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Big-Job suddenly sparked a lot of interest in SAGA

• Makes a huge problem simply disappear

• Allows to use legacy code (non-intrusive)

• Runs everywhere - even on Hector (CRAY) and EC2

• Big-Job (a.k.a. glide-in, or pilot-job) is a simple distributed
programming abstraction written in SAGA (Python)

• It allows to run lots of HTC jobs (often single-core)
transparently on HPC machines using overlay scheduling

SAGA Big-Job

11

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Abstractions, Abstractions, Abstractions !

• Apparently, we didn’t understand the user communities
and their requirements properly

• Users (especially the non-technical users) don’t want
another API. They want simple solutions for their every
day problems. Abstractions can help !

• It turns out that SAGA is perfect to develop distributed
programming abstractions:

• Hides specific middleware implementation details

• Allows concurrent cross-infrastructure resource usage

• Optimisation and “adaptation”can happen “behind the scenes”

12

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Abstractions, Abstractions, Abstractions !

• Abstractions: from generic to specialised:

• Pilot-Job (a.k.a. Big-job, a.k.a. Glide-in)

• Pilot-Data (data affinity)

• Master-Worker

• Workflow (a.k.a. DAG)

• Peer-to-Peer

• Replica exchange

• Map-Reduce

• All-Pairs

• See eSI 3DPAS theme: http://www.esi.ac.uk/research-themes/5

13

Friday, March 18, 2011

http://www.esi.ac.uk/research-themes/5
http://www.esi.ac.uk/research-themes/5

ole.weidner@ed.ac.uk Mar 18, 2011

Abstractions, Abstractions, Abstractions !

• Abstractions: from generic to specialised:

• Pilot-Job (a.k.a. Big-job, a.k.a. Glide-in)

• Pilot-Data (data affinity)

• Master-Worker

• Workflow (a.k.a. DAG)

• Peer-to-Peer

• Replica exchange

• Map-Reduce

• All-Pairs

• See eSI 3DPAS theme: http://www.esi.ac.uk/research-themes/5

13

Friday, March 18, 2011

http://www.esi.ac.uk/research-themes/5
http://www.esi.ac.uk/research-themes/5

ole.weidner@ed.ac.uk Mar 18, 2011

Is There Potential for (PhD) Research ?

14

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Is There Potential for (PhD) Research ?

• Previous work and experience has shown the relevance
and importance of abstractions in distributed computing

• Especially interesting: with abstractions, optimisation can be
done “behind the scenes” (hidden from the user)

• Some fundamental questions:

• What are interesting upcoming challenges in future distributed
applications and systems ?

• Can some of the challenges possibly be address by using
distributed programming abstractions ?

• What is the current state of research in distributed
programming abstractions ?

15

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• The Data Deluge

• “Store now - process later” might not always be an option

• Adaptive algorithms will be required to handle vast amounts
of dynamic (streaming) data

• Methods to characterise/predict data and especially dynamic
changes in data will play a key role

• Infrastructure Challenge

• Applications will have to spread and run across different
heterogeneous infrastructures (possibly even simultaneously)

• Probably other objectives besides “minimise makespan”

“The amount of genomic data available for study is increasing at a
 rate similar to that of Moore’s Law”

What are the Upcoming Challenges ?

16

 http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf

Friday, March 18, 2011

http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf

ole.weidner@ed.ac.uk Mar 18, 2011

• The Data Deluge

• “Store now - process later” might not always be an option

• Adaptive algorithms will be required to handle vast amounts
of dynamic (streaming) data

• Methods to characterise/predict data and especially dynamic
changes in data will play a key role

• Infrastructure Challenge

• Applications will have to spread and run across different
heterogeneous infrastructures (possibly even simultaneously)

• Probably other objectives besides “minimise makespan”

“The amount of genomic data available for study is increasing at a
 rate similar to that of Moore’s Law”

What are the Upcoming Challenges ?

16

 http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf

Projected increase in global climate data holdings for climate

models, remotely sensed data, and in situ.

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• The Data Deluge

• “Store now - process later” might not always be an option

• Adaptive algorithms will be required to handle vast amounts
of dynamic (streaming) data

• Methods to characterise/predict data and especially dynamic
changes in data will play a key role

• Infrastructure Challenge

• Applications will have to spread and run across different
heterogeneous infrastructures (possibly even simultaneously)

• Probably other objectives besides “minimise makespan”

“The amount of genomic data available for study is increasing at a
 rate similar to that of Moore’s Law”

What are the Upcoming Challenges ?

16

 http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf

Friday, March 18, 2011

http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1238.pdf

ole.weidner@ed.ac.uk Mar 18, 2011

Can Distributed Abstractions Help ?

• There might be lots of new challenges, but from an
application perspective things will mostly stay the same (!)

• Applications will still be using common patterns and
abstractions

• But: input and objectives might change and they might
change DYNAMICALLY

• Once we have understood the details and dynamics of
these new challenges, we can encapsulate them inside
distributed programming abstractions

• If this hasn’t been done, it could be a nice intellectual
and practically relevant contribution to the field

17

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Case for Dynamic Optimisation

• DPAs supporting dynamic optimisation to address
dynamic data challenges:

• Adaptive execution strategy based on input, output and
system characteristics

• Ability to “understand” and “predict” data (characteristics)

• DPAs supporting autonomous adaption to address
rising complexity in infrastructure

18

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Current State of Affairs

• There doesn’t seem to be a lot of work that revisits
DPAs in the context of:

• Streaming input / output data

• Data with dynamically changing characteristics

• Autonomic | adaptive | dynamic | optimisation

• Lots of work in static optimisation (“fine-tuning”)

• Optimise throughput for workload X on (idealised) platform Y

• Usually confined to a specific middleware

• There seems to be a lot of uncharted territory, but that
remains to be proved (more reading!)

19

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Current State of Affairs

• There doesn’t seem to be a lot of work that revisits
DPAs in the context of:

• Streaming input / output data

• Data with dynamically changing characteristics

• Autonomic | adaptive | dynamic | optimisation

• Lots of work in static optimisation (“fine-tuning”)

• Optimise throughput for workload X on (idealised) platform Y

• Usually confined to a specific middleware

• There seems to be a lot of uncharted territory, but that
remains to be proved (more reading!)

19

All-Pairs: An Abstraction for Data-Intensive
Computing on Campus Grids

Christopher Moretti, Student Member, IEEE, Hoang Bui, Student Member, IEEE, Karen Hollingsworth,
Brandon Rich, Patrick Flynn, Senior Member, IEEE, and Douglas Thain, Member, IEEE

Abstract—Today, campus grids provide users with easy access to thousands of CPUs. However, it is not always easy for nonexpert
users to harness these systems effectively. A large workload composed in what seems to be the obvious way by a naive user may
accidentally abuse shared resources and achieve very poor performance. To address this problem, we argue that campus grids should
provide end users with high-level abstractions that allow for the easy expression and efficient execution of data-intensive workloads.
We present one example of an abstraction—All-Pairs—that fits the needs of several applications in biometrics, bioinformatics, and
data mining. We demonstrate that an optimized All-Pairs abstraction is both easier to use than the underlying system, achieve
performance orders of magnitude better than the obvious but naive approach, and is both faster and more efficient than a tuned
conventional approach. This abstraction has been in production use for one year on a 500 CPU campus grid at the University of Notre
Dame and has been used to carry out a groundbreaking analysis of biometric data.

Index Terms—All-pairs, biometrics, cloud computing, data intensive computing, grid computing.

Ç

1 INTRODUCTION

MANY fields of science and engineering have the potential
to use large numbers of CPUs to attack problems of

enormous scale. Campus-scale computing grids are now a
standard tool employed by many academic institutions to
provide large-scale computing power. Using middleware
such as Condor [40] or Globus [21], many disparate clusters
and stand-alone machines may be joined into a single
computing system with many providers and consumers.
Today, campus grids of about one thousand machines are
commonplace [41], and are being grouped into larger
structures, such as the 20,000-CPU Indiana Diagrid and the
40,000-CPU Open Science Grid [36].

Campus grids have the uniqueproperty that consumers of
the system must always defer to the needs of the resource
providers. For example, if a desktop computer is donated to
the campus grid, then a visiting job may use it during idle
times, but will be preempted when the owner is busy at the
keyboard. If a research cluster is donated to the campus grid,
visiting jobs may use it, but might be preempted by higher
priority batch jobs submitted by the owner of the cluster. In
short, the user of the system has access to an enormous
number of CPUs, but must expect to be preempted from
many of them as a normal condition.

Because of this property, scaling up an application to a
campus grid is a nontrivial undertaking. Parallel libraries
and languages such as MPI [18], OpenMP [14], and Cilk [8]
are not usable in this context because they do not explicitly
address preemption and failure as a normal case. Instead,

large workloads must be specified as a set of sequential
processes connected by files. End users must carefully
arrange the I/O behavior of their workloads. Bad config-
urations can result in poor performance, outright failure of
the application, and abuse of physical resources shared by
others. All too often, an end user composes a workload that
runs correctly on one machine, then on 10 machines, but
fails disastrously on 1,000 machines.

Providing an abstraction is one approach to avoiding
these problems. An abstraction allows a user to declare a
workload composed of multiple sequential programs and
the data that they process, while hiding the details of how
the workload will be realized in the system. Abstracting
away details hides complications that are not apparent or
important to a novice, limiting the opportunity for disasters.
Because an abstraction states a workload in a declarative
way, it can be realized within the grid in whatever way
satisfies cost, policy, and performance constraints. Abstrac-
tions could also be implemented in other kinds of systems,
such as dedicated clusters or multicore CPUs, but we do not
address those here.

We have implemented one such abstraction—All-Pairs
—for a class of problems found in many fields. All-Pairs
is the Cartesian product of a large number of objects with
a custom comparison function. While simple to state, it is
nontrivial to carry out on large problems that require
hundreds of nodes running for several days. All-Pairs is
similar in spirit to other abstractions such as Dryad [28],
Map-Reduce [16], Pegasus [17], and Swift [42], but it
addresses a different category of applications.

Our implementation of All-Pairs is currently in produc-
tion use on a 500 CPU campus grid at the University of Notre
Dame, using Condor [40] tomanage the CPUs and Chirp [39]
to manage the storage. To demonstrate the performance
benefits of using an abstraction, we compare two different
implementations. The conventional implementation executes
the specification by simply submitting a series of batch jobs
that use a central file server to read data ondemand andwrite

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010 33

. The authors are with the Department of Computer Science and Engineering,
University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, IN 46556.
E-mail: {cmoretti, hbui, kholling, brich, flynn, dthain}@nd.edu.

Manuscript received 22 July 2008; revised 11 Feb. 2009; accepted 9 Mar.
2009; published online 13 Mar. 2009.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-07-0277.
Digital Object Identifier no. 10.1109/TPDS.2009.49.

1045-9219/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Current State of Affairs

• There doesn’t seem to be a lot of work that revisits
DPAs in the context of:

• Streaming input / output data

• Data with dynamically changing characteristics

• Autonomic | adaptive | dynamic | optimisation

• Lots of work in static optimisation (“fine-tuning”)

• Optimise throughput for workload X on (idealised) platform Y

• Usually confined to a specific middleware

• There seems to be a lot of uncharted territory, but that
remains to be proved (more reading!)

19

All-Pairs: An Abstraction for Data-Intensive
Computing on Campus Grids

Christopher Moretti, Student Member, IEEE, Hoang Bui, Student Member, IEEE, Karen Hollingsworth,
Brandon Rich, Patrick Flynn, Senior Member, IEEE, and Douglas Thain, Member, IEEE

Abstract—Today, campus grids provide users with easy access to thousands of CPUs. However, it is not always easy for nonexpert
users to harness these systems effectively. A large workload composed in what seems to be the obvious way by a naive user may
accidentally abuse shared resources and achieve very poor performance. To address this problem, we argue that campus grids should
provide end users with high-level abstractions that allow for the easy expression and efficient execution of data-intensive workloads.
We present one example of an abstraction—All-Pairs—that fits the needs of several applications in biometrics, bioinformatics, and
data mining. We demonstrate that an optimized All-Pairs abstraction is both easier to use than the underlying system, achieve
performance orders of magnitude better than the obvious but naive approach, and is both faster and more efficient than a tuned
conventional approach. This abstraction has been in production use for one year on a 500 CPU campus grid at the University of Notre
Dame and has been used to carry out a groundbreaking analysis of biometric data.

Index Terms—All-pairs, biometrics, cloud computing, data intensive computing, grid computing.

Ç

1 INTRODUCTION

MANY fields of science and engineering have the potential
to use large numbers of CPUs to attack problems of

enormous scale. Campus-scale computing grids are now a
standard tool employed by many academic institutions to
provide large-scale computing power. Using middleware
such as Condor [40] or Globus [21], many disparate clusters
and stand-alone machines may be joined into a single
computing system with many providers and consumers.
Today, campus grids of about one thousand machines are
commonplace [41], and are being grouped into larger
structures, such as the 20,000-CPU Indiana Diagrid and the
40,000-CPU Open Science Grid [36].

Campus grids have the uniqueproperty that consumers of
the system must always defer to the needs of the resource
providers. For example, if a desktop computer is donated to
the campus grid, then a visiting job may use it during idle
times, but will be preempted when the owner is busy at the
keyboard. If a research cluster is donated to the campus grid,
visiting jobs may use it, but might be preempted by higher
priority batch jobs submitted by the owner of the cluster. In
short, the user of the system has access to an enormous
number of CPUs, but must expect to be preempted from
many of them as a normal condition.

Because of this property, scaling up an application to a
campus grid is a nontrivial undertaking. Parallel libraries
and languages such as MPI [18], OpenMP [14], and Cilk [8]
are not usable in this context because they do not explicitly
address preemption and failure as a normal case. Instead,

large workloads must be specified as a set of sequential
processes connected by files. End users must carefully
arrange the I/O behavior of their workloads. Bad config-
urations can result in poor performance, outright failure of
the application, and abuse of physical resources shared by
others. All too often, an end user composes a workload that
runs correctly on one machine, then on 10 machines, but
fails disastrously on 1,000 machines.

Providing an abstraction is one approach to avoiding
these problems. An abstraction allows a user to declare a
workload composed of multiple sequential programs and
the data that they process, while hiding the details of how
the workload will be realized in the system. Abstracting
away details hides complications that are not apparent or
important to a novice, limiting the opportunity for disasters.
Because an abstraction states a workload in a declarative
way, it can be realized within the grid in whatever way
satisfies cost, policy, and performance constraints. Abstrac-
tions could also be implemented in other kinds of systems,
such as dedicated clusters or multicore CPUs, but we do not
address those here.

We have implemented one such abstraction—All-Pairs
—for a class of problems found in many fields. All-Pairs
is the Cartesian product of a large number of objects with
a custom comparison function. While simple to state, it is
nontrivial to carry out on large problems that require
hundreds of nodes running for several days. All-Pairs is
similar in spirit to other abstractions such as Dryad [28],
Map-Reduce [16], Pegasus [17], and Swift [42], but it
addresses a different category of applications.

Our implementation of All-Pairs is currently in produc-
tion use on a 500 CPU campus grid at the University of Notre
Dame, using Condor [40] tomanage the CPUs and Chirp [39]
to manage the storage. To demonstrate the performance
benefits of using an abstraction, we compare two different
implementations. The conventional implementation executes
the specification by simply submitting a series of batch jobs
that use a central file server to read data ondemand andwrite

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010 33

. The authors are with the Department of Computer Science and Engineering,
University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, IN 46556.
E-mail: {cmoretti, hbui, kholling, brich, flynn, dthain}@nd.edu.

Manuscript received 22 July 2008; revised 11 Feb. 2009; accepted 9 Mar.
2009; published online 13 Mar. 2009.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-07-0277.
Digital Object Identifier no. 10.1109/TPDS.2009.49.

1045-9219/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

Cluster Comput (2010) 13: 243–256
DOI 10.1007/s10586-010-0134-7

Harnessing parallelism in multicore clusters with the All-Pairs,
Wavefront, and Makeflow abstractions

Li Yu · Christopher Moretti · Andrew Thrasher ·
Scott Emrich · Kenneth Judd · Douglas Thain

Received: 9 November 2009 / Accepted: 16 March 2010 / Published online: 23 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Both distributed systems and multicore systems
are difficult programming environments. Although the ex-
pert programmer may be able to carefully tune these sys-
tems to achieve high performance, the non-expert may strug-
gle. We argue that high level abstractions are an effec-
tive way of making parallel computing accessible to the
non-expert. An abstraction is a regularly structured frame-
work into which a user may plug in simple sequential pro-
grams to create very large parallel programs. By virtue of a
regular structure and declarative specification, abstractions
may be materialized on distributed, multicore, and distrib-
uted multicore systems with robust performance across a
wide range of problem sizes. In previous work, we pre-
sented the All-Pairs abstraction for computing on distrib-
uted systems of single CPUs. In this paper, we extend
All-Pairs to multicore systems, and introduce the Wave-
front and Makeflow abstractions, which represent a number
of problems in economics and bioinformatics. We demon-
strate good scaling of both abstractions up to 32 cores on
one machine and hundreds of cores in a distributed sys-
tem.

Keywords Abstractions · Multicore · Distributed systems ·
Bioinformatics · Economics

L. Yu (!) · C. Moretti · A. Thrasher · S. Emrich · D. Thain
Department of Computer Science and Engineering, University
of Notre Dame, South Bend, USA
e-mail: lyu2@nd.edu

K. Judd
Hoover Institution, Stanford University, Stanford, USA

1 Introduction

Distributed systems such as clusters, clouds, and grids are
very challenging programming environments. (Hereafter,
we refer to all of these systems as clusters.) A user that
wishes to execute a large workload with some inherent par-
allelism is confronted with a dizzying array of choices. How
should the workload be broken up into jobs? How should the
data be distributed to each node? How many nodes should
be used? Will the network be a bottleneck? Often, the an-
swers to these questions depend heavily on the properties of
the system and workload in use. Changing one parameter,
such as the size of a file or the runtime of a job, may require
a completely different strategy.

Multicore systems present many of the same challenges.
The orders of magnitude change, but the questions are simi-
lar. How should work be divided among threads? Should we
use message passing or shared memory? How many CPUs
should be used? Will memory access present a bottleneck?
When we consider clusters of multicore computers, then the
problems become more complex.

We argue that abstractions are an effective way of en-
abling non-expert users to harness clusters, multicore com-
puters, and clusters of multicore computers. An abstraction
is a declarative structure that joins simple data structures and
small sequential programs into parallel graphs that can be
scaled to very large sizes. Because an abstraction is special-
ized to a restricted class of workloads, it is possible to create
an efficient, robust, scalable, and fault tolerant implementa-
tion. In previous work, we introduced the All-Pairs [12] and
Classify [13] abstractions, and described how they can be
used to solve data intensive problems in the fields of bio-
metrics, bioinformatics, and data mining. Our implementa-
tions allow non-experts to harness hundreds of processors on
problems that run for hours or days using the Condor [27]
distributed batch system.

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Current State of Affairs

• There doesn’t seem to be a lot of work that revisits
DPAs in the context of:

• Streaming input / output data

• Data with dynamically changing characteristics

• Autonomic | adaptive | dynamic | optimisation

• Lots of work in static optimisation (“fine-tuning”)

• Optimise throughput for workload X on (idealised) platform Y

• Usually confined to a specific middleware

• There seems to be a lot of uncharted territory, but that
remains to be proved (more reading!)

19

All-Pairs: An Abstraction for Data-Intensive
Computing on Campus Grids

Christopher Moretti, Student Member, IEEE, Hoang Bui, Student Member, IEEE, Karen Hollingsworth,
Brandon Rich, Patrick Flynn, Senior Member, IEEE, and Douglas Thain, Member, IEEE

Abstract—Today, campus grids provide users with easy access to thousands of CPUs. However, it is not always easy for nonexpert
users to harness these systems effectively. A large workload composed in what seems to be the obvious way by a naive user may
accidentally abuse shared resources and achieve very poor performance. To address this problem, we argue that campus grids should
provide end users with high-level abstractions that allow for the easy expression and efficient execution of data-intensive workloads.
We present one example of an abstraction—All-Pairs—that fits the needs of several applications in biometrics, bioinformatics, and
data mining. We demonstrate that an optimized All-Pairs abstraction is both easier to use than the underlying system, achieve
performance orders of magnitude better than the obvious but naive approach, and is both faster and more efficient than a tuned
conventional approach. This abstraction has been in production use for one year on a 500 CPU campus grid at the University of Notre
Dame and has been used to carry out a groundbreaking analysis of biometric data.

Index Terms—All-pairs, biometrics, cloud computing, data intensive computing, grid computing.

Ç

1 INTRODUCTION

MANY fields of science and engineering have the potential
to use large numbers of CPUs to attack problems of

enormous scale. Campus-scale computing grids are now a
standard tool employed by many academic institutions to
provide large-scale computing power. Using middleware
such as Condor [40] or Globus [21], many disparate clusters
and stand-alone machines may be joined into a single
computing system with many providers and consumers.
Today, campus grids of about one thousand machines are
commonplace [41], and are being grouped into larger
structures, such as the 20,000-CPU Indiana Diagrid and the
40,000-CPU Open Science Grid [36].

Campus grids have the uniqueproperty that consumers of
the system must always defer to the needs of the resource
providers. For example, if a desktop computer is donated to
the campus grid, then a visiting job may use it during idle
times, but will be preempted when the owner is busy at the
keyboard. If a research cluster is donated to the campus grid,
visiting jobs may use it, but might be preempted by higher
priority batch jobs submitted by the owner of the cluster. In
short, the user of the system has access to an enormous
number of CPUs, but must expect to be preempted from
many of them as a normal condition.

Because of this property, scaling up an application to a
campus grid is a nontrivial undertaking. Parallel libraries
and languages such as MPI [18], OpenMP [14], and Cilk [8]
are not usable in this context because they do not explicitly
address preemption and failure as a normal case. Instead,

large workloads must be specified as a set of sequential
processes connected by files. End users must carefully
arrange the I/O behavior of their workloads. Bad config-
urations can result in poor performance, outright failure of
the application, and abuse of physical resources shared by
others. All too often, an end user composes a workload that
runs correctly on one machine, then on 10 machines, but
fails disastrously on 1,000 machines.

Providing an abstraction is one approach to avoiding
these problems. An abstraction allows a user to declare a
workload composed of multiple sequential programs and
the data that they process, while hiding the details of how
the workload will be realized in the system. Abstracting
away details hides complications that are not apparent or
important to a novice, limiting the opportunity for disasters.
Because an abstraction states a workload in a declarative
way, it can be realized within the grid in whatever way
satisfies cost, policy, and performance constraints. Abstrac-
tions could also be implemented in other kinds of systems,
such as dedicated clusters or multicore CPUs, but we do not
address those here.

We have implemented one such abstraction—All-Pairs
—for a class of problems found in many fields. All-Pairs
is the Cartesian product of a large number of objects with
a custom comparison function. While simple to state, it is
nontrivial to carry out on large problems that require
hundreds of nodes running for several days. All-Pairs is
similar in spirit to other abstractions such as Dryad [28],
Map-Reduce [16], Pegasus [17], and Swift [42], but it
addresses a different category of applications.

Our implementation of All-Pairs is currently in produc-
tion use on a 500 CPU campus grid at the University of Notre
Dame, using Condor [40] tomanage the CPUs and Chirp [39]
to manage the storage. To demonstrate the performance
benefits of using an abstraction, we compare two different
implementations. The conventional implementation executes
the specification by simply submitting a series of batch jobs
that use a central file server to read data ondemand andwrite

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010 33

. The authors are with the Department of Computer Science and Engineering,
University of Notre Dame, 384 Fitzpatrick Hall, Notre Dame, IN 46556.
E-mail: {cmoretti, hbui, kholling, brich, flynn, dthain}@nd.edu.

Manuscript received 22 July 2008; revised 11 Feb. 2009; accepted 9 Mar.
2009; published online 13 Mar. 2009.
Recommended for acceptance by D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-07-0277.
Digital Object Identifier no. 10.1109/TPDS.2009.49.

1045-9219/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

Cluster Comput (2010) 13: 243–256
DOI 10.1007/s10586-010-0134-7

Harnessing parallelism in multicore clusters with the All-Pairs,
Wavefront, and Makeflow abstractions

Li Yu · Christopher Moretti · Andrew Thrasher ·
Scott Emrich · Kenneth Judd · Douglas Thain

Received: 9 November 2009 / Accepted: 16 March 2010 / Published online: 23 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Both distributed systems and multicore systems
are difficult programming environments. Although the ex-
pert programmer may be able to carefully tune these sys-
tems to achieve high performance, the non-expert may strug-
gle. We argue that high level abstractions are an effec-
tive way of making parallel computing accessible to the
non-expert. An abstraction is a regularly structured frame-
work into which a user may plug in simple sequential pro-
grams to create very large parallel programs. By virtue of a
regular structure and declarative specification, abstractions
may be materialized on distributed, multicore, and distrib-
uted multicore systems with robust performance across a
wide range of problem sizes. In previous work, we pre-
sented the All-Pairs abstraction for computing on distrib-
uted systems of single CPUs. In this paper, we extend
All-Pairs to multicore systems, and introduce the Wave-
front and Makeflow abstractions, which represent a number
of problems in economics and bioinformatics. We demon-
strate good scaling of both abstractions up to 32 cores on
one machine and hundreds of cores in a distributed sys-
tem.

Keywords Abstractions · Multicore · Distributed systems ·
Bioinformatics · Economics

L. Yu (!) · C. Moretti · A. Thrasher · S. Emrich · D. Thain
Department of Computer Science and Engineering, University
of Notre Dame, South Bend, USA
e-mail: lyu2@nd.edu

K. Judd
Hoover Institution, Stanford University, Stanford, USA

1 Introduction

Distributed systems such as clusters, clouds, and grids are
very challenging programming environments. (Hereafter,
we refer to all of these systems as clusters.) A user that
wishes to execute a large workload with some inherent par-
allelism is confronted with a dizzying array of choices. How
should the workload be broken up into jobs? How should the
data be distributed to each node? How many nodes should
be used? Will the network be a bottleneck? Often, the an-
swers to these questions depend heavily on the properties of
the system and workload in use. Changing one parameter,
such as the size of a file or the runtime of a job, may require
a completely different strategy.

Multicore systems present many of the same challenges.
The orders of magnitude change, but the questions are simi-
lar. How should work be divided among threads? Should we
use message passing or shared memory? How many CPUs
should be used? Will memory access present a bottleneck?
When we consider clusters of multicore computers, then the
problems become more complex.

We argue that abstractions are an effective way of en-
abling non-expert users to harness clusters, multicore com-
puters, and clusters of multicore computers. An abstraction
is a declarative structure that joins simple data structures and
small sequential programs into parallel graphs that can be
scaled to very large sizes. Because an abstraction is special-
ized to a restricted class of workloads, it is possible to create
an efficient, robust, scalable, and fault tolerant implementa-
tion. In previous work, we introduced the All-Pairs [12] and
Classify [13] abstractions, and described how they can be
used to solve data intensive problems in the fields of bio-
metrics, bioinformatics, and data mining. Our implementa-
tions allow non-experts to harness hundreds of processors on
problems that run for hours or days using the Condor [27]
distributed batch system.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
"#$%&%'(''%&)"'%*+,$+-(./,,!0(,,$!1222!

All-Pairs: An Abstraction for Data-Intensive Cloud Computing

Christopher Moretti, Jared Bulosan, Douglas Thain, and Patrick J. Flynn
Department of Computer Science and Engineering, University of Notre Dame ∗

Abstract

Although modern parallel and distributed computing
systems provide easy access to large amounts of computing
power, it is not always easy for non-expert users to harness
these large systems effectively. A large workload composed
in what seems to be the obvious way by a naive user may
accidentally abuse shared resources and achieve very poor
performance. To address this problem, we propose that pro-
duction systems should provide end users with high-level
abstractions that allow for the easy expression and efficient
execution of data intensive workloads. We present one ex-
ample of an abstraction – All-Pairs – that fits the needs of
several data-intensive scientific applications. We demon-
strate that an optimized All-Pairs abstraction is both eas-
ier to use than the underlying system, and achieves per-
formance orders of magnitude better than the obvious but
naive approach, and twice as fast as a hand-optimized con-
ventional approach.

1 Introduction

Many scientists have large problems that can make use
of distributed computing; however, most also are not dis-
tributed computing experts. Without distributed comput-
ing experience and expertise, it is difficult to navigate the
large number of factors involved in large distributed sys-
tems and the software that harnesses these resources. Inad-
vertent poor choices can result in poor performance or even
outright failures of the application. Poor choices can also
lead to inefficient use of shared resources and abuse of the
distributed system’s infrastructure such as job queues and
matchmaking software.

Providing an abstraction useful for a class of problems is
one approach to avoiding the pitfalls of distributed comput-
ing. Such an abstraction gives the user an interface to de-
fine their problem in terms of data and computation require-
ments, while hiding the details of how the problem will be
realized in the system. Abstracting away details also hides

∗This work was supported in part by National Science Foundation
grants CCF-06-21434 and CNS-06-43229.

complications that are not apparent to a novice, limiting the
opportunity for disastrous decisions that result in patholog-
ical cases. The goal is not to strip power from smart users,
but rather to make distributed computing accessible to non-
experts.

We have implemented one such abstraction – All-Pairs
– for a class of problems found in several scientific fields.
This implementation has several broad steps. First, we
model the workflow so that we may predict execution based
on grid and workload parameters, such as the number of
hosts. We distribute the data to the compute nodes via a
spanning tree, choosing sources and targets in a flexible
manner. We dispatch batch jobs that are structured to pro-
vide good results based on the model. Once the batch jobs
have completed, we collect the results into a canonical form
for the end-user, and delete the scratch data left on the com-
pute nodes.

We also examine two algorithms for serving the work-
load’s data requirement: demand paging similar to a tra-
ditional cluster and active storage. Active storage deliv-
ers higher throughput and efficiency for several large work-
loads on a shared distributed system, and can result in total
workload turnaround times that are up to twice as fast.

We evaluate the abstraction’s model, execution, and data
delivery on All-Pairs problems in biometrics and data min-
ing on a 500-CPU shared computing system. We have
found turnaround time with the abstraction is orders of
magnitude faster than for workloads configured using non-
experts’ choices.

2 The All-Pairs Problem

The All-Pairs problem is easily stated:

All-Pairs(set A, set B, function F) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M, such that
M[i,j] = F(A[i],B[j]).

Variations of the All-Pairs problem occur in many
branches of science and engineering, where the goal is ei-
ther to understand the behavior of a newly created function

1

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Current State of Affairs

• There doesn’t seem to be a lot of work that revisits
DPAs in the context of:

• Streaming input / output data

• Data with dynamically changing characteristics

• Autonomic | adaptive | dynamic | optimisation

• Lots of work in static optimisation (“fine-tuning”)

• Optimise throughput for workload X on (idealised) platform Y

• Usually confined to a specific middleware

• There seems to be a lot of uncharted territory, but that
remains to be proved (more reading!)

19

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Everything is Static

20

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan

• Pick a common distributed abstraction and make it a
“Dynamically Optimising and Adaptive Abstraction”

• A really good candidate so far seems to be the All-Pairs
abstraction:

• Simple and generic

• Well defined input and output

• Lots of real-world applications and data available

• Many potential dynamic and big-data use-cases

• Not confined to a specific type of infrastructure

21

(working title)

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan

• Pick a common distributed abstraction and make it a
“Dynamically Optimising and Adaptive Abstraction”

• A really good candidate so far seems to be the All-Pairs
abstraction:

• Simple and generic

• Well defined input and output

• Lots of real-world applications and data available

• Many potential dynamic and big-data use-cases

• Not confined to a specific type of infrastructure

21

(working title)

244 Cluster Comput (2010) 13: 243–256

In this paper, we extend the concept of abstractions to
multicore computers and clusters of multicore computers. In
Sect. 2, we present the concept of abstractions, and formally
describe All-Pairs, Wavefront and Makeflow. In Sect. 3,
we describe a general architecture for implementing ab-
stractions on multicore clusters. In Sect. 4, we describe the
technical challenges particular to All-Pairs, Wavefront, and
Makeflow. In Sect. 5, we demonstrate weak scaling of each
abstractions to large numbers of cores and nodes under con-
trolled conditions. In Sect. 6, we discuss the advantages of a
suite of specific abstractions. In Sect. 7, we demonstrate ap-
plications in bioinformatics and economics robustly running
on hundreds of cores in an unreliable distributed system. We
conclude with a review of related work and open avenues for
research.

2 Abstractions

An abstraction is a declarative framework that joins to-
gether sequential processes and data structures into a reg-
ularly structured parallel graph. An abstraction engine is a
particular implementation that materializes that abstraction
on a system, whether it be a sequential computer, a multicore
computer, or a distributed system. Figure 1 shows three ex-
amples of abstractions: All-Pairs, Wavefront and Makeflow.

All-Pairs (A[i],B[j],F(x, y))
returns matrix M
where M[i, j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian prod-
uct of two sets, generating a matrix where each cell M[i, j]
contains the output of the function F on objects A[i] and
B[j]. This sort of problem is found in many different fields.
In bioinformatics, one might compute All-Pairs on a set of
gene sequences as the first step of building a phylogenetic

tree. In biometrics, one might compute All-Pairs to deter-
mine the accuracy of a matching algorithm on a collection
of faces. In data mining applications, one might compute
All-Pairs on a set of documents to generate a graph of rela-
tionships.

Wavefront (R[i, j],F(x, y, d))
returns matrix R
where R[i, j] = F(R[i − 1, j],R[i, j − 1],R[i − 1, j − 1])

The Wavefront abstraction computes a recurrence rela-
tionship in two dimensions. Each cell in the output matrix
is generated by a function F where the arguments are the
values in the cells immediately to the left, below, and di-
agonally left and below. Once a value has been computed at
position (1,1), then values at positions (2,1) and (1,2) may be
computed, and so forth, until the entire matrix is complete.
The problem can be generalized to an arbitrary number of
dimensions. Wavefront represents a number of simulation
problems in economics and game theory, where the initial
states represent ending states of a game, and the recurrence
is used to work backwards in order to discover the effect of
decisions at each state. Wavefront also represents the prob-
lem of sequence alignment via dynamic programming in ge-
nomics.

Makeflow (R[n])
where each rule R[i] is:
input files : output files : command returns output files from
all R[i]

The Makeflow abstraction expresses any arbitrary di-
rected acyclic graph (DAG). Whereas All-Pairs and Wave-
front are problems that can be decomposed into thousands
or millions of instances of the same function to be run with
near-identical requirements, a DAG workload may be struc-
turally heterogeneous and consist of programs and files of
highly variable runtime and size. Many such problems are

Fig. 1 Three examples of abstractions. All-Pairs, Wavefront and
Makeflow are examples of abstractions. All-Pairs computes the Carte-
sian product of two sets A and B using a custom function F. Wavefront
computes a two-dimensional recurrence relation using boundary con-
ditions and a custom function F as an input. Makeflow takes an array

of dependencies, which could be visualized as a directed acyclic graph
structured workload, computes according to the workflow and pro-
duces a target file. Using different techniques, each can be executed
efficiently on multicore clusters

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan

• Pick a common distributed abstraction and make it a
“Dynamically Optimising and Adaptive Abstraction”

• A really good candidate so far seems to be the All-Pairs
abstraction:

• Simple and generic

• Well defined input and output

• Lots of real-world applications and data available

• Many potential dynamic and big-data use-cases

• Not confined to a specific type of infrastructure

21

(working title)

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

• Bioinformatics

• Phylogenetic tree generation

• Sequence Alignment

• Biometrics

• Feature (e.g., face) detection

• Machine Learning

• Unsupervised learning (e.g., clustering, density estimation)

• Evaluation of new learning functions

• N-body simulation (Cosmology)

All-Pairs Application Areas

22

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

All-Pairs Application Areas (cont.)

• Web / Data-mining

• (Near) duplicate document detection

• “more-like-this queries”, collaborative filtering

• “data-shedding”, duplicate deletion

• Query refinement

• Coalition detection

• Interesting: some of the matching algorithms in data-mining
already support speed v.s. accuracy tuning

23

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

• Develop a model that helps us to understand the relevant
aspects of data in an All-Pairs context

• Define the characteristics we need to capture / extract in
order to support dynamic decision-making

• Static / dynamic ?

• Rate ?

• Dependency ?

• Affinity / Relationship ?

24

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

• Revisit the issue of optimisation objectives

• Minimise energy consumption ?

• Get me the best possible solution within X hours ?

• Don’t exceed bandwidth X or storage Y ?

• Develop an optimisation framework

• Possibly based on control theory concepts

• “Control plant” being the All-Pairs execution framework

• “Sensors” measuring input and output data

• “Controller” objective-specific optimisation rules and functions

25

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

26

Complete
Input Static Optimisation /

Distribution Strategy

System
Information

PE

PE

PE

PE

Distributed Programming
Abstraction (Implementation)

Complete
Output

File Transfer System

Job Submission System

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

27

Streaming
Input

System

Inform
ation

All-Pairs Abstraction
(Implementation)

Streaming
Output

File Transfer System Job Submission System

PEPEPEPE

Dynamic Optimisation /
Distribution Strategy

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

27

Streaming
Input

System

Inform
ation

All-Pairs Abstraction
(Implementation)

Streaming
Output

File Transfer System Job Submission System

PEPEPEPE

Dynamic Optimisation /
Distribution Strategy

S

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

A Somewhat Concrete Plan (cont.)

27

Streaming
Input

System

Inform
ation

All-Pairs Abstraction
(Implementation)

Streaming
Output

File Transfer System Job Submission System

PEPEPEPE

Dynamic Optimisation /
Distribution Strategy

S S

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Lots of Open Questions

• Can we predict data ?

• How do the optimisation rules and functions look like ?

• Finite set of rules ?

• Machine Learning ?

• Bayesian Networks ?

• . . .

• A combination of the above ?

• Is dynamic optimisation cheap enough to use it with static
problems as well ?

• . . .

28

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Engineering Challenges

• What is the right level of abstraction ?

• How do we implement sensors ?

• How do we implement actuators ?

• How would an unobtrusive ‘user-interface’ look like ?

• Can we be completely infrastructure independent ?

• What about fault-tolerance ?

• Can we develop a generic dynamic optimisation framework
that can be used not just for All-Pairs ?

29

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

Application Challenge

• How can we find real-world dynamic applications ?

• “Social engineering”

• Can we generate synthetic workload ?

• What are the testbeds we should use ?

• TeraGrid (HPC Grid)

• EGI (HTC Grid)

• Clouds ?

30

Friday, March 18, 2011

ole.weidner@ed.ac.uk Mar 18, 2011

More Information ?

31

SAGA:

C++/Python: 	
	
 http://saga.cct.lsu.edu

OGF GFD.90: 	
 http://www.ogf.org/documents/GFD.90.pdf

Mailing-Lists: 	
 	
 saga-users@cct.lsu.edu

My Ph.D. Research:

Homepage: 	
 	
 http://www.oleweidner.com

Code Repo.:	
 	
 https://github.com/oweidner

Email:	
 	
 	
 ole.weidner@ed.ac.uk

Friday, March 18, 2011

http://saga.cct.lsu.edu
http://saga.cct.lsu.edu
http://www.ogf.org/documents/GFD.90.pdf
http://www.ogf.org/documents/GFD.90.pdf
mailto:saga-users@cct.lsu.edu
mailto:saga-users@cct.lsu.edu
http://www.oleweidner.com
http://www.oleweidner.com
https://github.com/oweidner
https://github.com/oweidner
mailto:ole.weidner@ed.ac.uk
mailto:ole.weidner@ed.ac.uk

