

# Brain Imaging: data management & processing

David Rodriguez Gonzalez
Fan Zhu
DIR & BRIC
SINAPSE collaboration



















Slide by J. Wardlaw





# The SINAPSE Project

- Stands for Scottish Imaging Network: a Platform for Scientific Excellence.
- Pooling initiative of six Scottish universities: Aberdeen, Dundee, Edinburgh, Glasgow, St. Andrews and Stirling.
- Main objectives:
  - develop imaging expertise,
  - support multi-centre clinical research in conjunction with the Clinical Research Networks,
  - improve the ability of neuroscientists to collaborate on clinical trials,
  - have a direct impact on patient health.

# SINAPSE priority projects

- Stroke, the brain and the blood-brain interface
- Ageing brain to dementia
- Novel molecular imaging markers for major psychiatric disorders
- Innovative radiotracers for CNS inflammation



## **DIR** involvement

- Information governance & data deidentification
  - Networking
  - Development of de-identification tool
- Data sharing infrastructure
  - Facilitating multi-centre studies
- Portal for brain imaging
  - Improving usability
- Image Analysis methods

5

## Data in SINAPSE

- O MRI:
  - T1, T2, perfusion, diffusion,
  - fMRI,
  - spectroscopy,...
- o CT
- PET
- EEG
- Retinal Images

Images from SINAPSE, NIH and D. Clunie

## Data in SINAPSE



# **Data Sharing**

- Information governance and Privacy protection
  - MIDAS
  - DICOM Confidential
- Centralised storage
  - Server in ECDF (Edinburgh Computing and Data Facilities)
  - Storage space and databases
- Other: Portal & automatised QA

## **Data Protection Act**

- UK's Data Protection Act (1998). Implements the European Community Data Protection Directive 1995.
- Establish individuals' rights on data held about them and obligations for organisations or people processing personal data.
- Personal data must be processed in a fair and lawful manner.
  - 8 DPA principles.
- Other legislation pieces apply to medical data.
  - Common law: duty of confidentiality.
  - Human Rights Act 1998 (article 8).

# MIDAS meeting (18th March 2009)

 Medical Imaging Data Access and Sharing



- Hosted in the e-Science Institute
- Brought together representatives from the NHS Scotland & the universities
- Successful meeting with useful discussion
  - Came out with a roadmap for improving the data sharing between both sides
  - Report circulated between attendees
- Two follow-up meetings in September 2010 and March 2011

## **DICOM Confidential**

- A DICOM de-identification toolkit
  - Implemented in Java
  - Highly configurable
  - Configurable pipeline for chaining different operations
- Privacy Policies expressed in XML documents
  - PolicyEditor: a graphical policies creation tool
- Transformation classes distributed in signed jar files
- DICOM read/write through an interface that allows using different libraries
  - dcm4che2
  - pixelmed

# **Policy Editor**

# **Policy Editor**



# **Policy Editor**



## MRI QA in SINAPSE

- QA is used to monitor the performance of MRI scanners
  - particularly important in multicentre imaging studies
- Previous work in SINAPSE towards establishing a common QA protocol
  - 7 participant MR scanners in 4 centres
  - Framework for monitoring the quality of the data
  - It will facilitate the combination of data between centres

## Motivation for an automatic system

- Remove the burden of some manual tasks currently being done in the centres
- Allow checking the correctness of the sequence parameters used
- Ensure the consistency of the software used for the analysis and
- Facilitate the reanalysis of the data
- Enforce (pseudo-)anonymisation policies across collaborations

# **Network Configuration**



## Automatised MRI QA flowchart



# Example Image Analysis Application: Stroke

 Identifying the potentially salvageable tissue so that treatment can be delivered effectively



# Example Image Analysis Application: Stroke



# Example Image Analysis Application: Stroke



- In collaboration with ECDF and BRIC
  - A production portal at ECDF almost finished
- Brain perfusion image as example
- Main developments:
  - General solution for portal single signon authentication to the cluster
  - Databases: catalogue and application workflow support
  - Application specific portlets







De-identification and Catalogue Population DICOM confidential



## Perfusion Quantification



+ Contrast Agent Injection







## **GPGPU** implementation

- Results needed in quasi-real time if we want clinical application
  - Some methods like local AIFs take up to 20 minutes
- Deconvolution is ideally parallele as the processing of each voxel is independent



# **GPGPU** implementation

- Results needed in quasi-real time if we want clinical application
  - Some methods like local AIFs take up to 20 minutes
- Deconvolution is ideally parallele as the processing of each voxel is independent

# **GPGPU** Speedup

|   | Number of<br>Voxels | Number of Time intervals | Overall Running<br>Time | Parallel<br>Version |
|---|---------------------|--------------------------|-------------------------|---------------------|
|   | CT 512*512*2        | 32                       | 9 min                   | 2.25 min            |
| - | MR 128*128*15       | 80                       | 24 min                  | 8 min               |

Speed up factor: 3 - 4

# Noise Reduction using GPR

- Low contrast-to-noise ratio
  - CT data especially
  - Gaussian noise
- Noise is enlarged in deconvolution
  - ill-conditioned problem

# Noise Reduction using GPR

- Low contrast-to-noise ratio
  - CT data especially
  - Gaussian noise
- Noise is enlarged in deconvolution
  - ill-conditioned problem



# Noise Reduction using GPR

- Low contrast-to-noise ratio
  - CT data especially
  - Gaussian noise
- Noise is enlarged in deconvolution
  - ill-conditioned problem





# Noise reduction using GPR



# Noise reduction using GPR



# Questions

