
A Program Logic for Resource Verification

David Aspinall1, Lennart Beringer1, Martin Hofmann2, Hans-Wolfgang Loidl2,
Alberto Momigliano1

1 Laboratory for Foundations of Computer Science, School of Informatics, University of
Edinburgh, Edinburgh EH9 3JZ, Scotland;{da,lenb,amomigl1}@inf.ed.ac.uk

2 Institut für Informatik, Ludwig-Maximilians Universiẗat, D-80538 M̈unchen, Germany;
{mhofmann,hwloidl}@informatik.uni-muenchen.de

Abstract. We present a program logic for reasoning about resource consumption
of programs written in Grail, an abstract fragment of the Java Virtual Machine
Language. Serving as the target logic of a certifying compiler, the logic exploits
Grail’s dual nature of combining a functional interpretation with object-oriented
features and a cost model for the JVM. We present the resource-aware operational
semantics of Grail, the program logic, and prove soundness and completeness. All
of the work described has been formalised in the theorem prover Isabelle/HOL,
which provides us with an implementation of the logic as well as confidence in
the results. We conclude with examples of using the logic for proving resource
bounds on code resulting from compiling high-level functional programs.

1 Introduction

For the effective use of mobile code, resource consumption is of great concern. A user
who downloads an application program onto his mobile phone wants to know that the
memory requirement of executing the program does not exceed the memory space avail-
able on the phone. Likewise, concerns occur in Grid computing where service providers
want to know that user programs adhere to negotiated resource policies and users want
to be sure that their program will not be terminated abruptly by the scheduler due to
violations of some resource constraints.

The Mobile Resource Guarantees (MRG) project [27] is developing Proof-Carrying
Code (PCC) technology [23] to endow mobile code withcertificatesof bounded re-
source consumption. Certificates in the PCC sense contain proof-theoretic evidence. A
service provider can check a certificate to see that a given resource policy will be ad-
hered to before admitting the code to run. The feasibility of the PCC approach relies
on the observation that, while it may be difficult to produce a formal proof of a cer-
tain program property, it should be easy to check such a proof. Furthermore, resource
properties are in many cases easier to verify than general correctness properties.

Following the PCC paradigm the code producer uses a combination of program
annotations and analysis to construct a machine proof that a resource policy is met.
The proof is expressed in a specialized program logic for the language in which the
code is transmitted. In the MRG project, this target language is Grail [4], an abstract
representation of (a subset of) the Java Virtual Machine Language (JVML). Certificate
generation is performed by a certifying compiler, e.g. [7], which transforms programs

written in MRG’s high-level functional language Camelot into Grail [17]. Certificates
are based on Camelot-level type systems for reasoning about resource consumption of
functional programs [3, 11, 12]. For example, the Camelot program

let rev l acc = match l with Nil@d -> acc
| Cons(h,t)@d -> rev t (Cons(h,acc)@d)

for reversing a list does not consume heap space. In the match statement, the annota-
tion @ names the heap cell inhabited by the value, so that it can be reused when con-
structing new list nodes in the body. Restrictions on the usage of such annotations are
subject of the type system [3, 11] and we have an automatic inference of such annota-
tions for Camelot [12]. Indeed, we will prove later that the Grail code emitted forrev
by our compiler does not allocate memory.

Contributions: We introduce a resource-aware program logic for Grail in which the
certificates are expressed (Sections 2 and 3). The presentation of the logic follows the
approach of the Vienna Development Method (VDM), a variation of Hoare-style pro-
gram logic where assertions may refer to initial as well as to final states [14]. In our
case, pre- and post-conditions are combined into single assertions ranging over pre-and
post-heap, the environment in which the Grail expression is evaluated, the result value,
and a component for the consumption of temporal and spatial resources. We discuss
the meta-theoretic properties of soundness and (relative) completeness of the logic with
respect to the functional operational semantics of Grail, based on a full formalisation
in the theorem prover Isabelle/HOL. Since the program logic and its implementation
are part of the trusted code base of the PCC infrastructure, it is essential for the over-
all security of the system to have such results available. Our formalisation builds upon
previous work on embedding program logics in theorem provers, in particular that of
Kleymann [15] and Nipkow [24] (see Section 5 for details). In contrast to that, our
logic features a semantics that combines object-oriented aspects with a functional-style
big-step evaluation relation, and includes a treatment of resource consumption that is
related to a cost model for the execution of Grail on a virtual machine platform. The
logic is tailored so that it can be proven sound and complete while at the same time it
can be refined to be used for PCC-oriented program verification. This has influenced the
departure from the more traditional Hoare format, where the need of auxiliary variables
to propagate intermediate results from pre- to post-assertions is a serious issue w.r.t. au-
tomation. As a main technical result, we give a novel treatment of rules for mutually
recursive procedures and adaptation that do not need separate judgements or a very
complex variation of the consequence rule, but are elegantly proven admissible. Our
focus on using Grail as an intermediate language, namely as the target of Camelot com-
pilation, also motivates the decision not to provide a full treatment of object-oriented
features such as inheritance and overriding. The expressiveness of our logic is demon-
strated by verifying in Isabelle/HOL some resource properties of heap-manipulating
Grail programs that were obtained by compiling Camelot programs (Section 4).

2 Grail

The Grail language [4] was designed as a compromise between raw bytecode and low-
level functional languages, and serves as the target of the Camelot compilation. While
the object and method structure of bytecode is retained, each method body consists
of a set of mutually tail-recursive first-order functions. The syntax comprises instruc-
tions for object creation and manipulation, method invocation and primitive operations
such as integer arithmetic, as well as let-bindings to combine program fragments. In
the context of the Camelot compiler, static methods are of particular interest. Using a
whole-program compilation approach, all datatypes are implemented by a single Grail
class, the so-called “diamond” class [11], and functions over these datatypes result in
distinct static methods operating on objects of this class [17]. The main characteristic
of Grail is its dual identity: its (impure) call-by-value functional semantics is shown
to coincide with an imperative interpretation of the expansion of Grail programs into
the Java Virtual Machine Language, provided that some mild syntactic conditions are
met. In particular, these require that actual arguments in function calls coincide syntac-
tically with the formal parameters of the function definitions. This allows function calls
to be interpreted as immediate jump instructions since register shuffling at basic block
boundaries is performed by the calling code rather than being built into the function
application rule. Consequently, the consumption of resources at virtual machine level
may be expressed in a functional semantics for Grail: the expansion into JVML does
not require register allocation or the insertion of gluing code.

We give an operational semantics and a program logic for a functional interpretation
of Grail, where it is assumed (though not explicitly enforced) that expressions are in
Administrative-Normal-Form, that is all intermediate values are explicitly named.

Syntax The syntax of Grail expressions makes use of mutually disjoint sets of integers,
M of method names,C of class names,F of function names (i.e. labels of basic blocks),
T of (virtual or static) field names andX of variables, ranged over byi, m, c, f , t, and
x, respectively. We also introduceself as a reserved variable. In the following grammar,
op denotes a primitive operation of typeV ⇒ V ⇒ V such as an arithmetic operation
or a comparison operator. HereV is the semantic category of values (ranged over byv),
comprising integers, referencesr, and the special symbol⊥, which stands for the ab-
sence of a value. Boolean values are represented as integers. Heap references are either
null or of the formRef l wherel is a location (represented by a natural number). Formal
parameters of method invocations may be integer or object variables. Actual arguments
are sequences of variable names or immediate values – complex expressions which may
occur as arguments in Camelot functions are eliminated during the compilation process.

a∈ args ::= var x | null | i

e∈ expr ::= null | int i | var x | prim op x x| new c [ti := xi] | x.t | x.t:=x | c� t:=x |
c� t | let x=ein e | e;e | if x then eelse e | call f | x ·m(a) | c�m(a)

Expressions represent basic blocks and are built from operators, constants, and previ-
ously computed values (names). Expressions such asx.t:=y (putfield) correspond to

primitive sequences of bytecode instructions that may, as a side effect, alter the heap
or frame stack. Similarly,c� t andc� t:=y denote static field lookup and assignment,
which are needed in Camelot’s memory management. The bindinglet x=e1 in e2 is
used if the evaluation ofe1 returns an integer or reference value on top of the JVM stack
while e1;e2 represents purely sequential composition, used for example ife1 is a field
updatex.t:=y. Object creation includes the initialisation of the object fields according
to the argument list: the content of variablexi is stored in fieldti . Function calls (call)
follow the Grail calling convention (i.e. correspond to immediate jumps) and do not
carry arguments. The instructionsx ·m(a) andc�m(a) represent virtual (instance) and
static method invocation. Although a formal type and class system may be imposed on
Grail programs, our program logic abstracts from these restrictions; heap and class file
environment are total functions on field and method names, respectively.

We assume that all method declarations employ distinct names for identifying inner
basic blocks. A program is represented by a tableFT mapping each function identifier
to a list of (distinct) variables (the formal parameters) and an expression, and a table
MT associating the formal method parameters (again a list of distinct variables) and the
initial basic block to class names and method identifiers.

Dynamic SemanticsThe machine model is based on semantic domainsH of heaps,E
of environments (maps from variables to values) andR of resource components. A heap
h maps locations to objects, where an object comprises a class name and a mapping of
field names to values. In our formalisation, we follow an approach inspired by Burstall,
where the heap is split into several components: a total function from field names to
locations to values, and a partial function from locations to class names. In addition, we
also introduce a total map for modelling static (reference) fields, mapping class names
and field names to references.

Variables which are local to a method invocation are kept in an environmentE that
corresponds to the local store of the JVM. Environments are represented as total func-
tions, with the silent assumption that well-defined method bodies only access variables
which have previously been assigned a value. We useE〈x〉 to denote the lookup oper-
ation andE〈x := v〉 to denote an update. Since the operational semantics uses environ-
ments to represent the local store of method frames, no explicit frame stack is needed.
The height of the stack is mentioned as part of the resource component.

Resource consumption is modelled by resource tuplesp∈ R , where

p = 〈clock callc invkc invkdpth〉.

The four components range overN and represent the following costs. Theclock rep-
resents a global abstract instruction counter. Thecallc andinvkccomponents are more
refined, i.e. they count the number of function calls (jump instructions) and method in-
vocations. We can easily count other types of instructions, but we chose these initially
as interesting cases: for example they may be used to formally verify Grail-level op-
timisations such as the replacement of method (tail) recursion by function recursion.
Finally, invkdpthmodels the maximal invocation depth, i.e. the maximal height of the
frame stack throughout an execution. From this, the maximal frame stack height may
be approximated by considering the maximal size of single frames. The size of the heap

is not monitored explicitly in the resource components, since it can be deduced from
the representation of the object heap as|dom(h)|.

The operational semantics and the program logic make use of two operators on
resources,p⊕q andp^ q. In the first three components, both operators perform point-
wise addition, as all instruction counts behave additionally during program composi-
tion. In the fourth component, the operator⊕ again adds the respective components of
p andq, while ^ takes their maximum. By employinĝ in the rules for let-bindings
we can thus model the release of frame stacks after the execution of method invocations.

The semantics is a big-step evaluation relation based on the functional interpretation
of Grail, with judgements of the form

E ` h,e⇓ (h′,v, p).

Such a statement reads “in variable environmentE and initial heaph, codee evaluates
to the valuev, yielding the heaph′ and consumingp resources.”

E ` h,null ⇓ (h,null,〈1 0 0 0〉)
(NULL)

E ` h,int i ⇓ (h, i,〈1 0 0 0〉)
(INT)

E ` h,var x⇓ (h,E〈x〉,〈1 0 0 0〉)
(VAR)

E ` h,prim op x y⇓ (h,op(E〈x〉) (E〈y〉),〈3 0 0 0〉)
(PRIM)

E〈x〉= Ref l
E ` h,x.t ⇓ (h,h(l).t,〈2 0 0 0〉)

(GETF)
E〈x〉= Ref l

E ` h,x.t:=y⇓ (h[l.t 7→ E〈y〉],⊥,〈3 0 0 0〉)
(PUTF)

E ` h,c� t ⇓ (h,h(c).t,〈2 0 0 0〉)
(GFST)

E ` h,c� t:=y⇓ (h[c.t 7→ E〈y〉],⊥,〈3 0 0 0〉)
(PFST)

l = freshloc(h)

E ` h,new c [ti := xi] ⇓ (h[l 7→ (c,{ti := E〈xi〉})],Ref l,〈(n+1) 0 0 0〉)
(NEW)

E〈x〉= true E ` h,e1 ⇓ (h1,v, p)
E ` h,if x then e1 else e2 ⇓ (h1,v,〈2 0 0 0〉⊕ p)

(IFTRUE)

E〈x〉= false E ` h,e2 ⇓ (h1,v, p)
E ` h,if x then e1 else e2 ⇓ (h1,v,〈2 0 0 0〉⊕ p)

(IFFALSE)

E ` h,e1 ⇓ (h1,w, p) w 6=⊥ E〈x := w〉 ` h1,e2 ⇓ (h2,v,q)
E ` h,let x=e1 in e2 ⇓ (h2,v,〈1 0 0 0〉⊕ (p ^ q))

(LET)

E ` h,e1 ⇓ (h1,⊥, p) E ` h1,e2 ⇓ (h2,v,q)
E ` h,e1;e2 ⇓ (h2,v, p ^ q)

(COMP)

E ` h,snd(FT f) ⇓ (h1,v, p)
E ` h,call f ⇓ (h1,v,〈1 1 0 0〉⊕ p)

(CALL)

(newframenull fst(MT c m) a E) ` h,snd(MT c m) ⇓ (h1,v, p)
E ` h,c�m(a) ⇓ (h1,v,〈(2+ | a |) 0 1 1〉⊕ p)

(SINV)

classOf E h x c (newframeE〈x〉 fst(MT c m) a E) ` h,snd(MT c m) ⇓ (h1,v, p)
E ` h,x ·m(a) ⇓ (h1,v,〈(4+ | a |) 0 1 1〉⊕ p)

(VINV)

In rule GETF, the notationh(l).t represents the value of fieldt in the object at heap
locationl, while in rulePUTF the notationh[l.t 7→ v] denotes the corresponding update
operation. Similarly for static fields. In ruleNEW, the functionfreshloc(h) returns a
fresh location outside the domain ofh, andh[l 7→ (c,{ti := E〈xi〉})] represents the heap
that agrees withh on all locations different froml and mapsl to an object of classc,
with field entriesti := E〈xi〉. In the rulesCALL , SINV andVINV the lookup functions
FT andMT are used to obtain function and method bodies from names. These are here
implemented as static tables, though they could be used to model a class hierarchy.
In particularMT has typeC ⇒ M ⇒ (X list×expr), where the parameter passing in
method invocations is modelled by accessing the parameter values from the caller’s en-
vironment. Each method invocation allocates a new frame on the frame stack, where the
functionnewframecreates the appropriate environment, given a reference to the invok-
ing object, the formal parameters and the actual arguments. The environment contains
bindings for the self object and the method parameters. If we invoke a static method we
set the self variable to null, otherwise to the current object.

The resource tuples in the operational semantics abstractly characterise resource
consumption in an unspecified virtual machine; because resources are treated sepa-
rately, these values could be changed for particular virtual machines. The temporal costs
associated to basic instructions reflect the number of bytecode instructions to which
the expression expands. For example, thePUTF operation involves two instructions for
pushing the object pointerE〈x〉 and the new contentE〈y〉 onto the operand stack, plus
one additional instruction for performing the actual field modification. In ruleNEW we
charge a single clock tick for object creation, andn for field initialisation. The costs for
primitive operations may be generalised to a table lookup. In the rules for condition-
als, we charge for pushing the valueE〈x〉 onto the stack, with an additional clock tick
for evaluating the branch condition and performing the appropriate jump. In ruleCALL ,
the Grail functional call convention explains why we treat the call as a jump, continuing
with the execution of function body. We charge for one anonymous instruction, and also
explicitly for the execution of a jump. In ruleSINV, the body of method is executed in
an environment which represents a fresh frame. The instruction counter is incremented
by 2 for pushing and popping the frame and| a | for evaluating the arguments. In ad-
dition, both the invocation counter and the invocation depth are incremented by one —
the usage of⊕ ensures that the depth correctly represents the nesting depth of frames.
Finally, in rule VINV , the predicateclassOf E h x cfirst retrieves the dynamic class
namec associated to the object pointed to byx. Then, the method body associated to
m and c is executed in a fresh environment which contains the reference toE〈x〉 in
variableself and the formal parameters as above. The costs charged arise again by con-
sidering the evaluation ofE〈x〉 and the method arguments, and the pushing and popping
of the frame, but we also charge one clock tick for the indirection needed to retrieve the
correct method body from the class file.

3 Program logic

The program logic targets the partial correctness of resource bounds such as heap al-
location and combines aspects of VDM-style verification [14] and Abadi-Leino’s logic
for object calculi [1]. Sequents are of the formΓ B e : P and relate a Grail expression
e∈ expr to a specificationP∈ A in a contextΓ ∈ G (see definition below). We abbre-
viate /0 B e : P to B e : P. We follow theextensionalapproach to the representation of
assertions [15], where specifications are predicates (in the meta-logic) over semantic
components and can refer to the initial and final heaps of a program expression, the
initial environment, the resources consumed and the result value:A ≡E →H →H →
V → R → B, whereB is the set of booleans. Satisfaction of a specificationP by pro-
grame is denoted by|= e : P. We interpret a judgement|= e : λ E h h′ v p. P E h h′ v p
to mean that whenever the execution ofe for initial heaph and environmentE ter-
minates and delivers final heaph′, resultv and resourcesp, P is satisfied, that is that
E ` h,e⇓ (h′,v, p) impliesPE h h′ v p.

Similar to assertions in VDM logics, our specifications relate pre- and post-states
without auxiliary variables. For example, programs that do not allocate heap space sat-
isfy the assertion|dom(h)|= |dom(h′)|.

Rules: In the program logic, contextsΓ manage assumptions when dealing with (mutu-
ally) recursive or externally defined methods. They consist of pairs of expressions and
specifications:G ≡ expr×A . In addition to rules for each form of program expression
there are two logical rules,VAX andVCONSEQ.

(e,P) ∈ Γ
ΓBe : P

(VAX)
ΓBe : P ∀E hh′ v p. PE hh′ v p−→QE hh′ v p

ΓBe : Q
(VCONSEQ)

ΓBnull : λE hh′ v p.h′ = h∧ v = null ∧ p = 〈1 0 0 0〉
(VNULL)

ΓBint i : λE hh′ v p.h′ = h∧ v = i ∧ p = 〈1 0 0 0〉
(VINT)

ΓBvar x : λE hh′ v p.h′ = h∧ v = E〈x〉 ∧ p = 〈1 0 0 0〉
(VVAR)

ΓBprim op x y: λE hh′ v p. v = op E〈x〉 E〈y〉 ∧ h′ = h∧ p = 〈3 0 0 0〉
(VPRIM)

ΓBx.t : λE hh′ v p.∃l. E〈x〉= Ref l ∧ h′ = h ∧ v = h′(l).t ∧ p = 〈2 0 0 0〉
(VGETF)

ΓBx.t:=y : λE hh′ v p.∃l. E〈x〉= Ref l ∧ p = 〈3 0 0 0〉 ∧
h′ = h[l.t 7→ E〈y〉] ∧ v =⊥

(VPUTF)

ΓBc� t : λE hh′ v p.h′ = h ∧ v = h(c).t ∧ p = 〈2 0 0 0〉
(VGETST)

ΓBc� t:=y : λE hh′ v p.h′ = h[c.t 7→ E〈y〉] ∧ v =⊥ ∧ p = 〈3 0 0 0〉
(VPUTST)

ΓBnew c [ti := xi] : λE hh′ v p.∃l. l = freshloc(h) ∧ p = 〈(n+1) 0 0 0〉∧
h′ = h[l 7→ (c,{ti := E〈xi〉})] ∧ v = Ref l

(VNEW)

ΓBe1 : P1 ΓBe2 : P2

ΓBif x then e1 else e2 : λE hh′ v p.∃p′. p = p′⊕〈2 0 0 0〉∧
(E〈x〉= true−→ P1E hh′ v p′) ∧
(E〈x〉= false−→ P2E hh′ v p′) ∧
(E〈x〉= true ∨ E〈x〉= false)

(VIF)

ΓBe1 : P1 ΓBe2 : P2

ΓBlet x=e1 in e2 : λE hh′ v p.∃ p1 p2 h1 w. (P1E hh1w p1) ∧ w 6=⊥ ∧
(P2 (E〈x := w〉)h1h′ v p2) ∧
p = 〈1 0 0 0〉⊕ (p1 ^ p2)

(VLET)

ΓBe1 : P1 ΓBe2 : P2

ΓBe1;e2 : λE hh′ v p.∃ p1 p2h1. P1E hh1⊥ p1 ∧
P2E h1h′ v p2 ∧ p = p1 ^ p2

(VCOMP)

Γ∪{(call f ,P)}Bsnd(FT f) : λE hh′ v p.PE hh′ v〈1 1 0 0〉⊕ p

ΓBcall f : P
(VCALL)

Γ∪{(c�m(a),P)}Bsnd(MT c m) : λE hh′ v p.∀ E′. E = (newframenull fst(MT c m) a E′)
−→ PE′hh′ v〈(2+ | a |) 0 1 1〉⊕ p

ΓBc�m(a) : P
(VSINV)

Γ∪{x ·m(a),P)}B
snd(MT c m) : λ E h h′ v p. ∀ E′. (classOf E h x c∧

E = (newframe(E′〈x〉) fst(MT c m) a E′))
−→ (E′,h,h′,v,〈(4+ | a |) 0 1 1〉⊕ p) ∈ P

ΓBx ·m(a) : P
(VVINV)

The axiom ruleVAX allows one to use specifications found in the context. TheVCON-
SEQconsequence rule derives an assertionQ that follows from another assertionP. The
leaf rules (VNULL to VNEW) directly model the corresponding rules in the operational
semantics, with constants for the resource tuples. TheVIF rule uses the appropriate as-
sertion based on the boolean value in the variablex. Since the evaluation of the branch
condition does not modify the heap we only existentially quantify over the resource tu-
ple p′. In contrast, ruleVLET existentially quantifies over the result valuew, the heaph1

resulting from evaluatinge1, and the resources frome1 ande2. Apart from the absence
of environment update, ruleVCOMP is similar toVLET. By relating pre and post con-
ditions in a single assertion we avoid the complications associated to the usual VDM
rules for sequencing [14]. However, this makes reasoning abouttotal correctness more
difficult. The rules for recursive functions and methods involve the context and gen-
eralize Hoare’s original rule for parameterless recursive procedures. They require one
to prove that the function or method body satisfies the required specification (with an
updated resource component) under the additional assumption that the assertion holds
for further calls or invocations.

Admissible Rules: A context weakening rule is easily seen to be admissible. We can
also prove the following cut rule by induction on derivations of{(e′,P)}∪∆Be : Q,

{(e′,P)}∪∆Be : Q ΓBe′ : P Γ ⊆ ∆
∆Be : Q

(CUT)

One of the contributions of this paper lies in an innovative approach to mutually
recursive procedures and adaptation. In fact, rulesVCALL , VSINV andVVINV already
cover the case of mutual recursion. So we do not need a separate derivation system for
judgements withsetsof assertions and related set introduction and elimination rules,
as for example Nipkow does [24], nor do we need to modify the consequence rule to
take care of adaptation. The treatment is based on specification tables for functions
and methods. A function specification tableFST maps each function identifier to an
assertion, a virtual method specification tablevMSTmaps triples consisting of variable
names, method names and (actual) argument lists to assertions, and a static method
specification tablesMSTmaps triples consisting of class names, method names and
(actual) argument lists to assertions. Since the types allow us to disambiguate between
the three tables, we use the notationST to refer to their union.

A contextΓ is goodwith respect to the specification tables, notationgoodST(Γ), if
all entries(e,P) ∈ Γ satisfy

(∃ f . e= call f ∧ P = FST f ∧ ΓBsnd(FT f) : Q0(f)) ∨
(∃ c ma. e= c�m(a) ∧ P = ST c ma ∧ ∀b.ΓBsnd(MT c m) : Q1(c,m,b)) ∨
(∃ x ma. e= x ·m(a) ∧ P = ST x ma ∧ ∀ y b c. ΓBsnd(MT c m) : Q2(c,m,b,y))

where
Q0(f) ≡ λE hh′ v p.(FST f) E h h′ v (〈1 1 0 0〉⊕ p)

Q1(c,m,b) ≡ λE hh′ v p. ∀E′. E = (newframenull fst(MT c m) b E′)
−→ ST c mbE′ h h′ v (〈(2+ | b |) 0 1 1〉⊕ p)

Q2(c,m,b,y) ≡ λ E h h′ v p.∀ E′. (classOf E′ h y c∧
E = (newframe(E′〈y〉) fst(MT c m) b E′))
−→ ST y mb E′ h h′ v (〈(4+ | b |) 0 1 1〉⊕ p).

Using the cut rule, we can prove thatgoodcontexts are subset-closed.

Lemma 1. goodST(Γ) −→ goodST(Γ−{(e,P)}).
By combining this lemma with another application ofCUT, one can prove by induction
on the size ofΓ the following rule for mutually recursive function calls or method
invocations, for theemptycontext,

Γ finite goodST(Γ) (e,P) ∈ Γ
Be : P

(MUTREC)

A variant of Lemma 1 also plays an important part in the proof of our adaptation
rule. Parameter adaptation is notoriously problematic and has often been coupled with
rules of consequence, resulting in fairly complicated rules [15, 24, 25]. Instead, building
on the notion ofgood, we can prove (via cut and weakening) the following lemma,
which allows one to change the actual parameters fromb to a.

Lemma 2. (goodST(Γ) ∧ (c�m(b),ST c mb) ∈ Γ)−→
Γ−{(c�m(b),ST c mb)}Bc�m(a) : ST c ma

The predicategood ensures, that for every pair method invocation/specification over
given actual arguments, the context proves that the method body satisfies the same
specification over any other arguments, provided the former is updated to reflect the
new environment with the appropriate binding for the formal parameters. Since we
want to prove specifications in the empty context, the lemma allows one to shrink the
context.

From that, adaptation in the empty context follows:

Γ finite goodST(Γ) (c�m(b),ST c mb) ∈ Γ
Bc�m(a) : ST c ma

(ADAPTS)

We shall see this rule in action in Section 4. Both, Lemma 2 and ruleADAPTS, have
counterparts for virtual methods.

SoundnessWe first define thevalidity of an assertion for a given program expression
in a given context. In order to deal with soundness of function calls and method invoca-
tions we additionally parameterise the operational semantics by a natural number acting
as the height of the evaluation [10, 15, 24].

Definition 1. (Validity) Specification P isvalid for e, written|=n e : P, if

(m≤ n ∧ E ` h,e⇓m (h′,v, p)) −→ P E h h′ v p.

We define |= e : P as ∀n. |=n e : P. Note that the countern restricts the
set of pre- and post-states for whichP has to be fulfilled. It is easy to show
that this bound, occurring negatively in the validity formula, can be weakened,
i.e. (m< n∧ |=n e : P) −→ |=m e : P. Validity is generalised to contexts as follows:

Definition 2. (Context Validity) ContextΓ is valid, written �n Γ, if |=n e : P holds for
all (e,P)∈ Γ. Assertion P isvalid for e in contextΓ, denotedΓ |=n e: P, if �n Γ implies
|=n e : P.

The soundness theorem follows from a stronger result expressing the soundness
property for contextual, relativised validity.

Theorem 1. (Soundness)ΓBe : P −→ ∀n. Γ |=n e : P.

CompletenessThe program logic may be proven complete relative to the ambient logic
(here HOL) using the notion ofstrongest specifications, similar tomost general triples
in Hoare-style verification.

Definition 3. (Strongest Specification) Thestrongest specificationof expression e is

SSpec(e) = λ E h h′ v p. E ` h,e⇓ (h′,v, p).

It is not difficult to prove that strongest specifications are valid, i.e.|= e : SSpec(e),
and further that they are stronger than any other valid specification, that is
(|= e : P∧ SSpec(e) E h h′ v p)−→ P E h h′ v p.

The overall proof idea of completeness follows [10, 24]: we first prove a lemma that
allows one to relateanyexpressione to SSpec(e) in a contextΓ, provided thatΓ in turn
relates each function or method call to its strongest specification.

Lemma 3.

∀ f . ΓBcall f : SSpec(call f) ∧
∀ c ma. ΓBc�m(a) : SSpec(c�m(a)) ∧
∀ x ma. ΓBx ·m(a) : SSpec(x ·m(a))

−→ ΓBe : SSpec(e)

The proof of this lemma proceeds by induction on the structure ofe. Next, we define a
specific context,̂Γ, containing exactly the strongest specifications for all function calls
and method invocations.

Γ̂ ≡ {(e,P) | P = SSpec(e) ∧
(

(∃ f . e= call f) ∨ (∃ c ma. e= c�m(a)) ∨
(∃ x ma. e= x ·m(a))

)
}.

We also define specification tables that associate the strongest assertions to all calls and
invocations:

ŜT≡ (λ f . SSpec(call f))∪ (λ c ma. SSpec(c�m(a)))∪ (λ x ma. SSpec(x ·m(a))).

Next, we show that̂Γ is goodwith respect to these tables:

Lemma 4. good̂ST(Γ̂).

On the other hand, combining a variant of ruleCUT andMUTREC with Lemma 3 yields

Lemma 5. If goodST(Γ̂) andΓ̂ finite, thenBe : SSpec(e) holds for all e,

for arbitrary specification tablesST. Finally, combining Lemmas 4 and 5 and rule
VCONSEQyields

Theorem 2. (Completeness) If̂Γ finite and|= e : P thenBe : P.

The finiteness condition merely represents a constraint on the syntactic categories of
function and method names. It is fulfilled for any concrete program.

4 Examples

In this section we give examples of proving resource properties of Grail programs work-
ing on integer lists. We first discuss how lists are modelled in our formalisation and then
consider in-place list reversal and doubling elements in a list as example programs. The
Grail code in this section corresponds to the Isabelle-output of the Camelot compiler.

During the compilation, heap-allocated data structures arise from algebraic data-
types in Camelot. Values of the typeilist = Nil | Cons of int * ilist are rep-
resented as a linked list of objects of the diamond class. Each node contains fieldsHD,
TL andTAG, whereTAG indicates the constructor (Nil or Cons) used to create the cell.
Since our verification targets the consumption of resources rather than full correctness

we use a representation predicate that ensures that a portion of the heap represents a list
structure without considering the data contained in individual cells. The predicate takes
the formh, l |=X n, to be read as “starting at locationl the sub-heap ofh given by the set
X of locations contains a list of lengthn”. It is defined inductively, using the additional
notationclassh(l) to refer to the class of the object located atl in heaph.

(classh(l) = ILIST ∧ h(l).TAG = 0)−→ h, l |={l} 0(
classh(l) = ILIST ∧ h(l).TAG = 1∧
h(l).TL = Ref r ∧ l 6∈ X ∧ h, r |=X n

)
−→ h, l |=X∪{l} n+1

Similar predicates have been used by Reynolds in separation logic [26]. Notice that in
the second case the referencel has to be distinct from all previously used locationsX.

In-place reversal:Returning to our motivating example from the introduction, the fol-
lowing Grail code is produced for the methodrev in classILIST with formal parameters
[l ,acc]:

let tag= l .TAG in let b=prim iszero tag tagin
if b then var acc

else let h= l .HD in let t = l .TL in let one=int 1 in
l .TAG:=one;l .HD:=h;l .TL:=acc;ILIST� rev([t, l])

We constrain the specification tables to contain the entry

ST ILIST rev z E h h′ v p=

∀ n a X m b Y.

(
(eval E z= [Ref a,Ref b] ∧ h,a |=X n ∧ h,b |=Y m ∧ X∩Y = /0)
−→ |dom(h)|= |dom(h′)| ∧ p = 〈(29n+13) 0 (n+1) (n+1)〉

)
If the first method argument points initially to a list of lengthn, and the second argument
points to some other (disjoint) list, any terminating execution ofrev returns a heap of
the same size as the initial heap, and the number of instructions and function calls
(jump instructions) depend linearly onn. The functioneval implements the evaluation
of methods arguments and is part of thenewframeconstruction. We aim to prove the
property

B ILIST� rev([x,y]) : ST ILIST rev [x,y] (1)

which states that an invocation ofrev with (arbitrary) argumentsx andy satisfies its
specification. The generic structure of a proof of such a resource predicate first applies
the ruleADAPTS. The required contextΓ contains one entry for each method invocation
that occurs in the method body, pairing each such call with its specification:

Γ ≡ {(ILIST� rev([t, l]),ST ILIST rev [t, l])}.

As the main lemma we then prove thatΓ is goodwith respect to the specification tables:

goodST(Γ).

The proof of this statement proceeds by first applying the VDM rulesVSINV andVCON-
SEQ, and then the other syntax-directed rules according to the program text, closing the

recursion by an invocation ofVAX . This first phase can be seen as a classical VCG over
the program logic rules. Two side conditions remain, requiring us to show that both
branches satisfy the specification — the verification condition of the recursion case
amounts to a loop invariant. Both side conditions can be discharged by unfolding the
definition ofh, l |=X n and instantiating some quantifiers.

Where do the polynomials in the specification come from? Currently, we have left
those values indeterminate and have them generated during a proof. In a later phase of
the project, the Camelot compiler will generate certificates for such resource proper-
ties based on high-level program analysis similar to [12]’s type system for heap space
consumption. The syntactic form ofrev would allow a tail-call optimisation, where the
recursive method invocation is transformed into a recursive function call satisfying the
Grail calling convention.

Doubling a list: Consider the following code for doubling the elements of a list.

let double l = match l with
Nil@d -> Nil@d

| Cons(h,t)@d -> Cons(h,Cons(h,double t)@d)

Remember the usage of@ indicates that heap cells which are freed during a match may
be reused later — but only once [11] — so the outer application ofCons will require
the allocation of fresh memory. Since the recursion occurs in non-tail position, it cannot
be replaced by a simple function recursion and the resulting Grail code contains a static
methodILIST�double(l) with body

let x= l .TAG in let b=prim iszero x xin
if b then let zero=int 0 in l .TAG:=zero;var l

else let x= l .HD in let t = l .TL in let y=var l in
let z= ILIST�double([t]) in let one=int 1 in
y.TAG:=one;y.HD:=x;y.TL:=z;let l =var y in
new ILIST [(TAG,one),(HD,x),(TL, l)]

The specification has the same general structure as before, but now asserts that the heap
grows byn many objects, that no function calls occur, and that both the number and the
nesting depth of method invocations are linear inn.

ST ILIST double z E h h′ v p= ∀ n a X.

 (eval E z= [Ref a] ∧ h,a |=X n)
−→ |dom(h′)|= |dom(h)|+n∧

p = 〈(35n+18) 0 (n+1) (n+1)〉

We prove the following resource property for an arbitraryx:

B ILIST�double([x]) : ST ILIST double[x]

The proof has the same overall structure as the previous one, where the auxiliary lemma
now reads

goodST(
{

(ILIST�double([t]),ST ILIST double[t]
}
) .

5 Related Work

Most closely related to our work on the meta-theoretical side are Nipkow’s implemen-
tation of Hoare logic in Isabelle/HOL [24], the Java-light logic by von Oheimb [29],
Kleymann’s thesis [15], and Hofmann’s [10] work on completeness of program logics.
The logic by Nipkow in [24] is for a while-language with parameterless functions, with
proofs of soundness and completeness. Several techniques we use in our treatment are
inspired by this work, such as modelling of the heap via mini-heaps. However, we have
made progress on the treatment of mutual recursion and adaptation. Several options for
formalising either VDM or Hoare-style program logics have been explored by Kley-
mann [15]. In particular this work demonstrates how to formalise an adaptation rule
that permits to modify auxiliary variables. The techniques used in our completeness
proof are based on those by one of the authors in [10].

The program logic for Java-light by von Oheimb [29] is encoded in Isabelle/HOL
and proven sound and complete. It covers more object-oriented features, but works on
a higher level than our logic for a bytecode language and does not cover resources.
Moreover, it is hardly suitable for concrete program verification.

With respect to other relevant program logics, de Boer [8] presents a sound and
complete Hoare-style logic for an sequential object-oriented language with inheritance
and subtyping. In contrast to our approach, the proof system employs a specific as-
sertion language for object structures, whose WP calculus is heavily based on syn-
tactical substitutions. Recently a tool supporting the verification of annotated programs
(flowcharts) yielding verification conditions to be solved in HOL has been produced [5].
This also extends to multi-threaded Java [2].

Abadi and Leino combine a program logic for an object-oriented language with a
type system [1, 16]. The language supports sub-classing and recursive object types and
attaches specifications as well as types to expressions. In contrast to our logics, it uses
a global store model, with the possibility of storing pointers to arbitrary methods in
objects. As a result of this design decision this logic is incomplete. An implementation
of this logic and a verification condition generator are described in [28].

Several projects aim at developing program logics for subsets of Java, mainly as
tools for program development. M̈uller and Poetzsch-Heffter present a sound Hoare-
style logic for a Java subset [22]. Their language covers class and interface types with
subtyping and inheritance, as well as dynamic and static binding, and aliasing via object
references, see also the Jive tool [20]. As part of the LOOP project, Huisman and Ja-
cobs [13] present an extension of a Hoare logic that includes means for reasoning about
abrupt termination and side-effects, encoded in the PVS theorem prover. Krakatoa [18]
is a tool for verifying JML-annotated Java programs that acts as front-end to the Why
system [9], using Coq to model the semantics and conduct the proofs. Why produces
proof-obligations for programs in imperative-functional style via an interpretation in a
type theory of effects and monads. Similarly, the target of the JACK environment [6]
are verification conditions for the B system from JML annotations, though much effort
is invested in making the system usable by Java programmers. We also mention [19],
which embeds a Hoare logic in HOL, following previous work by Mike Gordon, to
reason about pointer programs in a simple while-language. As an example, the authors
provide an interactive proof in ISAR of the correctness of the Schorr-Waite algorithm.

Finally, [21] proves properties of the JVM in ACL2 directly from invariants and the
operational semantics, that is without resorting to a VCG.

6 Conclusions

This paper has presented a resource-aware program logic for Grail, together with proofs
of soundness and completeness. Our logic is unique in combining reasoning about re-
sources for a general object-oriented language with completeness results for this logic.
Grail is an abstraction over the JVM bytecode language which can be given a semi-
functional semantics. We have developed admissible rules to work with mutually recur-
sive methods, including parameter adaptation. While the logic already covers dynamic
method invocation, we left a formalisation of the class hierarchy for future research.
The logic has been encoded in the Isabelle/HOL theorem prover, and the formalisation
of the soudness and completeness proofs provide additional confidence in the results.
We demonstrated the usability of the logic by giving some examples, where we proved
concrete resource bounds on space and time. These example programs have been gener-
ated by the Camelot compiler, indicating that the logic is sufficiently expressive to serve
as the target logic in our proof-carrying-code infrastructure. In order to mechanise the
verification of concrete programs, we are currently defining more specialised logics for
various resources. These logics are defined in terms of the logic presented in this paper
and thus inherit crucial properties such as soundness.

Acknowledgements This research was supported by the MRG project (IST-2001-
33149) which is funded by the EC under the FET proactive initiative on Global Com-
puting. We would like to thank all the MRG members as well as Tobias Nipkow and his
group for discussions about formalising program logics.

References

1. M. Abadi and R. Leino. A Logic of Object-Oriented Programs. InTAPSOFT ’97: Theory
and Practice of Software Development, volume 1214 ofLNCS, pages 682–696. Springer,
1997.

2. E. Abraham-Mumm, F. S. de Boer, W. P. de Roever, , and M. Steffen. A tool-supported
proof system for mutlithreaded Java. In F. de Boer, M. Bonsangue, S. Graf, and W.-P.
de Roever, editors,FMCO 2002: Formal Methods for Component Objects, Proceedings,
LNCS. Springer, 2003.

3. D. Aspinall and M. Hofmann. Another Type System for In-Place Update. InESOP’02
— European Symposium on Programming, volume 2305 ofLNCS, pages 36–52. Springer,
2002.

4. L. Beringer, K. MacKenzie, and I. Stark. Grail: a Functional Form for Imperative Mobile
Code.Electronic Notes in Theoretical Computer Science, 85(1), 2003.

5. F. d. Boer and C. Pierik. Computer-aided specification and verification of annotated object-
oriented programs. In B. Jacobs and A. Rensink, editors,FMOODS 2002, volume 209 of
IFIP Conference Proceedings, pages 163–177. Kluwer, 2002.

6. L. Burdy and A. Requet. Jack: Java applet correctness kit. In4th Gemplus Developer
Conference,, 2002.

7. C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A Certifying Compiler for
Java. InPLDI’00 — Conference on Programming Language Design and Implementation,
pages 95–107. ACM Press, 2000.

8. F. de Boer. A WP-calculus for OO. InFoundations of Software Science and Computation
Structures, volume 1578 ofLNCS, pages 135–149. Springer, 1999.

9. J.-C. Fillîatre. Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Universit́e Paris Sud, Mar. 2003. http://www.lri.fr/ filliatr/ftp/publis/why-tool.ps.gz.

10. M. Hofmann. Semantik und Verifikation. Lecture Notes, WS 97/98 1998. TU Darmstadt.
11. M. Hofmann. A Type System for Bounded Space and Functional In-place Update.Nordic

Journal of Computing, 7(4):258–289, 2000.
12. M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order Functional

Programs. InPOPL’03 — Symposium on Principles of Programming Languages, pages
185–197, New Orleans, LA, USA, Jan. 2003. ACM Press.

13. M. Huisman and B. Jacobs. Java Program Verfication via a Hoare Logic with Abrupt Termi-
nation. InFASE’00 — Fundamental Approaches to Software Engineering, volume 1783 of
LNCS, pages 284–303. Springer, 2000.

14. C. Jones.Systematic Software Development Using VDM. Prentice Hall, 1990.
15. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Completeness

Proofs. PhD thesis, LFCS, University of Edinburgh, 1999.
16. R. Leino. Recursive Object Types in a Logic of Object-oriented Programs.Nordic Journal

of Computing, 5(4):330–360, 1998.
17. K. MacKenzie and N. Wolverson. Camelot and Grail: Compiling a Resource-aware Func-

tional Language for the Java Virtual Machine. InTFP’03, Symposium on Trends in Func-
tional Languages, Edinburgh, Sep. 11–12, 2003.

18. C. Marche, C. Paulin-Mohring, and X. Urbain. The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML.Journal of Logic and Algebraic Program-
ming, 58:89, January 2004.

19. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In F. Baader, editor,
Automated Deduction — CADE-19, volume 2741 ofLNCS, pages 121–135. Springer, 2003.

20. J. Meyer, P. M̈uller, and A. Poetzsch-Heffter. TheJIVE system—implementation description.
Available fromwww.informatik.fernuni-hagen.de/pi5/publications.html, 2000.

21. J. S. Moore. Proving theorems about Java and the JVM with ACL2.NATO Science Series
Sub Series III Computer and Systems Sciences, 191:227–290, 2003.

22. P. M̈uller and A. Poetzsch-Heffter. A Programming Logic for Sequential Java. InESOP’99
— European Symposium on Programming, volume 1576 ofLNCS, pages 162–176, 1999.

23. G. Necula. Proof-carrying Code. InPOPL’97 — Symposium on Principles of Programming
Languages, pages 106–116, Paris, France, January 15–17, 1997. ACM Press.

24. T. Nipkow. Hoare Logics for Recursive Procedures and Unbounded Nondeterminism. In
Computer Science Logic (CSL 2002), volume 2471 ofLNCS, pages 103–119. Springer, 2002.

25. C. Pierik and F. d. Boer. A rule of adaptation for OO. Technical Report UU-CS-2003-032,
Utrecht University, 2004.

26. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InLICS’02 —
Symposium on Logic in Computer Science, Copenhagen, Denmark, July 22–25, 2002.

27. D. Sannella and M. Hofmann. Mobile Resource Guarantees. EU OpenFET Project, 2002.
http://www.dcs.ed.ac.uk/home/mrg/.

28. F. Tang.Towards feasible, machine assisted verification of object-oriented programs. PhD
thesis, School of Informatics, University of Edinburgh, 2002.

29. D. von Oheimb. Hoare logic for Java in Isabelle/HOL.Concurrency and Computation:
Practice and Experience, 13(13):1173–1214, 2001.

