European Commission F

Title page

INFORMATION SOCIETY TECHNOLOGIES
(1ST)
PROGRAMME

information
society
technologies

Contract for:

Shared-cost RTD

Annex 1 - “Description of Work”

Project acronym: MRG

Project full title: Mobile Resource Guarantees
Proposal/Contract no.: 1ST-2001-33149

Related to other Contract no.: (to be completed by Commission)

Date of preparation of Annex 1. 13 September 2001

Operative commencement date of contract: (to be completed by Commission)

IST-2001-33149 (MRG) 13th September 2001

ii

Contents
1 Project summary
2 Project objectives
3 Participant list
4 Contribution to programme / key action objectives
5 Innovation
5.1 A novel protocol for resource certification
52 Advances beyond present state-of-the-art
6 Community added value and contribution to EC policies
6.1 Europeandimension
6.2 Europeanaddedvalue
6.3 Contribution to EU policies
7 Contribution to Community social objectives
7.1 Improving the quality oflife
72 Healthandsafety
7.3 Improving employment
8 Economic development and scientific and technological prospects
81 Applications
8.2 Strategicimpact L
8.3 Dissemination strategies
9 Project workplan

91 Generaldescription L L Lo
9.2 Workpackagelist,
9.3 Workpackage descriptions o L oL
94 Deliverableslist
9.5 Project planning and timetable
9.6 Graphical presentation of project components.
9.7 Projectmanagement, L.

10 Clustering

11 Other contractual conditions

References

A

Description of the consortium

A.1 Division of Informatics, University of Edinburgh
A2 Institut fiir Informatik, Ludwig-Maximilians-Universitit Miinchen

Contract preparation forms

ii

IST-2001-33149 (MRG) 13th September 2001 1

1 Project summary

Objectives

Objective 1: Development of a framework for formal certificates of resource consumption,
consisting of a cost model and a program logic for an appropriate virtual machine. In the first
instance this will be a subset of the Java VM; later we will consider appropriate parametri-
sations allowing for mobile virtual machines.

Objective 2: Development of a notion of formalised and checkable proofs for this logic
which will play the role of certificates, including the implementation of a proof checker.
Objective 3: Development of methods for machine generation of certificates for appropriate
high-level code, either fully automatically or based on user-supplied annotations e.g. in the
form of invariants. Type systems will be used as the underlying formalism for this endeav-
our.

Objective 4: Study relaxations of proof-based certificates based on several rounds of nego-
tations between supplier and user of code leading to higher and higher confidence that the
resource policy is satisfied.

Description of work

This project aims at developing the infrastructure needed to endow mobile code with in-

dependently verifiable certificates describing resource behaviour. These certificates will be

condensed and formalised mathematical proofs of a resource-related property which are by

their very nature self-evident and unforgeable. Arbitrarily complex methods may be used

to construct these certificates, but their verification will always be a simple computation.
The workplan consists of the following central tasks:

1. Define expressive formalised resource policy (cost models).

2. Define notions of independently verifiable certificate (resource sensitive program logic
with proof objects).

3. Foundations for efficient generation of certificates (type systems, identification of use-
ful programmer annotations).

4. Foundations for alternatives to generation of full certificates (proof-theoretic compres-
sion, probabilistically checkable proofs, game-theoretic approaches).

Where appropriate, each foundational task is accompanied by a prototype implementation
and case studies. Apart from this, the project includes the following separate engineering-
oriented tasks:

1. Design of runtime environment including virtual machine, bytecode, implemented
program logic.

2. Design and implementation of a high-level programming language in which to write
resource-certified code.

3. Generation and integrated use of formalised certificates.

4. Parametrisation by arbitrary runtime environment.

The deliverables are research papers describing our solutions to foundational problems and
a working prototype which will be made available as free downloadable software.

IST-2001-33149 (MRG) 13th September 2001 2

Milestones and expected results

Cost model; implemented bytecode logic; implemented experimental high-level language;
implemented type system for space-like resources; soundness proofs; type system for pa-
rameter value constraints with soundness proofs; implemented resource type system for
bytecode; certificate generator; experiments with reducing certificate size; implemented re-
source manager.

IST-2001-33149 (MRG) 13th September 2001 3

2 Project objectives

The ability to move code smoothly between execution sites will be a key part of the tech-
nological infrastructure of future global computing platforms. The pressure to supply and
use mobile code in a global environment aggravates existing security problems and presents
altogether new ones.

One particular security issue is the maintenance of bounds on quantitative resources. We
believe that without some technological foundations for providing such guarantees, global
computing will be confined to applications where malfunction due to resource bound vio-
lation is accepted as normal and has little consequence, as with internet computation today.
With more serious applications, resource awareness will become a crucial asset.

This project aims at developing well-founded methods to spur technological progress in
this presently under-studied area. The main objective of the project is the development of
the infrastructure needed to endow mobile code with independently verifiable certificates
describing resource behaviour.

These certificates will be condensed and formalised mathematical proofs of a resource-
related property which are by their very nature self-evident and unforgable. Arbitrarily
complex methods may be used to construct these certificates, but their verification will al-
ways be a simple computation. One may compare this to the verification of alleged solu-
tions to combinatorial problems such as Rubik’s cube or the travelling salesman problem.
(Note that the word “certificate” has a different connotation in computer security, relating
to authentication and relying on a hierarchy of trusted secure computer systems rather than
self-evident guarantees.)

Scenarios of application for the proposed framework include the following.

o A provider of distributed computational power may only be willing to offer this service
upon receiving dependable guarantees about the required resource consumption.

e A user of a handheld device, wearable computer, or smart card might want to know
that a downloaded application will definitely run within the limited amount of mem-
ory available.

o Third-party software updates for electronic devices such as mobile phones, household
appliances, or car electronics should come with a guarantee not to set system parame-
ters beyond manufacturer-specified safe limits.

e Requiring certificates of specified resource consumption will also help to prevent mo-
bile agents from performing denial of service attacks using bona fide host environ-
ments as a portal.

Objective 1 is the development of a framework in which such certificates of resource con-
sumption make formal sense. This will consist of a cost model and a program logic for an
appropriate virtual machine and run time environment. In the first instance this will be a
subset of the Java virtual machine. Later on we will consider appropriate parametrisations
thus allowing for arbitrary runtime environments including mobile virtual machines.

The program logic must allow the following abstract resource-related properties to be
expressed: runtime, space usage, number of calls to a particular function, maximum value
of particular function arguments. This objective also includes the delineation of appropriate
resource policies.

IST-2001-33149 (MRG) 13th September 2001 4

Objective 2 consists of the development of a notion of formalised and checkable proofs for
this logic which will play the role of certificates. In particular, this involves the implementa-
tion of a proof checker.

Objective 3 is the development of methods for machine generation of such certificates for
appropriate high-level code. Such generation of certificates may either be fully automatic
or be based on certain user-supplied annotations e.g. in the form of invariants. Type systems
will be used as the underlying formalism for this endeavour. This objective is the most
comprehensive of all and will be allocated the most effort. Since resource-related properties
of programs are almost always undecidable, we aim — following common practice — for
conservative approximation: there will always be programs for which no certificate can be
obtained although they abide by the desired resource policy.

Objective4 While proof-like certificates are generally desirable they may sometimes be in-
feasible to construct or too large to transmit. We therefore propose to study relaxations based
on several rounds of negotiation between supplier and user of code leading to higher and
higher confidence that the resource policy is satisfied. This objective carries an appreciably
higher risk than the others, due to the novelty of the idea; we expect, however, to obtain at
least some useful results.

Methodology and deliverables All these objectives will be pursued with respect to four
representative concrete examples of resource policies: two of them time-like, i.e., with ad-
ditive behaviour with respect to composition of program parts; and two space-like, i.e., for
which the consumption of a composite program is obtained as the maximum of the resource
consumptions of its individual parts. We anticipate, however, considerable synergies be-
tween these four examples as large parts of the required framework overlap. Appropri-
ate case studies taken e.g. from the JavaCard distribution [36] and its applications, e.g. [25]
and/or algorithms for scientific computation [23], will provide timely validation of decisions
made.

The project is foundational in nature; therefore the main outcome will consist of publi-
cations in scientific fora of which we expect about 20 overall. However, in order to enhance
subsequent exploitation and to validate decisions made, we envisage implementation of all
stages within a prototype system whose various components will be made available as free
downloadable software.

IST-2001-33149 (MRG) 13th September 2001 5
3 Participant list
Partic. | Partic. | Participant name Participant | Country | Date enter | Date exit
Role no. short name project project
C 1 University of Edinburgh | UEDIN UK Start of End of
project project
p 2 LMU Miinchen LMUMUN | D Start of End of
project project

IST-2001-33149 (MRG) 13th September 2001 6

4 Contribution to programme / key action objectives

This project is a contribution to the Global Computing (GC) FET Proactive Initiative 2001
(Action Line IST-2001-VI1.2.2). In this section we describe how the project meets the require-
ments of this Action Line.

First, we directly address the scientific goals mentioned in the GC Terms of Reference.
Our work on managing the resource behaviour of mobile code targets the central scientific
aim, which is to:

develop the theoretical foundations needed to enable the design of these systems in the
future and to cope with the many complex issues raised by their construction.

The foundational contributions of our proposed work, such as resource-sensitive type sys-
tems (Objective 3), and the logical underpinnings for proof-like certificates (Objectives 2,4),
address a particular such complex issue, namely managing the resource usage of mobile
code and entities.

Our research tackles the three key aspects mentioned in the IST Work Programme 2001,
Action Line VI.2.2:

1. The design of systems composed of autonomous entities [...] — we will build a framework
for ensuring resource bounds on mobile code requiring no centralized control.

2. Analysing and reasoning about the [quantitative] behaviour of such systems [...] — quan-
titative analysis of the resource-related behaviour of programs forms the backbone of
our proposed work.

3. Awvoiding and/or detecting undesirable behaviour [...] — we will prohibit systems interact-
ing when this would lead to a resource violation.

Moreover, our project directly addresses the following pervasive important issue mentioned
in the Work Programme:

o [...] controlling the use of resources [facilitating] the utilisation of the resources in a transpar-
ent way [...] — our scheme will allow precise control over the utilisation of resources
without introducing any dynamic overhead.

In considering the underlying aspects of the technological infrastructure, our work ad-
dresses a broad range of systems, rather than any specific application area. Our research will
be relevant for the infrastructure underlying mobile computing devices such as telephones,
the interaction involved in road and air traffic management, as well as the more general
context of computational grids, where contracts and predictions of resource usage may be
especially relevant.

The issue of resource awareness is also mentioned as an example research area in the final
section of the GC Terms of Reference. Our work will investigate protocols for calculating
resource bounds, communicating them, and ensuring that they are met. As an application
of this, agents will be able to schedule their computation by dynamically yet accurately
allocating resources where and when they are needed.

IST-2001-33149 (MRG) 13th September 2001 7

5 Innovation

This project is innovative both in its central concept and in the detailed techniques to be
developed in support of that concept.

The overall aim of the project is to investigate a novel method for controlling resource
usage by mobile computational entities. Recently, it has become common practice to ac-
company mobile code with cryptographic certificates that make assurances of security; for
example, Java applets or Microsoft Authenticode signatures. These rely upon pre-existing
networks of trust, and are usually concerned with assuring the user that code comes from
a particular author. By contrast we propose to send certificates that demonstrate concrete
properties of the code itself; recipients can check these directly, without the need for any
trusted authority.

The novelty lies in this independence from trust, and particularly in the focus on man-
aging resources. We may trust a code supplier not to write malicious code, but need an
additional local check that it will not exceed the resources available. Thus our approach
does not replace existing practices, but complements and extends them. In some cases this
can add a layer of certainty previously unobtainable: for example, we hope to guarantee that
some kinds of calculation will produce their answer within a given time; all a runtime check
can do is to turn off the computation after a time limit.

The project involves several interacting workpackages, each contributing a part towards
this goal. Several of these comprise innovative work, which we look at now. The workpack-
ages are described in detail in Section 9.3 below.

e Packages 1 and 2 will develop a cost model and accompanying logic for a virtual ma-
chine. The increasing use of such virtual machines, and their high-level open specifi-
cations, means that we can attempt a portable resource analysis, previously infeasible.
This promises significant returns in expanding the application of such work; it carries a
certain risk that some VM implementations may not properly match their specification.

Focusing on the bytecode level also allows a degree of language independence, so that
in the long term our work can be applied to more than one programming paradigm,
mapping to a common cost model.

e Package 3 lays the foundation for translating resource information between low-level
bytecode and high-level languages. This is through a new transformational compiler
that in Package 6 will be extended to carry resource information along with code as it
is compiled.

o The type systems for resource analysis to be developed in packages 4, 5 and 7 aim for a
precision and expressiveness ahead of current work. We also plan to look at a broader
notion of resource than addressed by existing systems: use of file handles, network
resources, number of system calls, value of system call parameters.

e Packages 6 and 9 involve investigating a range of novel techniques for managing the
proofs delivered in our certificates. The aim here is to reduce the load associated with
sending certificates, either by reducing the size of proofs themselves, or through pro-
tocols that can avoid transmitting entire proofs. Individual methods carry the risk that
they may turn out to be impractical, but each has the possibility of significant long-
term return.

IST-2001-33149 (MRG) 13th September 2001 8

e Active security management and security policies are increasingly important in cur-
rent systems for code distribution. Package 8 investigates novel extensions of this to
resource management and policies, with the significant feature that our certificates can
guarantee that run-time checks are not required.

e Portable guarantees depend on well-understood virtual machines, and package 10
takes this to a new level by investigating the approach of making the VM itself cus-
tomisable, downloaded and configured over the network. This is looking a long way
forward, with corresponding risks, but the possibility of considerable returns in match-
ing desired performance to the available resources.

5.1 A novel protocol for resource certification

We propose a novel protocol for certifying the resource bounds of mobile code. It is de-
signed so that it can be integrated with the existing way that a Java virtual machine ensures
that security constraints are met, via the Security Manager. In Java, the Security Manager
is responsible for enforcing the security policy requested by the user, by checking that no
violations of security are made while the code runs.

In our protocol, a Resource Manager is responsible for verifying that the certificate sup-
plied with a piece of code ensures that it will run within the constraints required. A Proof
Checker is invoked to do this. If the check succeeds, we have an absolute guarantee that re-
source bounds are met, so it is not necessary to check for resource violations as the code runs.
Here is a diagram representing the components which feature in our protocol, assuming a
source machine A where the code originates, and a machine B where the code will be run:

y 4
Proof
. checker
Machine A Q
Q
p implies ¢
y v 4 catisfies 7
Source Code ==, Resource
. M
T y anager
y V4
L Code ¢ with Certificatep .
\ Virtual
Compiler Machine
P> \
A
y v 4 Runs code ¢
Resource Am— Certificate
Typechecker Generator

To allow extra flexibility in the framework, we also suppose that the resource policy can
be negotiated with the code producer. In detail, the phases in the protocol are:

e Initiate: A wants to send B a piece of mobile code c.

e Policy: A and B agree upon some resource policy r that the code must satisfy. The choice
of policy may influence some aspect of the compilation (or re-compilation) of the code
from a high-level language, in particular how the Resource Type-checker influences
the Certificate Generator.

IST-2001-33149 (MRG) 13th September 2001 9

e Certify: Provided the code meets policy r, then A sends B the code c together with a
certificate p that ¢ abides by r.

e Check: B checks the validity of the certificate p with respect to the code and the agreed
resource policy.

e Run: Provided the check was successful, B then runs the code.

Initiate may mean that A and B know each other and enter into email contact; it may mean
that A publicly advertises her code for download or it may mean that either A or B or both
are in fact non-human agents which act according to some predefined protocol.

Policy may mean that A requests a certain resource policy based e.g. on her machine
configuration or current load or on a more general policy prescribed by the manufacturer or
system administrator. It may alternatively mean that A publicly advertises compliance with
certain predefined resource policies, so no negotiation is required.

Certify will always mean that A constructs a certificate which fits a certain predefined
and generally agreed format. This may be done using a combination of automatic inference
and programmer annotation.

Check means that B verifies the correctness of the certificate. The generally agreed format
for certificates must be such that checking is computationally easy.

Run may mean that B manually installs the code ¢ for execution; it may also mean that
the system configuration only allows code with a valid certificate to be run.

5.2 Advances beyond present state-of-the-art

This project draws together a number of threads in existing work, and looks to the future,
building upon them in the novel context of resource management for autonomous mobile
entities. We outline the state of the art in some relevant areas.

The general idea of packaging a piece of code with a formal proof of some of its prop-
erties is not new; it probably first arose within the EC-funded “Logical Frameworks” Basic
Research Action (1989-1991) in the form of Burstall-McKinna’s Deliverables [35]. It was, how-
ever, then ahead of its time since programs were largely monolithic and tied to a particular
application site. The concept received a new boost through the work of G. Necula [42] who
coined the catchy phrase Proof-Carrying Code, harnessed it for certified assembly code and OS
applications, and for the first time demonstrated the technical feasibility of the idea (see also
recently approved projects at Berkeley [15, 43], Princeton [1, 2] and Stevens Institute [16, 5].

What is new in the present project is, apart from the ambition to explicitly target mobile
code, the quantitative aspect of the asserted properties. While the existing Proof-Carrying
Code (PCC) projects concentrate on security and safety — making sure that mobile code does
not do “bad” things — our project focuses attention on the issue of resource use, which is in
many ways a separate concern: well-intentioned and safe code may still consume more re-
sources than a user (or device) may be prepared to offer. We expect to make useful links with
the ongoing PCC work, and we believe that that our distinct perspective will advance this
general area of research. In particular, we expect direct collaboration with Stevens Institute,
which also (uniquely until now) touches on the idea of extending PCC to enforcing resource
bounds. (For comparison, we should mention that the Stevens Institute project consists of
several related ideas and is a smaller-scale project than the one we propose).

IST-2001-33149 (MRG) 13th September 2001 10

We will be able to draw on some of the proof-theoretic infrastructure (to be) developed
in the abovementioned PCC projects; the technical questions concerning the generation of
certificates via type systems and annotations are, however, disjoint.

We plan to draw considerably on current foundational research in the general area of
resource-bounded computation. The relevant results in this field are type-theoretic characteri-
sations of low time and space complexity classes [8, 7, 30, 29]; static determination of time
and space usage of programs typable in such formalisms [18, 32, 34, 11], and first steps to-
wards taking space-efficient optimisations into account [34, 40, 31]. This is a currently active
research area in which some of the project team are already involved, and where we aim to
contribute further advances.

Some existing work on formalising virtual machines, and the JVM in particular [51, 14,
44, 19] will be useful to us. This is mostly concerned with type-safety, and in particular the
role of the Java bytecode verifier. The present project goes into new territory by considering
resources and associated cost models.

Our approach of using a transformational compiler, carrying resource information from
program through to bytecode, builds on current work on systems that maintain type infor-
mation throughout compilation [53, 38, 10] — sometimes termed Type-Directed Compilation.
This in turn links to the concept of Typed Assembly Language [39, 17], where types carry infor-
mation about low-level assembly code. As with the formalisation of virtual machines, most
existing work addresses type-safety rather than resource issues.

A less-closely related area of work is the concept of programming for Active Networks,
studied by the PLAN group at Penn [33]. Packets that travel over an active network carry
out computation as they go; programs in PLAN are executed within the transport fabric
itself. Guaranteeing tight use of resources is vital to maintain network availability, but PLAN
works by constraining the high-level programming language used, rather than generating
proved certificates as we do.

10

IST-2001-33149 (MRG) 13th September 2001 11

6 Community added value and contribution to EC policies

6.1 European dimension

One of the issues driving the proactive initiative on Global Computing is the ubiquity and
sheer scale of the infrastructure that must be developed to support truly dynamic and mobile
computation. The problems that arise, and the solutions to be found, will inevitably reach
beyond national considerations.

The values and benefits anticipated in the vision of mobile computational entities can
only be realised if the technology and standards used have sufficiently wide scope. A col-
lection of distinct islands separated by incompatible protocols will hinder this: it is essential
that research in this area involve international collaboration, and be disseminated to an in-
ternational audience.

6.2 European added value

The participants at the project sites in Germany and the UK provide complementary exper-
tise in relevant areas: neither could successfully complete the project alone. In particular
Hofmann in Munich is doing essential enabling work on type systems for bounded compu-
tational complexity, some in collaboration with Aspinall in Edinburgh.

As well as the specific consortium membership, there is a wider European involvement in
this research area, and in the existing work that we plan to use. Previous EC-funded working
groups like TYPES, CLICS-I and II, and APPSEM provide much of the ground material that
makes a project like this possible. These working groups have been extremely successful in
energising a Europe-wide research community in relevant areas, which we can look forward
to interacting with, drawing from, and contributing to.

6.3 Contribution to EU policies

The IST Work Programme names two specific priorities in support of EU policies on employ-
ment, social cohesion and competitiveness:

o Fostering the convergence of information processing, communications and media;
e ensuring interoperability and coherence at a global level.

This project makes contributions to each of these. Convergence of information technolo-
gies requires a common framework, which can only be developed with a foundational un-
derstanding of how different resource requirements can be supported in a dynamic envi-
ronment. Equally, in a setting where code and other “active” content may move between
platforms, coherence can only be achieved where there are standards for communicating re-
liable guarantees of resource usage. We expect that the work in this project will contribute
knowledge that helps to make this possible.

11

IST-2001-33149 (MRG) 13th September 2001 12

7 Contribution to Community social objectives

The founding motivation for the Global Computing Proactive Initiative is the wish to sup-
port an information infrastructure which can provide continued access to continuously-
updated information sources for automonous mobile entities. Although it is widely an-
ticipated that the technological support for such systems (memory availability, bandwidth,
processing power) will continue to develop at an impressively rapid pace, such systems
will fail to achieve their potential unless the reliability and dependability of the applications
which run on these systems develops apace with them.

Our project will contribute to building public confidence in software-reconfigurable mo-
bile devices by providing solid foundations for a system which will guarantee that applica-
tions quantify the amount of computational resources that they will consume. Without such
foundations the next generation of applications which run distributed over a hardware plat-
form of mobile devices (which, by their nature, have severely limited computational power)
will be prone to the same problems as analogous present-day systems. That is, failure due to
violation of system resource limits is regarded as part of the normal operation of the system
and it is widely understood that systems which are built to this design cannot be relied upon
where the consequences of failure could be grave.

In this regard the present project directly addresses one of the priorities for WP2001 (de-
pendability of systems):

To emphasize trust and security, including information security, privacy, suppliers and
users rights and dependability of systems and infrastructures, as a general requirement
for all technologies, applications and services.

7.1 Improving the quality of life

Dependable mobile computing systems have applications in many aspects of both public
services and private sector commercial activities. To name a few areas of application one
could consider transport, healthcare and law enforcement. Improvements in the efficiency
and effectiveness of these services bring benefits through improving the quality of life for all
members of society, extending far beyond the group whose profession is primarily centred
on the use of information technology.

One of the practical benefits which could flow from a foundational study such as ours
is support for secure bespoke software applications which run on next-generation handheld
computers such as pagers and PDAs equipped with Java virtual machines which are com-
pactly engineered to operate in consumer electronic devices (CVMs). Such handheld devices
will provide low-cost computing platforms. Their adoption of the Java technology for em-
bedded applications already strongly supports well-managed, predicable custom software
development. Our project will develop techniques and tools which would make those ap-
plications predictable and dependable enough (with respect to resource use) for their use in
critical systems.

7.2 Health and safety

The most direct area of application for critical-system mobile computing is in healthcare,
such as in the setting of an accident and emergency department of a hospital. Providing the
attendant clinicians with access to continuously-updated multimedia data from an incoming

12

IST-2001-33149 (MRG) 13th September 2001 13

ambulance would be a marked advance over the present operational mode where commu-
nication with the ambulance is typically limited to voice-only. Putting the capability in the
clinician’s hands to control micro digital video cameras on the ambulance while simultane-
ously receiving streaming input data monitoring the patient’s vital signs would empower
them to make preliminary diagnoses and allow them to begin advance preparations for the
likely programme of treatment. In such a setting any preparatory work can be life-saving.

Only a few years ago such a system would have been impractical because of the high
cost of the hardware components which would be deployed. Now those costs have fallen to
the point where the primary impediment to the development of such advanced healthcare
systems is the difficulty of guaranteeing the dependability of the necessary control software.

The Division of Informatics in the University of Edinburgh has a particularly strong in-
volvement in “e-health”. In March 2001 it hosted a national workshop on Healthcare In-
formatics. This subject is one theme of the high-profile “Dependability of Computer-Based
Systems” Interdisciplinary Research Collaboration in which Edinburgh is a partner and in
which Sannella has some involvement. The University of Edinburgh runs a Medical In-
formatics programme. The Division has close links with Voxar (www.voxar.com), a major
medical applications software provider.

7.3 Improving employment

The planned programme of work contains many opportunities for commercial exploita-
tion of developments of the systems which it will create. Both of the institutions involved
have active support infrastructure for developing technology transfer and entrepreneurial
exploitation. We predict that this will be the likely route for exploitation of the ideas and
new employment opportunities. Our programme of work has opportunities for students at
each of the institutions involved to participate in the project and this would be a potential
source of capable staff.

13

IST-2001-33149 (MRG) 13th September 2001 14

8 Economic development and scientific and technological prospects

The ultimate application of this work is in the development of future global computing plat-
forms, where code is required to move across a variety of distributed devices. As stated in
the call for the proactive initiative:

In future most objects that we work with will be equipped with processors and embedded
software to perform and control a multitude of tasks in our everyday environment.

... The envisioned systems are highly dynamic: physical devices are mobile, connectivity
and bandwidth are changing, computational processes and data can migrate, and
applications come and go. The availability and responsiveness of the resources that are
active in an application at any given point in time are unpredictable and difficult to
control.

Even with computation in every device, connections to the network may intermittent, and
there will inevitably be constraints on computing power. Exploiting these systems requires
foundational understanding of how to manage the interaction between resources and mobile
code.

8.1 Applications

The usefulness and potential range of applications of the research planned in this project is
best illustrated by the examples suggested at the beginning of Part B:

e A provider of distributed computational power may only be willing to offer this service
upon receiving dependable guarantees about the required resource consumption.

o A user of a handheld device, wearable computer, or smart card might want to know
that a downloaded application will definitely run within the limited amount of mem-
ory available.

e Third-party software updates for electronic devices such as mobile phones, household
appliances, or car electronics should come with a guarantee not to set system parame-
ters beyond manufacturer-specified safe limits.

e Requiring certificates of specified resource consumption will also help to prevent mo-
bile agents from performing denial of service attacks using bona fide host environ-
ments as a portal.

Systems like this will certainly be built: what this project aims to provide is a part of the
theoretical infrastructure that can make them reliable and successful.

8.2 Strategic impact

Current European strength in mobile and wireless technologies means that global comput-
ing applications like those above are an important potential market, of real importance for
future competitiveness. This project will contribute new understanding of the principles
and limitations behind such applications, vital for their eventual development into working
products and services.

14

IST-2001-33149 (MRG) 13th September 2001 15

The direct application of the individual workpackages is to generate results and knowl-
edge that we shall pass through to the future projects that will build systems like these on
a large scale. Several of the detailed avenues of research planned are speculative and even
risky, in the anticipation that even if some are found impractical, this “negative” information
is also useful to those trying to build concrete systems. As such, the strategic impact of this
project will be on other, forward-looking, research projects that can draw on our work to
more effectively build working systems for global computing.

8.3 Dissemination strategies

The prime audience for this work is other researchers, and consequently the main route
for dissemination will be technical reports, journal papers and conference presentations by
the participants. This enables rapid and timely publicity among those who can draw most
from the work. We do not rule out short-term impact on programming language design in
industry, but recognise from experience that this is often dependent on non-technical factors
outside our control.

As well as academic papers, we plan to produce an incremental series of prototype and
proof-of-concept implementations, as listed in the workplan: the proof checker and theorem
prover of 2c and 2e; the compiler of package 3; the type checker of 4c; the certificate generator
of 6; and the integration work of package 8. Prototypes like this are an effective way to
demonstrate theoretical results in a practical context, and we shall make them available (with
source code) over the web.

To further promote research in this area, we shall arrange at least one workshop on mo-
bile resource guarantees, associated with a suitable international conference.

15

IST-2001-33149 (MRG) 13th September 2001 16

9 Project workplan

9.1

General description

The workplan consists of the following central tasks:

1.
2.

Define expressive formalised resource policy (cost models): workpackage 1.

Define notion of independently verifiable certificate (resource sensitive program logic
with proof objects): workpackage 2

Foundations for efficient generation of certificates (type systems, identification of use-
ful programmer annotations): workpackages 4, 5, 7

Foundations for alternatives to generation of full certificates (proof-theoretic compres-
sion, probabilistically checkable proofs, game-theoretic approaches): workpackage 9

Where appropriate, each foundational task will be accompanied by a prototype implementa-
tion and case studies to be taken for instance from the JavaCard distribution [36] or the LEDA
project on certified algorithms [23], see task 1f.

Apart from this we can identify the following separate engineering-oriented tasks:

1.

3.
4.

Design of runtime environment including virtual machine, bytecode, implemented
program logic: workpackages 1, 2

Design and implementation of a high-level programming language in which to write
resource-certified code: workpackage 3

Generation and integrated use of formalised certificates: workpackages 6, 8

Parametrisation by arbitrary runtime environment: workpackage 10

The deliverables we aim for are research papers describing our solutions to foundational
problems and a working prototype implementing the above described protocol which will
be made available as free downloadable software.

16

IST-2001-33149 (MRG) 13th September 2001

17

9.2 Workpackage list

Work- |Workpackage title Lead |Person-|Start |End |Phase|Deliv-
package con- |months|month month erable
No tractor No
WP1 Virtual machine and cost 1 13 0 3 Dla, D1b, D1d,
model Dif
WP2 Definition of bytecode logic |1 13 3 20 D2a, D2b, D2c¢,
D2e, D2f
WP3 Design of experimental 1 13 0 27 D3a, D3b, D3d,
high-level language D3e, D3f
WP4 From reasoning principles |1 24 4 23 D4a, D4b, D4c,
to high-level type systems D4e, Daf
WP5 Further high-level and 1 18 7 33 D5a, D5b, D5d,
low-level type systems Dbe
WP6 Generation of certificates 1 17 14 25 Dé6a, Dé6c, D6d,
Deéf
WP7 Advances in high-level 2 21 10 35 D7a, D7b, D7c¢,
type systems D7d, D7e
WP8 |Integration with existing 1 8 27 35 D8a, D8b, D8d
security model
WP9 |Reducing size of certificates;|2 18 25 35 D9a, D9b, D9¢
negotiation vs. proof
WP10 |Mobile virtual machines 1 16 4 34 D10a, D10b, D10c
WP11 |Project management, disse- |1 1 0 36 D11a, D11b, D11c,
mination and evaluation D11d, D11e, D11f,
D11g, D11h, D11i,
D11j, D11k
TOTAL 162

The contribution of unpaid man-months per workpackage per participant is as follows.

Participant 1: WP1 1, WP2 0.5, WP3 1, WP4 0.5, WP5 1, WP6 1.5, WP7 0, WP8 0.5, WP9 1,
WP10 1.5, WP11 1.5.
Participant 2: WP1 0, WP2 0.5, WP3 0, WP4 1, WP5 0.5, WP6 0, WP7 1, WP8 0, WP9 0.5,
WP10 0, WP11 0.

17

IST-2001-33149 (MRG) 13th September 2001 18

9.3 Workpackage descriptions

This section contains a description of each workpackage. The person-months given refer to
the researchers that are employed by the project; additional labour will be provided by the
main investigators themselves.

18

IST-2001-33149 (MRG) 13th September 2001 19

Workpackage description

Workpackage number: WP1 — Virtual machine and cost model
Start date: month 0
Person-months for each participant: 9 pm for participant 1, 4 pm for participant 2

Objectives
Definition of virtual machine platform, formalization of cost model, and collection of ex-
amples.

Description of work

This workpackage provides the basis for the research in the remaining packages. The
overall goal of the project is to build a framework for Java-style downloadable bytecode
equipped with checkable certificates regarding their usage of resources. The executable part
of these will be bytecode for a specific virtual machine, to be defined in 1a. Claims about
resource usage will refer to the cost model defined in 1b, which specifies the amounts of
various kinds of resource that are consumed during execution. For the sake of connecting
with current practice, we will employ a version of the Java Virtual Machine Language. We
plan to investigate the suitability of Microsoft’s .NET intermediate language as an alternative
platform at an early stage (1d). If JVML turns out to be too restrictive for our purposes then
we could switch attention to .NET.

a. Define virtual machine platform. (2 months)
Deliverables: internal technical document
We will define a subset of JVML that is expressive enough to permit straightforward
compilation of the high-level language to be defined in 3, yet small enough that to
be tractable as an object of study, admitting proofs like those to be done in 4. Some
modifications or simplifying assumptions may be required.

b. Formalise cost model. (6 months)
Deliverables: technical report Prerequisites: 1a
Here we will define the amount of resource consumed by running a unit of mobile
code. This will take the form of a semantics for our VM that delivers a cost along with
the computed result, using previous work on formalisation of JVM (e.g. [51], [14], [44]
and/or [19]) as a basis. Ultimately, many different kinds of resource are of interest;
we hope that by considering two different concrete examples — heap space and num-
ber of system calls — the elements of a general account will emerge. There may well
be a division into time-like measures that are additive with respect to independent
components versus space-like measures where the cost of performing two indepen-
dent computations is the maximum of the costs of the components. In practice, costs
depend on the implementation of the JVM with techniques such as just-in-time opti-
mization potentially leading to dramatic improvements. Initially we will assume that
no optimizations are done, but see 7b. Included in the deliverable will be a number of
illustrative examples.

c. Milestone: Completion of cost model. Prerequisites: 1b

19

IST-2001-33149 (MRG) 13th September 2001 20

d. Investigate .NET as an alternative to JVML. (3 months)
Deliverables: internal technical document Prerequisites: 1b
Microsoft’s .NET platform provides a virtual machine and runtime environment that
offers an alterative to JVM for supporting Java and other languages [24]. With the sup-
port of HP and Intel the NET intermediate language is now being taken through the
ECMA standardisation process. A benefit of JVML is that at present implementations
are widely available, but it is designed specifically to support Java, and its built-in sup-
port for Java’s type system may be a barrier to progress. Then .NET, which is designed
to support a wide variety of languages and so offers extra flexibility, may turn out be
more appropriate for our purposes. Here we plan to compare the suitability of .NET
with JVML for the project.

e. Milestone: Decision to use JVML as planned or switch to .NET. Prerequisites: 1d

f. Collect some representative examples. (2 months)
Deliverables: technical report
Here we will compile a set of examples to use as test cases throughout later stages of
the project. A good source of interesting algorithms and data structures is the LEDA
project [23]. The amount of memory available on a smart card is severely restricted,
making this an area where resource guarantees like those we aim to supply will be
of interest. This means that JavaCard [36] is another source of interesting examples,
based, for instance, on the e-cash examples from the JavaCard documentation or med-
ical information systems such as [25].

The research in this package provides the first part of the infrastructure on which later
packages will build.

Deliverables
D1a, D1b, D1d, D1f

Milestones and expected result
Completion of cost model
Decision to use JVML or switch to .NET (expecting to use JVML)

20

IST-2001-33149 (MRG) 13th September 2001 21

Workpackage description

Workpackage number: WP2 — Definition of bytecode logic
Start date: month 3
Person-months for each participant: 7 pm for participant 1, 6 pm for participant 2

Objectives
Development of bytecode logic, including language of assertions and proof rules, and a
proof checker.

Description of work

The purpose of this workpackage is to provide a language (2a) for making assertions
about the resource usage of bytecode programs with respect to the cost model defined in 1b,
and a logic (2b) for proving such assertions. The certificates that will be attached to dowload-
able bytecode will be proofs in this logic (but see 9). Certificates must be easily checkable
by the recipient, and the implementation of the proof checker (2c) will be part of the trusted
code base (TCB); thus the logic and its implementation must be simple and generally accept-
able. To ensure the quality of the logic and its implementation, we have included related
tasks (2e and 2f) whose main underlying aim is assessment of these components, and do not
directly feed into later work.

a. Develop language of assertions. (2 months)
Deliverables: technical report Prerequisites: 1be
We will develop a logical language for asserting resource-related properties of byte-
code programs. This will probably take the form of a Hoare-style logic, with assertions
making explicit reference to code fragments. The expressiveness and convenience of
the notation will be checked using examples from 1b and its semantics will be formally

defined.
b. Develop proof rules. (3 months)
Deliverables: conference/journal paper Prerequisites: 2a

We will develop rules for proving assertions expressed in the language of 2a. The goal
is rules that are simple, without computationally intractable conditions, that enable a
large class of interesting assertions to be proved in a relatively straightforward way. We
aim to generate proofs automatically via the use of novel type systems (see 4) so these
rules will not normally be used directly by users (although see 7a). Understandability
is nevertheless important to instill confidence in the integrity of our framework, and
the length of proofs is also an important issue in practice (see 9). It will be essential to
demonstrate that the rules are sound with respect to the cost model in 1b, and we will
also attempt to check relative completeness of certain fragments.

c. Implement a proof checker. (4 months)
Deliverables: prototype implementation Prerequisites: 2b
Given an ostensible proof built using the rules in 2b, we need to be able to efficiently
and automatically check that it is valid. For this purpose, Necula [41] uses Edinburgh

21

IST-2001-33149 (MRG) 13th September 2001 22

LF [26], a generic type-theoretic framework for encoding and checking proofs. De-
pending on how complicated the logic is, we will take the same approach or alterna-
tively handcraft a proof checker.

Later work (for example 6d) requires that a rudimentary metalanguage be provided,
so that lemmas can be proved and then referred to, or for construction of proofs by
primitive recursion. Basic facilities of this kind will be provided. The estimate of work
required is under the assumption that this will be relatively straightforward. Some care
is required to prevent denial of service attacks based on the creation of huge proofs.

d. Milestone: Completion of implemented logic. Prerequisites: 2c
e. Implement a theorem prover. (3 months)
Deliverables: experimental implementation; case studies Prerequisites: 2b

Here we plan to experiment with the use of an interactive theorem prover such as Is-
abelle [48] for generating proofs. This will give access to the features provided by such
provers, e.g. context management, goal-directed proof search, and built-in decision
procedures. The main point of this work is to explore some of the ramifications of the
choice of proof rules in 2b; in practice proofs will be generated by other means, see 4.

f. Optional: encode VM semantics in theorem prover. (1 month)
Deliverables: experimental implementation Prerequisites: 2b
Here we would encode the entire virtual machine with its semantics in a general-
purpose theorem prover such as PVS [45], and then use this to formally establish that
the proof rules in 2b are sound. The aim would be to explore some of the consequences
of our earlier choices in order to validate these decisions. This could be carried out as a
final year student project under the supervision of project personnel; this supervision
is what is allowed for in the manpower estimate.

The research in this package is a mixture of design, assessment, and implementation
work. A working proof checker (2c) will be an essential component part of the final overall
system, and the quality of the logic that it implements is vital to the success of the entire
framework.

Deliverables
D2a, D2b, D2¢, D2e, D2£

Milestones and expected result
Completion of implemented logic

22

IST-2001-33149 (MRG) 13th September 2001 23

Workpackage description

Workpackage number: WP3 — Design of experimental high-level language
Start date: month 0
Person-months for each participant: 9 pm for participant 1, 4 pm for participant 2

Objectives
Design and implementation of high-level programming language targeted at the bytecode
language of WP1, to provide a test bed for WP4-7.

Description of work

The preceding workpackages provide a grounding for resource guarantees on bytecode;
but this is too low a level for practical programming. The objective of this workpackage is to
write a compiler for a high-level programming language targeted at the bytecode language
of 1a. This will provide a test bed for the higher-level developments of packages 4,5, 6 and 7.
The compiler should be small enough to allow for rapid progress, yet sufficiently expressive
to demonstrate that scaling up to real languages is possible.

The most distinctive requirement on the compiler is transparency: it must be possible to
calculate how a particular fragment of high-level code will transform into bytecode, and
what its resulting resource usage will be according to the cost model of 1b. This is vital to
support the language-level approach of following workpackages.

As this compiler is to provide a framework for later development, it should also be ex-
tensible. Other packages aim to add functionality, like resource types (4c) and generation of
certificates (6a). This must be possible without disturbing the basic action of the compiler.
To meet these requirements the compiler needs an open and well-documented architecture,
in sufficient detail to support reasoning (formal and informal) about its behaviour (4e). Con-
sequently, the technical documentation produced by this workpackage is of particular im-
portance, providing reference material for later work.

a. Define a base programming language. (1 month)
Deliverables: internal technical document Prerequisites: 1a
The language should be strongly typed, providing at least functions and recursive
datatypes. It needs an accompanying operational semantics, and information about
the intended mapping to bytecodes.

b. Write a compiler for the base language. (4 months)
Deliverables: prototype implementation; technical documentation Prerequisites: 3a,1b
The important issue here is not to produce a high-grade optimising compiler, but rather
one that is predictable, clearly written, and well-documented, to support the work to
follow. The documentation should include discussion of the anticipated resource usage
of bytecodes generated by the compiler.

c. Milestone: Completion of implemented programming language. Prerequisites: 3b
d. Extend with immutable objects and higher-order functions. (4 months)
Deliverables: prototype implementation; technical documentation Prerequisites: 3b

These additional features make the language more expressive, and will assist more

23

IST-2001-33149 (MRG) 13th September 2001 24

advanced parts of later packages, like 7c. Like the base language and compiler, these
extensions need comprehensive documentation: covering both the semantics of the
language features themselves, and their compilation to bytecode. This particularly
important for higher-order functions, as they typically fit less well with existing object-

style VM’s.
e. Implement well-understood optimisations in the compiler. (3 months)
Deliverables: prototype implementation; technical report Prerequisites: 3b

It is sensible to extend the compiler with optimisations whose effect can be determined
statically. Example are some uses of in-place update, or the replacement of tail recur-
sion by iteration. Exactly what is possible will depend on the chosen bytecode and its
cost model — because of the need to keep track of resource usage in a provable way,
this is a tighter constraint than for most compilers.

f. Optional: Incorporate mutable state and concurrency. (1 month)
Deliverables: prototype implementation; technical documentation Prerequisites: 3d
Although existing virtual machines provide good support for both of these features,
they are less amenable to the kind of formal reasoning presented here. Concurrency
in particular has a complex interaction with resource usage. This optional component
is closely tied to 7e. This could be carried out as a final year student project, and the
manpower estimate is for supervision time.

Deliverables
D3a, D3b, D3d, D3e, D3f

Milestones and expected result
Completion of implemented programming language

24

IST-2001-33149 (MRG) 13th September 2001 25

Workpackage description

Workpackage number: WP4 — From reasoning principles to high-level type systems
Start date: month 4
Person-months for each participant: 8 pm for participant 1, 16 pm for participant 2

Objectives
Develop reasoning principles and type systems for characterising resource usage, includ-
ing a typechecker and soundness proofs.

Description of work

This workpackage builds on the foundational strands in the first three packages. Be-
ginning from the experimental high-level language designed in 3a, we investigate ways of
expressing resource constraints and proving that they are satisfied by the compiled program,
according to the cost model of 1b. We begin from reasoning principles, perhaps related to the
bytecode logic, and then move towards type systems. The notion of type is a very broad one:
type-checking can be used to enforce simple consistency checks (that the addition operation
+ is always applied to two numeric arguments) but also rich semantic notions (such as in-
terference [50], presence of side-effects [52], and resource usage as proposed here or studied
in [31]).

Our approach is to stick with type systems where the type-checking problem is decidable,
whereas the problem of proving that a resource constraint is satisfied will generally be un-
decidable. This means that we accept an unavoidable gap (the “slack”) between the set of
programs which are typable in a resource type system and the larger set of programs which
satisfy the resource property of interest. For many natural examples, though, the resource
bounds are met for obvious reasons which are in the scope of our type systems. The craft of
designing type systems lies in capturing these natural examples and minimising the slack,
while retaining a practical notion of type and practical type-checking algorithms.

a. Investigate reasoning principles for resource usage. (6 months)
Deliverables: technical report; case studies Prerequisites: 1b,3a,3b
Here we will investigate the resource behaviour of the constructs in our high-level
language from 3. This involves program analysis: we will identify natural examples
of programs which meet different kinds of resource bounds, and try to establish this
formally by explaining how the compiler from 3b compiles these examples to byte
code, and proving how the resulting byte code meets the resource bounds, using the
bytecode logic. In effect, we are looking for high-level derived rules and reasoning
principles for the bytecode logic, which apply directly to the high-level language. The
results of this work will suggest patterns and constructs that should be built into the

type systems.
b. Develop a type system for space-like resources. (4 months)
Deliverables: working design document Prerequisites: 4a

The first type system will be one for ensuring space-like resource bounds. There is
some relevant recent research here, including [31] which describes a type system with
a special resource type which corresponds to a unit of reusable space. Hughes and

25

IST-2001-33149 (MRG) 13th September 2001 26

Pareto [32] describe a type system for programming in bounded space. Crary and
Weirich [18] have a type system which provides explicit bounds for time usage: the
run time of a function can be expressed as a function of the input. We want to extend
and adapt these systems, in particular investigating ways of attaching explicit bounds
on space usage. Other resources, such as file handles, network connections, or hard-
ware resources, could be treated in a similar way to space usage in these systems; this
will be a novel approach and should help to eliminate a common class of program

failures.
c. Implement a typechecker for the compiler described in 3b. (4 months)
Deliverables: prototype implementation Prerequisites: 3b,4b

To test our type systems on real examples, we must implement a typechecker for our
high-level language. In a production compiler, implementing a typechecker can be a
considerable task, especially if there is significant inference involved in type-checking.
At the beginning, we will want to separate most of the issues concerning type infer-
ence, perhaps requiring extra type annotations in the source language. This means that
our type-checking algorithm will be straightforward to implement, especially if we
have a syntax-directed system where the choice of typing rule is uniquely determined
by the syntax of the term we wish to type-check. We will defer more sophisticated type
inference until 7d.

d. Milestone: Implemented type system for space-like resources. Prerequisites: 4c
e. Prove soundness over the cost model. (6 months)
Deliverables: technical report Prerequisites: 4b

It is natural to ask that our type systems should bear a close relationship to the cost
model, so that they can be understood intuitively. Soundness is fundamental: a typing
assertion should imply the intended cost constraints, as expressed by our model. Since
the cost model applies to the byte code, we must reason about the translations made
by the Compiler implemented in 3b. The task here is to conduct a detailed pencil and
paper proof to validate this claim.

f. Prove soundness over the bytecode logic. (4 months)
Deliverables: technical report; conference/journal paper Prerequisites: 4b
By the previous part we have a direct connection with the cost model, we know that
our type system can also be sound with respect to the bytecode logic for the compiled
byte code. In other words, a typing assertion should imply a corresponding proposi-
tion in the bytecode logic. The job here is to prove that. It is also something of a test
for the bytecode logic, since that is expressed in rather different terms than the type
system. Therefore insights from the type system development may lead to tweaks in
the proof rules for the bytecode logic, although in general the latter should be stronger
(i.e. capable of proving more).

g. Milestone: Soundness proofs. Prerequisites: 4e,4f

The research in this package is a combination of improving existing work and combin-
ing several different ideas, previously treated in separation and with different motivations.
Drawing together these strands is a vital step towards our vision.

26

IST-2001-33149 (MRG) 13th September 2001

27

Deliverables
D4a, D4b, D4c, D4e, D4f

Milestones and expected result
Implemented type system for space-like resources
Soundness proofs

27

IST-2001-33149 (MRG) 13th September 2001 28

Workpackage description

Workpackage number: WP5 — Further high-level and low-level type systems
Start date: month 7
Person-months for each participant: 9 pm for participant 1, 9 pm for participant 2

Objectives
Generalise type systems in WP4 to accommodate more general notions of resource, and
develop type systems for expressing resource bounds at the byte-code level.

Description of work

This workpackage continues and expands on the work begun in 4. The idea here is to be-
gin to generalise the systems for space-like resources studied there to consider more general
notions of resource. As a particular case, we will examine type systems for expressing limits
on parameter values (5a).

This package also broadens the scope of the type systems to consider low-level type sys-
tems for expressing resource bounds at the level of the VM byte code. Although our main in-
terest is in ensuring that resource bounds are met for programming in high-level languages,
a way to help ensure this is to push the resource type information as far down as we can,
and annotate the bytecode with additional typing information.

a. Develop a type system for expressing limits on parameter values. (4 months)
Deliverables: technical report; conference paper Prerequisites: 4a
As one of the potentially most useful concepts in our generalised concept of resource
bounds, we want to have type systems which express restrictions on parameter val-
ues for functions. This generalises the most common case needed in programming:
that of ensuring that an array access does not violate the bounds of the array. One
particularly general way of achieving this is with so-called dependent types where the
type expression can contain ordinary terms from the language. In practice, full depen-
dent types lead to complex type systems which are almost always undecidable, but
restricted forms of dependent types may be useful here. There is interesting related
recent research [55, 6] which may help here. Apart from dependent types, there are
other novel type systems for programming languages which propose ideas we might
adapt, such as the notion of shape [9].

b. Extend soundness proofs for parameter value constraints (3 months)
Deliverables: technical report Prerequisites: 5a,4e,4f
The task here is to replay the proofs from 4e and 4f for the new kinds of resource type.
This will exercise the generality of our framework; we hope that the earlier proofs will
already be amenable to this kind of generalization.

c. Milestone: Type system for parameter value constraints with soundness proofs.
Prerequisites: 5b

d. Develop resource type systems for bytecode. (6 months)
Deliverables: conference/journal paper Prerequisites: 1a,2b,4a,4b,5a
Here we want to invent low-level resource type systems for the bytecode itself. There

28

IST-2001-33149 (MRG) 13th September 2001 29

are several reasons to want to do this. First, because the type system will have a closer
connection with the machine than the high-level type systems, we can have greater
confidence that it truly reflects the resource usage of the machine (especially if later
work in 6 and 8 draw on this). Moreover, it establishes a common resource typing level,
that we might utilise in generalizing the high-level type systems to different languages
and language constructs (for example in 7c).

There are also specific formal properties that a bytecode type system enables. A low-
level type system makes it possible to state and prove a type preservation property for
a compiler: that a well-typed high-level language compiles to well-typed bytecode.
And we can formalize the type preservation of bytecode optimisations using a bytecode
type system. In our setting, well-typed means that relevant resource bounds are met,
and type preservation will mean that the same resource bounds are met.

Work on this subtask will include design of the type systems for the bytecode, perhaps
adopting the ideas from 4b and 5a. It could also include formal proofs of soundness
for the the bytecode logic, analogous to 4e and 4f.

This subtask is related to existing work on applying high-level programming language
type systems to low-level assembly code [39, 17] and work on type systems for Java
bytecode [51]. A more direct connection is with recent work on applying space-bound
type systems to low-level assembly code [5].

e. Implementation of the bytecode type systems (5 months)
Deliverables: experimental implementation Prerequisites: 2b,5d
The task here is to implement the type system from above. The implementation will
consist of a concrete way to represent bytecode typing annotations, along with a type-
checker which verifies whether such an annotation is valid. This implementation could
then form part of the integration with our chosen virtual machine, which will be un-
dertaken in 8.

f. Milestone: Implemented resource type system for bytecode. Prerequisites: 5e

Deliverables
Db5a, D5b, D5d, D5e

Milestones and expected result
Type system for parameter value constraints with soundness proofs
Implemented resource type system for bytecode

29

IST-2001-33149 (MRG) 13th September 2001 30

Workpackage description

Workpackage number: WP6 — Generation of certificates
Start date: month 14
Person-months for each participant: 11 pm for participant 1, 6 pm for participant 2

Objectives
Define format of certificates and implement a certificate generator. Experiment with reduc-
ing size of certificates.

Description of work

This package is concerned with generating mobile guarantees of resource boundedness.
The guarantee, or certificate, is what will be shipped together with the code, as irrefutable
evidence for the consumer that the code obeys the desired resource constraints. Here we
consider the format of the certificates, and their generation.

a. Implement a certificate generator. (6 months)
Deliverables: prototype implementation Prerequisites: 4c
Given a program which is typed in one of the high-level type systems developed in
4 and 5, we want to automatically generate a certificate which provides manifest evi-
dence of this fact. The certificate contains a proof in our program logic. Here we must
design a format for certificates (perhaps based on XML), and implement a software
component which generates these from type-checked programs.

b. Milestone: Certificate generator. Prerequisites: 6a
c. Smaller certificates with formalized soundness proof. (5 months)
Deliverables: report on experimental implementations Prerequisites: 6a,4f

We expect that certificates which encode full proofs in our program logic may be too
large to ship routinely with programs. Therefore we will look at ways of reducing
the size of shipped certificates. One idea is to formalise the soundness proof in 4f, and
ship this once only (or build it into the VM’s security manager, see 8). Then instead
of putting a full proof in a certificate, we just enclose a typing derivation in the type
system: the full proof can be recreated in the client by plugging the typing derivation
into the generic soundness proof and normalising, treating the soundness proof as a
lemma. In this task, we want to experiment with this approach to test its feasibility.

d. Smaller certificates with prooflets. (5 months)
Deliverables: report on experimental implementations Prerequisites: 6a,4f
Another idea for reducing certificate size is to ship a “prooflet” — a small piece of code
which can re-create the proof in the client, when (or if) it is called to do so. This is simi-
lar to the idea of a tactic in automated theorem proving. This novel suggestion requires
some careful design, because of the resource implications for executing the prooflet it-
self. One solution would be to sandbox the prooflet, to ensure that it could not violate
resource bounds. (Notice that the code consumer may well require a different set of
resource bounds to be satisfied for the proof-checking phase).

30

IST-2001-33149 (MRG) 13th September 2001 31

e. Milestone: Experiments with reducing certificate size. Prerequisites: 6¢,6d
f. Optional: implement a component to emit bytecode typing. (1 month)
Deliverables: prototype implementation Prerequisites: 5d,4c

Since we plan to have resource type systems also at the level of VM bytecodes accord-
ing to 5d, then it will be a realistic alternative to enclose bytecode typing derivations
in the resource certificates. Again, we can call on a formalized soundness proof for the
bytecode typing to recreate complete proofs in the program logic. This is liable to be
easier than the approach in 6c, since the bytecode is closer to the program logic. It also
has the advantage that it is not tied to a particular high-level language and compiler.
However, typing derivations in the bytecode will be much larger than those in the
high-level language, and may be comparable to the size of the plain certificates in 6a.
This could be carried out as a final year student project, and the manpower estimate is
for supervision time.

The work in this package is mainly applied research, involving the design and construc-
tion of software components. Working software from this package will be an essential part
of the final overall system.

Package 9 is dedicated to advanced research topics with the motivation of reducing cer-
tificate size. Parts 6¢ and 6d in this workpackage address this issue. We expect these ap-
proaches to be fruitful but not the final word; the results will be useful input for 9.

Deliverables
Dé6a, D6c, D6d, Dé6f

Milestones and expected result
Certificate generator
Experiments with reducing certificate size

31

IST-2001-33149 (MRG) 13th September 2001 32

Workpackage description

Workpackage number: WP7 — Advances in high-level type systems
Start date: month 10
Person-months for each participant: 6 pm for participant 1, 15 pm for participant 2

Objectives
Improve expressiveness, user-friendliness, and accuracy of the type systems developed in
WP4 and WP5.

Description of work

The goal of this workpackage is to improve expressiveness, user-friendliness, accuracy
of the type systems developed under 4 and 5.

a. Improving accuracy of type system by allowing for user interaction. (3 months)
Deliverables: technical report Prerequisites: 4a,4b,5a
The aim here is to augment the basic type system from 4 with user annotations in the
form of supplied proofs based, for example, on the derived rules from 4a. Also more
abstract annotations such as loop invariants could be considered here.

If very restrictive resource bounds are imposed (e.g. hard limits on stack size) we might
have to give the programmer the possibility to implement certain critical methods
directly in bytecode with corresponding certificates obtained by hand, supported by
a theorem prover. The task here will be to enable smooth integration of such user-
supplied and -certified routines with high-level code.

b. Adaptation of bound generation/certification to optimisations (5 months)
Deliverables: research paper; prototype implementation Prerequisites: 3e
Usually, applicability of compiler optimisations (such as those mentioned in 3e) is de-
cided on an ad-hoc basis with correctness of the optimisation being the only criterion.
Whether or not an optimisation has taken place is not made visible to the user, it is only
through improved overall runtime and space behaviour that the user becomes aware
of them.

The purpose of this task is to identify static approximations as to the applicability of
certain optimisations and to take their effect into account when calculating resource
bounds and certificates. When a tail recursive definition is transformed into an iter-
ation, no memory space for maintaining a stack should be counted when computing
resource estimates. Similarly, we must report and appropriately account for the possi-
bility for reusing a temporary file as opposed to creating a new one.

In order to be able to compute resource bounds statically and to retain transparency for
the user, it becomes necessary to delineate the applicability of an optimisation by well-
defined static criteria. For instance, it will not be sufficient to implement optimisation
of tail recursion by discarding the stack frame of the caller at runtime in case the called
function is in tail position, because the effect of this on resource usage depends on
dynamic aspects known only at runtime. We rather have to syntactically characterise
tail recursion and transform the code before actually running it.

32

IST-2001-33149 (MRG) 13th September 2001 33

Similar but more challenging is the situation with garbage collection. In order to be
able to take its effect into account we will have to consider static approximations such
as the type system in [31].

This substantially extends the approach to compiler optimisation in [41, 49] where it
is shown how correctness proofs for an unoptimised program can be transformed into
proofs for the optimised program by composing with a general proof that the optimi-
sation is semantics preserving.

In order to demonstrate feasibility it will be sufficient to restrict attention to two repre-
sentative optimisations, for example tail recursion as iteration and static memory reuse

in the style of [31].
c. Extend basic type system to object-oriented language (6 months)
Deliverables: research paper; extension of implementation Prerequisites: 3d,4b,5a

The basic type system developed in 4 will be likely to encompass only the first-order
side effect-free fragment of our high-level language. The aim here is to generalise to ac-
count for object-orientation. While we may be able to draw inspiration from encodings
of object-oriented languages in functional ones [13], genuine innovation is required for
two reasons. Firstly, these encodings invariable rely on advanced features such as
higher-order functions and (mixed-variance) recursive datatypes; secondly the compi-
lation of object-oriented features will make use of the object-oriented structure of the
VM rather than following an encoding. Our strategy will be to extend the previous
work to encompass higher-order functions (perhaps restricted to linear [54, 29]) and
then tackle object-orientation proper.

Another issue that might arise would be an extension of the previous work to more
object-specific resources such as “number of class and interface loads required”.

d. Type inference (6 months)
Deliverables: research paper; implementation (optional) Prerequisites: 4b,5a,7a,7b
The basic type system developed under 4 and the extensions developed under 7a and
7b may rely on any number of user-supplied type annotations, for instance, recursive
functions might be annotated by suggested bounds on their resource usage which are
merely certified, cf. [18].

The aim here is to develop ways to infer such annotations automatically to a certain de-
gree based on decision procedures for arithmetic inequalities [32], automata-theoretic
methods [47], unification [37], program analyses, fixpoint methods [46], etc.

e. Extend basic type system to mutable state and concurrency (1 month)
Deliverables: technical report Prerequisites: 3f
We will merely assess and elaborate the requirements for this extension possibly lead-
ing to future work.

This workpackage forms part of the scientific core of the proposal. Successful completion
will demonstrate that our proposal extends beyond the basic feasibility validated in 1, 2, 4.
The goals set out here are ambitious but realistic. In case of difficulty or progress slower
than expected it is possible to scale down by e.g. dropping the parts of 7b related to memory
management.

33

IST-2001-33149 (MRG) 13th September 2001

34

Deliverables
D7a, D7b, D7c, D7d, D7e

Milestones and expected result

34

IST-2001-33149 (MRG) 13th September 2001 35

Workpackage description

Workpackage number: WP8 — Integration with existing security model
Start date: month 27
Person-months for each participant: 6 pm for participant 1, 2 pm for participant 2

Objectives
Implement resource manager and relate proof-checking infrastructure to present-day secu-
rity management.

Description of work

The preceding workpackages have detailed a proof-checking infrastructure which ad-
vances the state of the art in security management capabilities. This workpackage will enrich
our understanding of this infrastructure by relating it to present-day security management.

a. Relationship with existing security management (4 months)
Deliverables: technical report Prerequisites: 5e,6a

One direct advantage of a security infrastructure based on certificates and proof would
be the ability to safely disengage the existing security manager for any downloaded
code which can be shown not to offer any potential threat to the host cf. [20]. Thus
a dynamic (run-time) security management overhead would be replaced by a static
(load-time) security assessment cost for those mobile code routines whose certificate
guarantees that it satisfies the resource requirements of the host. Where the attached
certificate cannot provide this guarantee (or cannot be shown to provide this guarantee)
then either all or some parts of the existing dynamic security management code will
be needed to supplement the static security assessment.

b. Experimental implementation (2 months)
Deliverables: experimental prototype Prerequisites: 2c,8a,5e,6a

A prototype implementation of a certificate-led resource manager as outlined in Sec-
tion 5.1 will be produced. This will provide a platform for further speculative research
on developments in static security assessment. Recent work on Java-based agent mod-
els which work with the Java 2 security model [22] would provide the basis for further
development here.

c. Milestone: Implemented resource manager. Prerequisites: 8b
d. Resource typing of native methods (2 months)
Deliverables: operational techniques Prerequisites: 1b,5e

It will be necessary to have a least a conservative estimate of the likely cost of invok-
ing the native methods of the virtual machine (that is, those methods which have no
bytecode representation). We will develop estimation techniques for this purpose.

Deliverables
D8a, D8b, D8d

35

IST-2001-33149 (MRG) 13th September 2001

36

Milestones and expected result
Implemented resouce manager

36

IST-2001-33149 (MRG) 13th September 2001 37

Workpackage description

Workpackage number: WP9 — Reducing size of certificates; negotiation vs. proof
Start date: month 25
Person-months for each participant: 9 pm for participant 1, 9 pm for participant 2

Objectives
Explore alternatives to 100%-guaranteed certificates when these are infeasible

Description of work

This package is concerned with exploring possible alternatives in situations where the
generation and transmission of 100%-guaranteed certificates is unfeasible for one of the fol-
lowing reasons:

e certificates exist, but are prohibitively large

e certificates can in principle be obtained, but only at prohibitively high cost (time and
human resource needed for theorem proving, runtime of program analyses)

e certificates can in principle not be obtained due to influence of unknown or merely
estimable parameters.

This workpackage is more tentative and visionary than the other ones. Progress will be
strongly dependent on the results obtained in the other packages and the particular qualifi-
cations of the research assistants.

A minimum deliverable will consist of visionary articles fleshing out the ideas thus en-
abling future interaction and perhaps collaboration with others working on these issues.

a. Study the size-reducing effect of proof-theoretic methods (4 months)
Deliverables: research paper Prerequisites: 2c,6c,6d,6f

As previously mentioned we will enable the use of lemmas and tactics, low-level type
systems for bytecode, and programmable tactics in order to reduce the size of certifi-
cates. This task is concerned with analysing these methods in view of their effect on
size reduction and possible improve them. We always assume that certificates are be-
ing compressed so that certain size reductions performed on raw proofs might not ac-
tually show up as such. For instance, contracting non-parametrised definitions might
not lead to any reduction after Ziv-Lempel encoding.

b. Interaction-based probabilistic certification (7 months)
Deliverables: research paper Prerequisites: 6a
Here we plan to depart from the requirement of endowing mobile code with mathe-
matical proofs of resource bounds.

The general scenario will be as follows: A sends B a piece of code to be executed re-
motely. On the basis of the code and possibly random data B computes a challenge
(in the style of “please give letters 3 and 7 of your online password”) to which A must
respond. B may then accept the code, reject it, or set another challenge.

37

IST-2001-33149 (MRG) 13th September 2001 38

The theory of probabilistically checkable proofs [3, 4] shows how based on a concept of
polynomially-sized and polynomial time verifiable certificate (which we can assume
here) such a protocol can be devised so that challenges have logarithmic size, responses
have constant size, and the probability that A can give a correct response to a challenge
although no certificate exists is <50% so that k independent rounds lead to an error
probability of < 2k,

In spite of some encouraging recent work [27] the overhead on the side of A remains
considerable. We plan to investigate feasibility of this approach in our context and
study possible relaxations, for instance allow for larger size responses. We emphasize
that our concern is not to advance the theory of probabilistically checkable proofs, but
exclusively to harness it for the purpose of certification of mobile code.

c. Negotiation in the absence of rigorous proofs (7 months)
Deliverables: visionary paper; prototype implementation (optional) Prerequisites: 2a,2b
The above-described protocol still requires that the sender A actually possesses a proof
that his program meets the required bounds. It only reduces the amount of information
that is actually interchanged. For the case where proofs are too difficult or impossible
to obtain, we propose to investigate more liberal negotiation processes like the follow-
ing:

e B provides a range of input parameters, A sends certificate which works only for
this range.

o B challenges specific parts of the program. E.g. “you’ve got a write command in
line XXX. Please convince me that this is fine.” A then responds with a proof with
assumptions that B may challenge again or accept.

o To cope with resource usage depending on unpredictable extraneous factors such
as interaction patterns in concurrent systems or number of cache misses, we pro-
pose to investigate the use of probabilistic models such as PEPA [21, 28]. A and B
would agree upon a probabilistic model to be used; A would then carry out the
modelling and would provide B with verifiable results obtained in this way, for
instance in the form of probability matrices or selected rows/columns thereof.

This package is appreciably more risky than the previous ones as we move further away
from well-understood terrain in programming language theory. However, the possible re-
ward will be high, as size of certificates and overhead in their production forms the biggest
foreseeable obstacle against wide practical use of resource certification. If it can be success-
fully overcome or at least the necessary foundations laid, we will have paved the way for
practical resource certification in the context of global computing.

Deliverables
D9a, D9b, D9c

Milestones and expected result

38

IST-2001-33149 (MRG) 13th September 2001 39

Workpackage description

Workpackage number: WP10 — Mobile virtual machines
Start date: month 4
Person-months for each participant: 14 pm for participant 1, 2 pm for participant 2

Objectives
Investigate extension to support downloadable virtual machines

Description of work

This workpackage develops a thread of investigation into a mechanism to support mo-
bility between computational environments. As with 9 this investigation is visionary and
speculative. Here we are concerned with a promising technology which could provide a
way to enable greatly increased interoperability of mobile software. The foundational tech-
nology is the mobile virtual machine, a bytecode interpreter which is itself downloaded before
the bytecode application which is to be interpreted by it. Mobile virtual machines can be
realised as circlets [12]. One use of this technology would be to allow more advanced vir-
tual machines to be installed between high-level language programs and the JVM. Another
would be to perform upgrades on pre-installed micro virtual machines.

a. Understanding the practical effectiveness of the technology (4 months)
Deliverables: internal technical report Prerequisites: 1b

To add another layer of software interpretation to the static virtual machine model
calls into question the practical usefulness of this technology in terms of system per-
formance. To consider that the target platform of the mobile virtual machine might be
a handheld device further heightens this concern. This task will investigate the use
of re-configurable hardware as an implementation technology for this concept. Re-
configurable hardware offers the promise of performance close to that of circuitry but
without the same specificity.

b. A metalanguage for virtual machines (6 months)
Deliverables: research paper Prerequisites: 10a,4b,5d

Another tool to provide partial support for this technology would be a configuration
language (or metalanguage) for describing the configuration of next-generation con-
figurable virtual machines. These VMs could then be subject to just-in-time performance
tuning just before bytecode interpretation by setting or disabling certain optimisation
methods. Recent developments in Java technology such as the Java 2 Micro Edition
(J2ME) release already define the notion of a configuration as a virtual machine and a
minimal set of core class libraries and APIs. A J2ME configuration specifies a gen-
eralized runtime environment for consumer electronic and embedded devices. Our
configuration language would extend this through reference to our virtual machine

cost model.
c. Relationship to resource boundedness (6 months)
Deliverables: research paper Prerequisites: 10b

39

IST-2001-33149 (MRG) 13th September 2001 40

Certain optimisations which are enabled by some virtual machines (and not by others)
will have an effect which is still significant at the level of our abstract cost model of
the virtual machine. In this study we will develop a cost model for mobile virtual
machines. This could be developed from a series of simpler models which are then
revised and extended. Particular examples of simple virtual machines which could be
used in this study include a classical JVM and a CVM. The CVM is a full-featured,
Java 2 virtual machine targetted for the next generation of consumer electronic and
embedded devices. Typically, these devices run a 32-bit microprocessor/controller and
have more than 2.0Mb of total memory for the storage of the C virtual machine and
libraries.

Deliverables
D10a, D10b, D10c

Milestones and expected result

40

IST-2001-33149 (MRG) 13th September 2001 41

Workpackage description

Workpackage number: WP11 — Project management, dissemination and evaluation
Start date: month 0
Person-months for each participant: 1 pm for participant 1, 0 pm for participant 2

Objectives
Project management, dissemination and evaluation

Description of work

The project requires close collaboration between the two sites and provides many oppor-
tunities for dissemination. The purpose of this workpackage is to ensure that collaboration
proceeds effectively and with attention to internal and external evaluation, while being able
to take advantage of a wide variety of forms of dissemination for the results.

Project management plans are described in Section 9.7. The small size of the project en-
ables decisions about the overall technical direction of the project to be taken in close consul-
tation with all of the people involved. Milestones and periodic meetings provide checkpoints
where progress can be reviewed and plans adjusted if necessary. Meetings for technical co-
ordination will be as follows:

o A kickoff workshop in month 2 plus workshops in months 11, 23 and 35. These will be
attended by all project personnel, insofar as possible. One prominent non-EU expert
will be invited to speak at each of the first three workshops at the project’s expense;
this will give a useful source of comment and advice without the need for project staff
to visit these people individually. All of these workshops will be open to people from
outside the project, with the final workshop being publicized more widely.

e Internal project meetings in months 7, 17 and 29. Each of these will include technical
meetings on all active workpackages, and will be attended by all project personnel
involved with those workpackages.

Individual visits are also planned for collaborative technical work.

The results of the project will be made available to all through a website set up at the
beginning of the project and maintained under the direction of the Project Coordinator for
the duration of the work. This is intended to give interested parties a view of the results as
they accumulate. It will include at least the following:

¢ An introduction to the project including title, partners, and summary, with links to
appropriate European Commission websites (GC, FET, IST and/or FP5).

o All of the deliverables and other publications produced by the project, as they are
produced. Those that are most appropriate for external consumption will be given
special prominence.

o A section (protected from access by non-project personnel) for working drafts, internal
project documents, etc.

41

IST-2001-33149 (MRG) 13th September 2001 42

The results of the project will also be presented at appropriate conferences and published in
academic journals. Many of these conferences take place outside the EU (see Section 11) and
this is taken into account in the travel budget.

The project workshops provide an opportunity for external participants to learn about
the project’s progress and to contribute their views. The final workshop will be associated
with an established international conference for increased visibility; this event is intended
more for disseminating the results of the project than for technical coordination and a pro-
ceedings is planned. Linking workshops with the annual project evaluation meetings will
allow more efficient use of the travel budget.

For self-assessment, each Workpackage Coordinator (see the list in Section 9.7.1) will
supply in advance measurable criteria of progress/success for the different stages of the
workpackage which will later be used to assess progress. This assessment of progress will
take place in connection with each of the end-of-year project workshops.

a. Project website (1 month)
Deliverables: website

b. Kickoff workshop (0 months)
Deliverables: workshop

c. Workshop at end of year 1 (0 months)
Deliverables: workshop

d. Workshop at end of year 2 (0 months)
Deliverables: workshop

e. Workshop at end of year 3 (0 months)
Deliverables: workshop, proceedings

f. Measurable criteria of progress/success (0 months)
Deliverables: report

g. Assessment of progress in year 1 (0 months)
Deliverables: report

h. Assessment of progress in year 2 (0 months)
Deliverables: report

i. Final assessment of progress (0 months)
Deliverables: report

j. Dissemination and use plan (0 months)
Deliverables: report

k. Technological implementation plan (0 months)
Deliverables: report

Most of the deliverables are allocated 0 person-months because this work will be done
by the main investigators rather than the researchers who are employed by the project.

42

IST-2001-33149 (MRG) 13th September 2001

43

Deliverables
D11a, D11b, D11c, D11d, D11e, D11f, D11g, D11h, D11i, D11j, D11k

Milestones and expected result

43

IST-2001-33149 (MRG) 13th September 2001 44
9.4 Deliverables list
Del. | Deliverable name WP | Lead | Est. Del. type | Security | Delivery
no. no. | parti- | person- (proj.
cipant | months month)

Dla | Definition of virtual machine | 1 1 2 report Pub 0
platform

D1b | Cost model 1 1 6 report Pub 2

D1d | Comparison of JVML with 1 1 3 report Pub 3
NET for project use

D1f | Representative examples for 1 1 2 report Pub 3
project use

D2a | Language of assertions for 2 1 2 report Pub 4
bytecode logic

D2b | Proof rules for bytecode logic | 2 1 3 report Pub 6

D2c | Proof checker for bytecode 2 1 4 prototype | Pub 15
logic

D2e | Theorem prover for bytecode | 2 1 3 prototype | Pub 20
logic

D2f | Encoding of VM semanticsin | 2 1 1 prototype | Pub 16
theorem prover [optional task]

D3a | Definition of experimental 3 1 1 report Pub 1
high-level language

D3b | Compiler for high-level 3 1 4 prototype | Pub 4
language

D3d | Extend compiler with 3 1 4 prototype | Pub 12
immutable objects and higher-
order functions

D3e | Extend compiler with 3 1 3 prototype | Pub 10
optimisations

D3f | Extend with mutable state and | 3 1 1 prototype | Pub 27
concurrency [optional task]

D4a | Reasoning principles for 4 1 6 report Pub 7
resource usage

D4b | Type system for space-like 4 1 4 report Pub 11
resources

D4c | Typechecker for compiler 4 1 4 prototype | Pub 14

D4e | Proof of soundness over cost | 4 1 6 report Pub 23
model

D4f | Proof of soundness over 4 1 4 report Pub 19
bytecode logic

Db5a | Type system for expressing 5 1 4 report Pub 11
limits on parameter values

D5b | Proof of soundness for 5 1 3 report Pub 33
parameter value constraints

D5d | Resource type system for 5 1 6 report Pub 17
bytecode

44

IST-2001-33149 (MRG) 13th September 2001 45
Del. | Deliverable name WP | Lead | Est. Del. type | Security | Delivery
no. no. | parti- | person- (proj.

cipant | months month)

D5e | Implementation of bytecode 5 1 5 prototype | Pub 27
type system

Dé6a | Certificate generator 6 1 6 prototype | Pub 20

Déc | Experiment with smaller 6 1 5 report Pub 24
certificates via formalised
soundness proof

Déd | Experiment with smaller 6 1 5 report Pub 25
certificates via prooflets

Déf | Bytecode typing derivation 6 1 1 prototype | Pub 24
generator [optional task]

D7a | Extension of type system by 7 2 3 report Pub 22
allowing user annotations

D7b | Adaptation of bound 7 2 5 prototype, | Pub 20
generation/ certification to report
optimisations

D7c | Extension of basic type system | 7 2 6 prototype, | Pub 35
to object-oriented language report

D7d | Methods to infer type 7 2 6 report, Pub 34
annotations automatically maybe

prototype

D7e | Extension of basic type system | 7 2 1 report Pub 33
to mutable state and
concurrency

D8a | Relationship between proof- 8 1 4 report Pub 31
based certificates and present-
day security management

D8b | Certificate-based resource 8 1 2 prototype | Pub 35
manager

D8d | Methods for estimating cost of | 8 1 2 report Pub 29
native methods

D9a | Size-reducing effect of proof- | 9 2 4 report Pub 33
theoretic methods

D9b | Feasibility of probabilistic 9 2 7 report Pub 34
certification

D9c | Negotiation-based protocols 9 2 7 report, Pub 35
for resource certification maybe

prototype

D10a | Practical effectiveness of 10 |1 4 report Pub 9
mobile virtual machines

D10b | Metalanguage for describing | 10 | 1 6 report Pub 23
virtual machine configuration

D10c | Cost model for mobile virtual | 10 |1 6 report Pub 34

machines

45

IST-2001-33149 (MRG) 13th September 2001 46

Del. | Deliverable name WP | Lead | Est. Del. type Security | Delivery
no. no. | parti- | person- (proj.
cipant | months month)
D11la | Project website 11 |1 1 website Pub 3
D11b | Kickoff workshop 1 |1 0 workshop Pub 2
D11c | Workshop at end of year 1 11 |1 0 workshop Pub 11
D11d | Workshop at end of year 2 1 |1 0 workshop Pub 23
D1le | Workshop at end of year 3 1 |1 0 workshop, | Pub 35
proceedings
D11f | Measurable criteria of 1 |1 0 report Pub 6
progress /success
Dl11lg | Assessment of progress in 11 |1 0 report Pub 12
year 1
D11h | Assessment of progress in 1 |1 0 report Pub 24
year 2
D11i | Final assessment of progress | 11 |1 0 report Pub 36
D11j | Dissemination and use plan 11 |1 0 report Pub 6
D11k | Technological implementation | 11 | 1 0 report Pub 36
plan

46

S A N AR A ICCIN G W I NG S W I A I A I I WG A N R ML a3 S I NI A NG G S I N G M
=
[—————
-
[———]
L]
= ==
L, . |
===
=
e
L]
e | | (=]
== ==
=
[———]
L]
[————
L, |
[
[
[
L]
L]
[|
= | = | | e |
-
L]
L, |
L]
[——— -
L]
[
e | = |
== e @
==
[}]
L, |
[——— |
=
L]
[———]
[[—— -
[—————--
= =
= = a1
[B e | [

IST-2001-33149 (MRG) 13th September 2001

48

9.6 Graphical presentation of project components

The following diagram shows the dependencies between the technical tasks in the project.
Workpackage 11 continues throughout the project with connections to all other tasks.

1f 1c
1a H 1b [1d
2c 2d
2a 1 2b 2f 7o
7d
2e 7a
7c
3e 7e
3a 30 [(3c) 5a [5d H se (5t)——] 82
3d 3f 5b
e
4da 4b 4e 6a [6C
af 6d

5c

6f

6e

10a— 10b[— 10c
®
8d
9a 9c
9b

In many cases, dependencies are not absolute — work on the successor task may com-

mence before work on the predecessor task is completely finished.

Task 1f feeds into many subsequent tasks; to avoid clutter these dependencies are not
shown in the diagram.
Milestones (drawn as circles) represent important decision points and completion of ma-
jor components of the project. If any milestone is not achieved on time, additional effort will
be diverted to it at the possible expense of later tasks. We hope to anticipate such problems

(as part of Workpackage 11) so as to avoid slippage in the schedule.

The project plan is based on the use of JVML (task 1a) but we will investigate an alterna-
tive, NET (task 1d). If we switch to this (milestone 1e) then a month or two may be lost but

no more because the two platforms have many similarities.

48

IST-2001-33149 (MRG) 13th September 2001 49

9.7 Project management

For a project of this size, a light-weight management structure suffices. We separate the
description of technical coordination from administrative/financial management although
the structure is essentially the same for both.

9.7.1 Technical coordination

The Project Coordinator, Don Sannella (Edinburgh), is in overall charge of the technical work
in the project. He is responsible for overseeing progress on the various workpackages and
for initiating remedial action in case technical difficulties in some area necessitates a rethink
of the overall project structure. He will convene, and be advised by, a steering committee
consisting of all the workpackage coordinators and supplemented by additional members
as needs demand. This committee will convene quarterly, either in person or by video/tele-
conferencing. The main means of access to the deliverables of the project and to internal
technical documents will be via WWW, and the Project Coordinator is responsible for setting
up and maintaining the project’s Web site. The Project Coordinator is also responsible for
organising the project’s annual workshop.
Each workpackage is managed by a Workpackage Coordinator. These are as follows:

Workpackage 1 : Don Sannella (Edinburgh)

Workpackage 2 : Don Sannella (Edinburgh)

Workpackage 3 : Ian Stark (Edinburgh)

Workpackage 4 : David Aspinall (Edinburgh)

Workpackage 5 : Ian Stark (Edinburgh)

Workpackage 6 : David Aspinall (Edinburgh)

Workpackage 7 : Martin Hofmann (Munich)

Workpackage 8 : Stephen Gilmore (Edinburgh)

Workpackage 9 : Martin Hofmann (Munich)

Workpackage 10 : Stephen Gilmore (Edinburgh)

Workpackage 11 : Don Sannella (Edinburgh)

Each Workpackage Coordinator is responsible for monitoring the technical work within that
workpackage and ensuring that it proceeds according to plan, convening meetings, main-
taining an electronic mailing list for discussion on matters relevant to the technical work,
reviewing internal technical documents and deliverables and maintaining a section of the
project’s website.

Decisions concerning the overall technical direction of the project will be made by the
Project Coordinator in close consultation with the Workpackage Coordinators and other col-
leagues. A formal technical management meeting will be convened by the Project Coordi-
nator at each of the project workshops and will be open to all project personnel. Project
workshops will consist partly of presentations of technical developments and partly of a

review of the progress of the project, and decisions concerning the future direction of the
project will be informed by these reviews.

49

IST-2001-33149 (MRG) 13th September 2001 50

9.7.2 Administrative and financial management

The Project Coordinator represents the project externally and is responsible for liaising with
the European Commission. He is responsible for allocating the project’s resources to the
various workpackages, for infrastructure at the various sites, and for the project’s annual
workshops. This allocation will be reviewed periodically and when technical plans change,
and adjustments to the allocations may be made when this is deemed beneficial to the overall
activity. Such decisions are made in close consultation with the Workpackage Coordinators.

Each Workpackage Coordinator manages the expenditure of resources allocated to his
workpackage to employ researchers and to fund working meetings and other travel. Deci-
sions here are taken in close consultation with the other principal researchers involved with
that workpackage.

A 50% position for a senior researcher has been included in the budget. It is planned that
this will be filled by the Project Coordinator who will be released from 50% of his normal
duties to devote this time to technical work on the project, provided this is acceptable under
Commission rules, while managing the research as part of his normal duties. Alternatively,
this funding will be used to bring a senior researcher to the Edinburgh site for 18 months. In
this case, the Project Coordinator will manage the project as described above and will assist
with the research to the extent that his normal duties permit.

50

IST-2001-33149 (MRG) 13th September 2001 51

10 Clustering

There seems to be potential for exchange at some level between MRG and most GC-funded
projects. However, we believe that the best opportunity for fruitful scientific interchange is
clearly with projects where type systems play a central role, as in MRG (see workpackages 4,
5 and 7). These projects are: DART, MIKADO, MYTHS and PROFUNDIS. Possibilities for
cross-fertilization include common workshops and invitation of observers to project work-
shops.

We would also be interested to have some MRG workshops and project meetings in com-
mon with other GC-funded projects to reduce the overhead of organizing meetings. This
makes most sense for projects having partners in Edinburgh (DART, DEGAS) or Munich
(AGILE) since these are the planned locations of MRG workshops and meetings.

For increased visibility, we would like to join the MRG final workshop with other GC-
funded project workshops. A single event for all these projects would probably be too large
to be practical; one possibility is to organize several workshops, with one involving the
projects in the “types” cluster suggested above.

51

IST-2001-33149 (MRG) 13th September 2001 52

11 Other contractual conditions

Although the majority of work within the project can be done within the EU, there will
be occasions when group members must travel outside the EU for study visits or for dis-
semination of results. We intend to present our work at appropriate leading international
conferences, many of which often take place outside the EU. These include the IEEE Sym-
posium on Logic in Computer Science (LICS), the ACM Symposium on Theory of Comput-
ing (STOC), the IEEE Symposium on Foundations of Computer Science (FOCS), the ACM
Conference on Programming Language Design and Implementation (PLDI), the ACM Sym-
posium on Principles of Programming Languages (POPL) the International Conference on
Functional Programming (ICFP), the IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), and the ACM Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS), all of which are usually held in
the US. Other relevant leading international conferences which take place outside the EU are
the International Symposium on Theoretical Aspects of Computer Software (TACS) which is
held in Japan, and Foundations of Software Technology and Theoretical Computer Science
(FSTTCS) which is held in India.

Most of the internationally leading relevant work in this area is being done in the US.
Several trips are planned in combination with travel to conferences, with visits to as many
of the following people as practical: Andrew Appel at Princeton, Peter Lee at Carnegie Mel-
lon, George Necula at UC Berkeley (proof-carrying code); Karl Crary at Carnegie Mellon,
Daniel Leivant at the University of Indiana, John Mitchell at Stanford, Andre Scedrov at the
University of Pennsylvania, Stephanie Weirich at Cornell (resource bounds); John Mitchell
at Stanford, Alessandro Coglio, Allen Goldberg and Zhenyu Qian at Kestrel Institute (JVM
formalisation); Benjamin Pierce at the University of Pennsylvania (collaborator with Hof-
mann on types in object-oriented languages); Dilsun Kirl1 at MIT (collaborator with Gilmore
on types for mobile code and with Aspinall on types for resource bounds); Adriana Com-
pagnoni at Stevens Institute (collaborator with Aspinall on types for resource bounds). A
few of these people will be invited to participate in project workshops at the project’s ex-
pense; this boosts the visibility of the workshops while saving project staff the effort and
expense of visiting these key people individually.

Overall, travel plans are as follows.

e For project workshops: 12 trips of 4 days for Edinburgh personnel, for a total cost of
12000 euros; 9 trips of 4 days for Munich personnel, for a total cost of 9000 euros; and
3 trips of 7 days for non-EU experts, for a total cost of 4080 euros.

e For internal project meetings: 4 trips of 4 days for Edinburgh personnel, for a total cost
of 4000 euros; and 6 trips of 4 days for Munich personnel, for a total cost of 6000 euros.

e For individual visits to the other partner for collaborative work: 9 trips of 7 days for
Edinburgh personnel, for a total cost of 12240 euros; and 6 trips of 7 days for Munich
personnel, for a total cost of 8160 euros.

e For conference attendance: 18 trips of 4 days for Edinburgh personnel, for a total cost of
28200 euros; and 9 trips of 4 days for Munich personnel, for a total cost of 15600 euros.
It is anticipated that two of these per year (one per site) will be to non-EU conferences.

Prior approval will be sought from the Project Officer for all non-EU travel and invitees.

52

IST-2001-33149 (MRG) 13th September 2001 53

References

[1] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In Proceedings
of the 6th ACM Conference on Computer and Communications Security, November 1999.

[2] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instruc-
tions for proof-carrying code. In Proceedings of the 27th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL "00), pages 243-253, January 2000.

[3] S. Arora, R. Motwani, M. Safra, M. Sudan, and M. Szegedy. Proof verification and
intractabilitity of approximation problems. In Proc. 33rd IEEE Symp. on Foundations of
Computer Science, pages 13-22, 1992.

[4] Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems.
PhD thesis, UC Berkeley, 1994. UCB Technical Report: CS-TR-476-94.

[5] David Aspinall and Adriana Compagnoni. Heap bounded assembly language. Sub-
mitted, 2001.

[6] Lennart Augustsson. Cayenne — a language with dependent types. In ICFP '98: Pro-
ceedings of the Third ACM SIGPLAN International Conference on Functional Programming,
pages 239-250. ACM Press, 1998.

[7] S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Ramification, Modality, and Linear-
ity in Higher Type Recursion. Annals of Pure and Applied Logic, 2000. to appear.

[8] Stephen Bellantoni and Stephen Cook. New recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97-110, 1992.

[9] G.Belle and E. Moggi. Type intermediate languages for shape-analysis. In Typed Lambda
Calculi and Applications: Proceedings of the Third International Conference TLCA '97, num-
ber 1210 in Lecture Notes in Computer Science, pages 11-29. Springer-Verlag, April
1997.

[10] P. Nick Benton, Andrew Kennedy, and George Russell. Compiling Standard ML to Java
bytecodes. In ICFP '98: Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming. ACM Press, 1998.

[11] Ralph Benzinger. Automatic complexity analysis revisited. Slides for a talk at Cor-
nell University. See http://www.cs.cornell.edu/Nuprl/PRLSeminar/PRLSeminar99_
00/benzinger/ja%n31.html, January 2000.

[12] Gordon Brebner. Circlets: Circuits as applets. In IEEE Symposium on FPGAs for Custom
Computing Machines, April 1998. Napa Valley, California.

[13] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings.
In Theoretical Aspects of Computer Software (TACS), Sendai, Japan, September 1997. An
earlier version was presented as an invited lecture at the Third International Workshop
on Foundations of Object Oriented Languages (FOOL 3), July 1996.

[14] A.Coglio, A. Goldberg, and Z. Qian. Toward a provably-correct implementation of the
JVM bytecode verifier, 1998.

53

IST-2001-33149 (MRG) 13th September 2001 54

[15] Christopher Colby, Peter Lee, and George C. Necula. A Proof-Carrying Code archi-
tecture for Java. In Proceedings of the 12th International Conference on Computer Aided
Verification (CAV00), Chicago, 2000.

[16] Adriana Compagnoni. CAREER: A formally verified environment for the produc-
tion of secure software. NSF project based at Stevens Institute of Technology, Hobo-
ken, New Jersey. See http://guinness.cs.stevens-tech.edu/"abc/ for more infor-
mation., 2000.

[17] K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, D. Walker, S. Weirich, and
S. Zdancewic. TALx86: A realistic typed assembly language. In 1999 ACM SIGPLAN
Workshop on Compiler Support for System Software Atlanta, GA, USA, pages 25-35, May
1999.

[18] K. Crary and S. Weirich. Resource bound certification. In Proc. 27th Symp. Principles of
Prog. Lang. (POPL), pages 184-198. ACM, 2000.

[19] S. Freund and J. Mitchell. A formal framework for the Java bytecode language and
verifier, 1999.

[20] Stephen Gilmore. Deep type inference for mobile functions. In P. Trinder G. Michaelson
and H.-W. Loidl, editors, Trends in Functional Programming (Volume 1), pages 4048, 2000.

[21] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool to support a process
algebra-based approach to performance modelling. In Proceedings of the Seventh Inter-
national Conference on Modelling Techniques and Tools for Computer Performance Evaluation,
Springer LNCS vol. 794, pages 353-368, 1994.

[22] Stephen Gilmore and Marco Palomino. BabylonLite: Improvements to a Java-based
distributed object system. Submitted to Concurrency and Computation: Practice and Expe-
rience, March 2001.

[23] Algorithmic Solutions Software GmbH. LEDA — Library of Efficient Data types and Al-
gorithms. A C++ class library originally developed at the Max-Planck-Institut fiir Infor-
matik. See http://www.algorithmic-solutions.com/as_html/products/products.
html.

[24] A. Gordon and D. Syme. Typing a multi-language intermediate code. Technical Report
MSR TR 2000-106, Microsoft Research, 2000. A shorter version appears in Proceedings
of Symposium on Principles of Programming Languages, (POPL2001), London, 2001.

[25] GSF. The diabcard project. http://www-mi.gsf.de/diabcard/, 2000.

[26] R.Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM, 40(1):143—
184, 1993.

[27] Prahladh Harsha and Madhu Sudan. Small pcps with low query complexity. Electronic
Colloguium on Computational Complexity, 2000. Report No. 61.

[28] Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

54

IST-2001-33149 (MRG) 13th September 2001 55

[29] Martin Hofmann. Linear types and non size-increasing polynomial time computation.
To appear in Theoretical Computer Science. See www.dcs.ed.ac.uk/home/papers/icc.
ps.gz for a draft. An extended abstract has appeared under the same title in Proc. Symp.
Logic in Comp. Sci. (LICS) 1999, Trento, 2000.

[30] Martin Hofmann. Safe recursion with higher types and BCK-algebra. Annals of Pure and
Applied Logic, 2000. to appear.

[31] Martin Hofmann. A type system for bounded space and functional in-place update. In
G. Smolka, editor, Programming Languages and Systems, pages 165-179. Springer LNCS,
2000.

[32] J. Hughes and L. Pareto. Recursion and dynamic data structures in bounded space:
towards embedded ML programming. In Proc. International Conference on Functional
Programming (ACM). Paris, September '99., pages 70-81, 1999.

[33] Pankaj Kakkar, Michael Hicks, Jonathan T. Moore, and Carl A. Gunter. Specifying the
PLAN networking programming language. In Higher Order Operational Techniques in Se-
mantics, volume 26 of Electronic Notes in Theoretical Computer Science. Elsevier, September
1999.

[34] J.-Y. Marion and J.-Y. Moyen. Efficient first-order functional program interpreter with
time bound certifications. In LPAR 2000, Springer LNAI, 2000.

[35] James McKinna. Deliverables: A Categorical Approach to Program Development in Type
Theory. PhD thesis, University of Edinburgh, 1992. Report CST-96-92.

[36] Sun Microsystems. JavaCard software distribution and manuals. See http://java.
sun.com/products/javacard/.

[37] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, August 1978.

[38] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML com-
piler: Performance and safety through types. 1996 Workshop on Compiler Support for
Systems Software, January 1996.

[39] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems,, 21(3):528-569, May
1999.

[40] Alan Mycroft and Richard Sharp. A statically allocated parallel functional language. In
Automata, Languages and Programming, pages 37-48, 2000.

[41] George Necula. Proof-carrying code. In Proceedings of the ACM Symposium on Principles
of Programming Languages, 1997.

[42] George Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, Septem-
ber 1998.

[43] George C. Necula and Peter Lee. Safe, untrusted agents using Proof-Carrying Code. In
LNCS 1419: Special Issue on Mobile Agent Security. Springer, 1998. Abstract.

55

IST-2001-33149 (MRG) 13th September 2001 56

[44] T. Nipkow, D. von Oheimb, and C. Pusch. pJava: Embedding a programming language
in a theorem prover. In EL. Bauer and R. Steinbriiggen, editors, Foundations of Secure
Computation. Proc. Int. Summer School Marktoberdorf 1999, pages 117-144. 10S Press, 2000.

[45] S. Owre,]J. Rushby, and N. Shankar. PVS: a prototype verification system. In Proc. 11th
Intl. Conf. on Automated Deduction, Springer LNCS vol. 607, pages 748-752, 1992.

[46] Jens Palsberg and Michael Schwartzbach. Object-oriented type inference. In Proc. ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 246-161, 1991.

[47] Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with non-structural
subtyping. Formal Aspects of Computing, 9:49-67, 1997.

[48] Lawrence C. Paulson. Isabelle — A Generic Theorem Prover. Lecture Notes in Computer
Science 828. Springer-Verlag, 1994. For latest materials, see http://www.cl.cam.ac.
uk/Research/HVG/Isabelle/. A new Isabelle book is in preparation.

[49] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In Proc. of the
4th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’98), LNCS 1384, pages 151-166, 1998.

[50] J. C. Reynolds. Syntactic control of interference. In Proc. Fifth ACM Symp. on Princ. of
Prog. Lang. (POPL), 1978.

[51] Raymie Stata and Martin Abadi. A type system for Java bytecode subroutines. In ACM
Transactions on Programming Languages and Systems 21, volume 21(1), January 1999.

[52] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Seventh Annual
IEEE Symposium on Logic in Computer Science, Santa Cruz, California, pages 162-173, Los
Alamitos, California, 1992. IEEE Computer Society Press.

[63] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed
optimizing compiler for ML. In Proceedings of the 1996 ACM SIGPLAN Conference on
Programming Language Design and Implementation, SIGPLAN Notices, 31(6). ACM Press,
June 1996.

[54] Philip Wadler. Linear types can change the world. In TC 2 Working Conference on Pro-
gramming Concepts and Methods (Preprint), pages 546-566, 1990.

[55] Hongwei Xi and Robert Harper. A dependently typed assembly language. Techni-
cal Report OGI-CSE-99-008, Oregon Graduate Institute of Science and Technology, July
1999.

56

IST-2001-33149 (MRG) 13th September 2001 57

A Description of the consortium

This project is ambitious, demanding a blend of different skills and expertise and requiring
tight coordination between the components of different workpackages. To facilitate collabo-
ration we have decided to limit the consortium to just two sites, with sufficient resource per
site to build a substantial team. Each site has a leading international reputation in a subset
of the expertise required by the project. Edinburgh is internationally acclaimed for its work
on semantics, type theory, programming language design and implementation, concurrency,
and formal methods, with substantial recent work on aspects of global computation. Mu-
nich is internationally known for its work on formal methods, programming language the-
ory and software engineering, with the recent addition of Hofmann contributing world-class
expertise in resource-bounded computation and type theory. Each of the participants have
international reputations in areas relevant to the project, as outlined below.

We do not anticipate difficulties in collaborating and integrating our expertise since sev-
eral of the participants in the project have collaborated on research before and all participants
know each other well, having worked together while members of the Laboratory for Foun-
dations of Computer Science in Edinburgh. Aspinall has collaborated with Hofmann on type
systems for resource bounds, Aspinall has collaborated with Sannella on type systems for
specification, and Hofmann has collaborated with Sannella on semantics of specifications.

A.1 Division of Informatics, University of Edinburgh

The Division of Informatics (http://www.informatics.ed.ac.uk/) was formed from the
existing Departments of Artificial Intelligence, Cognitive Science, Computer Science and as-
sociated research institutes in 1998, with the aim of promoting innovative research into the
structure, behaviour, and interactions of natural and artificial computational systems. In the
last UK research assessment exercise it had by far the largest concentration of top (5) rated
researchers in this area anywhere in the UK. It also attained the highest rating in the UK
teaching assessment exercise. Its research activities take place within a number of research
institutes, including the Laboratory for Foundations of Computer Science (LFCS), the insti-
tute involved in this project.

LFCS (http://www.1lfcs.informatics.ed.ac.uk/) is an internationally renowned cen-
tre for research in theoretical computer science. Current LFCS research projects, which are
carried out with the support of national and European funding, are on various topics within
the following general areas: semantics and type theory; programming languages, specifi-
cations, and design; concurrency and distributed systems; complexity and analysis of algo-
rithms. This work covers a wide spectrum, from basic research on foundations to collabo-
rative projects with industry on applications. All of these projects benefit greatly from daily
interaction with each other and with the excellent PhD students and continuous stream of
prominent visitors which LFCS attracts from all over the world. The proposed project fits
well into LFCS’s research programme. It takes advantage of existing expertise in program-
ming language design, global computation, type theory, theorem proving and semantics to
address the challenges of the Global Computing proactive initiative.

57

IST-2001-33149 (MRG) 13th September 2001 58

David Aspinall

David Aspinall (http://www.dcs.ed.ac.uk/"da/)is a Lecturer with the Laboratory for Foun-
dations of Computer Science in the Division of Informatics at the University of Edinburgh.
He received his PhD in 1997 from the University of Edinburgh. During and since his PhD,
he has worked on several topics related to this proposal, including fundamentals of type
systems and recent work on resource bounded type systems as part of a UK EPSRC-funded
project Type Systems for Resource-Bounded Programming and Compilation begun in May 2000
with Hofmann. Aspinall also brings considerable experience in building high-quality re-
search prototypes; for the last three years he has led work on the Proof General generic control
system for interactive proof assistants (see http://www.proofgeneral.org).

Stephen Gilmore

Stephen Gilmore (http://www.dcs.ed.ac.uk/"stg/) is a Senior Lecturer in Computer Sci-
ence in the Division of Informatics at the University of Edinburgh. He received his PhD
from the Queen’s University of Belfast in 1990. His research interests include type sys-
tems for higher-order programming languages and the application of process algebras to
describe stochastic processes which are performance models of computer systems. He has
worked on extending the classical type systems of functional programming languages to
detect more programmer errors at compile time or at run-time. He has a particular interest
in the use of functional languages as mobile-code languages. He has published more than
20 papers in journals and conferences and has edited the proceedings of the Third Interna-
tional Workshop on Process Algebra and Performance Modelling, the FIREworks workshop
on Language Constructs for Defining Features, and Trends in Functional Programming Vol-
ume 2. He is the joint Programme Committee chair for the joint PAPM-PROMBIV workshop
this year. He was the Edinburgh site leader for the ESPRIT Framework 4 initiative Feature
Integration in Requirements Engineering.

Donald Sannella

Donald Sannella (http://www.dcs.ed.ac.uk/"dts/) received a PhD in Computer Science
from the University of Edinburgh in 1982 where he has worked ever since, being appointed
Professor in 1998. His research interests include the design of algebraic specification lan-
guages and functional languages, mechanised reasoning, foundations for algebraic specifi-
cation and formal software development, and applying these foundations to the practical
development of modular software systems from specifications. He has published more than
50 papers in journals and international conferences and has held a series of grants since 1985
for research projects in the area of verification and formal development of programs includ-
ing an EPSRC Advanced Fellowship in 1992-1997 and an RSE/SOEID Fellowship during
1998. His current grants include the EC-funded Common Framework Initiative Working Group
(CoFI WG, finishing in April 2001) of which he is overall coordinator. He is editor-in-chief
of Theoretical Computer Science (responsible for part B: Logic, Semantics and Theory of Pro-
gramming) and chairman of the steering committee of the ETAPS conference series, and is on
the Council of the European Association for Theoretical Computer Science. He was closely
involved in the definition of the Global Computing proactive initiative.

58

IST-2001-33149 (MRG) 13th September 2001 59

Ian Stark

Ian Stark (http://www.dcs.ed.ac.uk/ stark/) is a Lecturer in Computer Science in the Di-
vision of Informatics at the University of Edinburgh. He received his PhD from the Univer-
sity of Cambridge in 1995, and subsequently worked in Pisa, where he held a Marie Curie
fellowship, and in the BRICS research institute at the University of Aarhus. His research
interests include foundational models of programming languages and computation; in par-
ticular types, concurrency, and the functional and object-oriented paradigms. He has over
10 published papers, most recently on a calculus for global management of local resources.
This year he is on the programme committee for the international conference TACS “01 in
Sendai, Japan. He currently holds an EPSRC grant on “Reasoning about Names and Iden-
tity in Programming Languages”, and is Edinburgh coordinator of the EC-funded APPSEM
working group. Previously he worked on the EC-funded EuroFoCS and CLICS-II projects.

A.2 Institut fiir Informatik, Ludwig-Maximilians-Universitit Miinchen

This department has a long-standing record in formal methods, programming language the-
ory, and software engineering (Wirsing, Hennicker). There are excellent contacts with the
Logic Group (Schwichtenberg) in the Mathematics Department and the theorem proving
group at the Technical University (Nipkow).

The Theoretical Computer Science group that Hofmann will join in Autumn 2001 cur-
rently comprises researchers in complexity theory (Johannsen), type theory (Matthes) and
theorem proving (Backofen, Kahle). This will fruitfully complement the research to be car-
ried out in the project.

Researchers at the department have held numerous nationally- and EC-funded research
grants in the past; there are also fruitful contacts to industry, e.g. Siemens and BMW, that
will be used in order to get feedback on and input to the project.

Martin Hofmann

Martin Hofmann received a PhD in Computer Science from Edinburgh University in 1995.
From 1995 to 1998 he worked as a research assistant for the Technical University of Darm-
stadt; from 1998 to April 2001 he held a Lectureship within the Division of Informatics of
the University of Edinburgh being promoted to Reader in October 1999. He acquired a Ha-
bilitation in Mathematics from TU Darmstadt in 2000. He took up a position as Associate
Professor (C3) with the Department of Mathematics of TU Darmstadt in April 2001 and is
taking up a position as full Professor in Informatik at LMU Miinchen in Autumn 2001.

His research interests include theory and design of functional and object-oriented pro-
gramming languages, mechanised reasoning about programs and their specification. His
most recent works were concerned with the design of type systems capable of bounding
computational complexity, in particular space consumption of programs. He has published
more than 25 papers in journals, refereed collections, and conference proceedings and has
held an EPSRC research grant since May 2000. In Darmstadt he was local coordinator of
the EC-funded working group TYPES and has been member of the EC-funded LOGSEM
and APPSEM projects. He has served on the programme committee of several international
conferences and workshops.

59

IST-2001-33149 (MRG) 13th September 2001

60

B Contract preparation forms

[Insert here Contract Preparation forms.]

60

