
Mobile Resource
Guarantees

Don Sannella

Laboratory for Foundations of
Computer Science

School of Informatics, University
of Edinburgh

Univ. of Edinburgh: David Aspinall, Stephen Gilmore, Ian Stark, Lennart
Beringer, Kenneth MacKenzie, Alberto Momigliano, Matthew Prowse

LMU Munich: Martin Hofmann, Hans-Wolfgang Loidl, Olha Shkaravska

Mobile Resource Guarantees

MRG is a joint Edinburgh / LMU Munich project funded for 2002–2005
by the European Commission’s Global Computing pro-active initiative.

Our aim is to develop an infrastructure that endows mobile code with
independently verifiable certificates describing resource requirements.

We plan to do this by mapping resource types for high-level programs
into proof-carrying bytecode that runs on the Java Virtual Machine.

I’ll talk about progress so far, and in particular our GRAIL intermediate
language, resource types, and bytecode logic.

Roadmap

1. Global computing

2. Proof-carrying code

3. … for resource certification

4. Overview of progress on MRG

Global computing
We now have networked access to vast computational resources: hardware,
software, data

The network(s) is/are planet-wide and dynamically changing, and location of
resources (at least, Europe vs Australia) matters

The availability and responsiveness of these resources is unpredictable and
uncontrollable; no accurate global information is available

Global computing = an emerging computational paradigm in which these
resources are flexibly exploited by mobile agents

“Programming the internet”, but more than that

Global computing

Dominant concerns of traditional computing: representing and
manipulating data efficiently

Dominant concerns of global computing: security, reliability,
robustness, failure modes, locality, control of resources, coordination,
interaction

Related to: distributed computing, peer-to-peer systems, ubiquitous
computing, the Grid, agents, active networks, etc.

Global computing

Dominant concerns of traditional computing: representing and
manipulating data efficiently

Dominant concerns of global computing: security, reliability,
robustness, failure modes, locality, control of resources, coordination,
interaction

Related to: distributed computing, peer-to-peer systems, ubiquitous
computing, the Grid, agents, active networks, etc.

Roadmap

1. Global computing

2. Proof-carrying code

3. … for resource certification

4. Overview of progress on MRG

Authentication for mobile code

Java

Originally, Java used a sandbox model, where all remote code was wholly
untrusted.
In version 1.2 this moved to more finely grained security policies which can
be specified using cryptographic signatures on code.

Windows

Microsoft Authenticode also uses cryptographically signed code.
User can distinguish code from different providers.
Very widely used – more or less compulsory in XP for drivers.

However, crypto signatures say nothing about the code itself, only its supplier.

In Microsoft I trust

Microsoft Security Bulletin MS01-017

Who should read this bulletin: All customers using Microsoft®
products.

Technical description: In mid-March 2001, VeriSign, Inc.,
advised Microsoft that on January 29 and 30, 2001, it issued two
VeriSign Class 3 code-signing digital certificates to an individual
who fraudulently claimed to be a Microsoft employee. …

Impact of vulnerability: Attacker could digitally sign code using
the name “Microsoft Corporation”.

Proof-carrying code

PCC certifies code with a condensed formal proof of a desired property.

Checked by client before installation / execution
Proofs may be hard to generate, but are easy to check
Independent of trust networks: unforgeable, tamper-evident

A certifying compiler uses types and other high-level source information
to create the necessary proof to accompany machine code.

Proof-Carrying Code – George Necula, POPL '97
Safe Kernel Extensions Without Run-Time Checking – Necula+Lee, OSDI ’96
Foundational Proof-Carrying Code – Andrew Appel, LICS ‘01

Roadmap

1. Global computing

2. Proof-carrying code

3. … for resource certification

4. Overview of progress on MRG

Resource-bounded computation

A user of a handheld device, wearable computer, or smart card wants
to know that a downloaded application will definitely run within the
limited amount of memory available.

A provider of distributed computing power may only be willing to offer
this service upon receiving dependable guarantees about the required
resource consumption.

Third-party software updates for mobile phones, household appliances,
or car electronics should come with a guarantee not to set system
parameters beyond manufacturer-specified safe limits.

Inferring resource usage

Resources can include:

processor time
heap space
stack size

There exist strong theoretical results, but applying them is a challenge.

We have been concentrating mainly on heap space, so far.

Hofmann – A type system for bounded space and functional in-place update
Hofmann+Jost – Static prediction of heap space usage for first-order

functional programs

system calls
disk files
network bandwidth, etc.

Architecture

Code consumerCode producer

Certifying
compiler

Source
program

Check
proof

Execute
code

Resource
policy

Request for code

Compiled code

Resource proof

Implementation

Code producer Code consumer

Camelot Resource
policy

JVM

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

Roadmap

1. Global computing

2. Proof-carrying code

3. … for resource certification

4. Overview of progress on MRG

Implementation

Code producer Code consumer

Camelot Resource
policy

JVM

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

Camelot

A high-level call-by-value functional language based on OCaml

Polymorphism, constructor-based datatypes, pattern-matching
First-order functions only, to avoid heap-allocated closures
Objects for access to the Java class hierarchy
Constructs for explicit control of heap usage
A resource typing system to enforce linear (i.e. affine) usage of
heap-allocated objects
Inference of heap space usage bounds
Further extensions ongoing: restricted higher-order, threads.

Resource types in Camelot
Cons(-,-) : ‘a * ‘a list -> ‘a list

rev : ‘a list * ‘a list -> ‘a list

let rev l acc =
match l

with Nil -> acc
| Cons(h,t) -> rev t (Cons(h,acc))

Resource types in Camelot
Cons(-,-)@- : ‘a * ‘a list * <> -> ‘a list

rev : ‘a list * ‘a list -> ‘a list

let rev l acc =
match l

with Nil -> acc
| Cons(h,t)@d -> rev t (Cons(h,acc)@d)

Resource types in Camelot 2
insert : int * int list * <> -> int list

let insert n l d =

match l

with Nil -> Cons(n,Nil)@d

| Cons(h,t)@d’ -> if n <= h then(Cons(n,Cons(h,t)@d’)@d

else Cons(h,insert n t d)@d’

sort : int list -> int list

let sort l =

match l

with Nil -> Nil

| Cons(h,t)@d -> insert h (sort t) d

Implementation

Code consumer

JVM

Code producer

Resource
policyCamelot

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

GRAIL
Guaranteed Resource Aware Intermediate Language

Our intermediate language needs to be all of the following:

The target for the Camelot compiler
A basis for attaching resource assertions
Amenable to formal proof about resource usage
The format for sending and receiving certified code
Executable

Grail mediates between all of these roles by having two distinct
semantic interpretations, one functional and one imperative.

Functional Grail

Grail has a standard functional semantics:

Strong static typing
Call-by-value first-order functions
Local function declaration
Mutual recursion
Lexical scoping of variables and parameters

This simple functional language is the target for the Camelot high-level
language compiler.

Fibonacci in functional Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in functional Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end function arguments

local function
declarations

lexically scoped variables
hide outer declarations

local variable declarations

mutually recursive
function calls

Imperative Grail

Grail also has a simple imperative semantics:

Assignable global variables (registers)
Labelled basic blocks
Goto and conditional jumps
Live-variable annotations

The Grail assembler and disassembler convert this to and from Java
bytecodes as an executable binary format.

Fibonacci in imperative Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in imperative Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end annotate live variables

basic blocks
update global variables

initial assignment to global variables

goto and
conditional jumps

Comparing functional and imperative

We can prove a precise correspondence between the two semantics.
A Grail method body mbody decomposes into (imperative) basic
blocks:

Theorem: If E is a variable environment and s a matching initial state

then for any final value

mbody blocklist
imp

fun

E =var s where var = fv(mbody) = Var(blocklist)

E ⊢fun mbody → v if and only if s ⊢imp blocklist → v

What makes it work

Definitions of the two semantics ⊢fun and ⊢imp are entirely as expected.
The result only holds because we place tight constraints on well-formed
functional Grail.

No nesting: only one level of local functions
Functions must include all free variables as parameters
Tail calls only
Functions are only applied to values, which must syntactically
coincide with the parameter names: fun f(int x) … f(x)

Imperative Grail is similarly well-behaved: for example, the stack is
empty at all jumps and branches. This is what makes it possible to
disassemble JVM classfiles back into Grail again.

Implementation

Code consumer

JVM

Code producer

Resource
policyCamelot

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

Bytecode logic of resources

A VDM-style logic, without pre-conditions
Assertions are for partial correctness:

Separate consideration of termination argument
Assertions are given for functional Grail (almost bytecode)
Formalised in Isabelle/HOL using a shallow embedding
Sound and (relative) complete
Certificates are, for now, Isabelle proof scripts

A somewhat large trusted code base!
For small devices, use off-device pre-verification (Java CLDC)

Operational semantics & assertions

We give a big-step operational semantics:
E ⊢ h,e ⇓ (h’,v,r)

E is an environment, h and h’ are heaps, v is a value and
r = (ticks, callcount, invokecount, invokedepth).

The logic is closely related: an assertion P specifies possible
executions for an expression:
► e : P(h,h’,v,r)

if and only if
∀ E,h,h’,v,r. E ⊢ h,e ⇓ (h’,v,r) implies P(h,h’,v,r)

We prove both directions in the formalisation.

Example
let rev l acc =

match l
with Nil -> acc

| Cons(h,t)@d -> rev t (Cons(h,acc)@d)

▶ call rev : SpecRev

where SpecRev specifies consumption of:

• 0 heap space
• L+1 function calls
• 31L+11 clock ticks

where L = length l

Present status

High level language compiler (camelot)
Grail assembler (gdf) and disassembler (gf)
Cost model (time, stack, heap, calls)
VDM-style logic for Grail, implemented in Isabelle/HOL
PCC demonstrator based on Isabelle proof scripts
Various resource type systems for heap space
Resource type inference for heap space

Current work:

Proof certificates generated from resource types
Resource type inference for stack space

Thank you!

http://www.lfcs.ed.ac.uk/mrg

Certifying compiler

Resource types can be inferred automatically for first-order functions

Proof certificates can be generated (automatically?) from source code
and resource type

• relies on higher-level proof rules
• … which are derived rules in the bytecode logic

Future Project: MRG and the Grid

Camelot and Grail programs can run in very resource-constrained
environments such as the KVM. What is the relevance to the Grid?

Future Project: MRG and the Grid

Camelot and Grail programs can run in very resource-constrained
environments such as the KVM. What is the relevance to the Grid?
Grid service providers need to schedule competing requests for
access to resources. There is a specification language (RSL) for
resources, but …
&(reservation-type=compute) (start-time=“10:30pm”)

(duration=“1 hour”) (nodes=32)

Mobile code seems perfect for the Grid: with 25Kb of code and 1Pb
of sky survey data it is infeasible to ship the data to the code.
We will try to transfer MRG results to Java, using ESC/Java, to
produce much more precise resource bound specifications.

	Mobile Resource Guarantees
	Mobile Resource Guarantees
	Roadmap
	Global computing
	Global computing
	Global computing
	Roadmap
	Authentication for mobile code
	In Microsoft I trust
	Microsoft Security Bulletin MS01-017
	Proof-carrying code
	Roadmap
	Resource-bounded computation
	Inferring resource usage
	Architecture
	Implementation
	Roadmap
	Implementation
	Camelot
	Resource types in Camelot
	Resource types in Camelot
	Resource types in Camelot 2
	
	GRAILGuaranteed Resource Aware Intermediate Language
	Functional Grail
	Fibonacci in functional Grail
	Fibonacci in functional Grail
	Imperative Grail
	Fibonacci in imperative Grail
	Fibonacci in imperative Grail
	Comparing functional and imperative
	What makes it work
	
	Bytecode logic of resources
	Operational semantics & assertions
	Example
	Present status
	
	Certifying compiler
	Future Project: MRG and the Grid
	Future Project: MRG and the Grid

