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CHAPTER

ONE

INTRODUCTION

The Edinburgh Geoparser is a language processing tool designed to detect placename references in English text
and ground them against an authoritative gazetteer so that they can be plotted on a map. The two main processes
involved are entity recognition, to find the placename mentions and categorise them as such, followed by a ranking
process that selects the likeliest location for each place from what may be a long list of candidates.

The Quick Start Guide explains how to install the software and start using it, and there are some worked examples
of how to use it, with illustrations of the output produced, in the Practical Examples chapter.

The Edinburgh geoparser was developed by Claire Grover and Richard Tobin, of the Language Technology Group
(LTG) in the School of Informatics at Edinburgh University. Over a number of years they and other colleagues
from the LTG have refined and added to the geoparser’s functionality. Appendix 2: LTG Publications about the
Geoparser contains a list of some published papers evaluating the geoparser’s performance relative to other similar
systems, and discussing how it has been used by the LTG and our partners in various projects.

Like many linguistic tools of this kind, the geoparser software is designed to work in a “pipeline”, where the output
of one process forms the input for the next. This construction gives flexibility and makes it relatively easy to switch
components in and out - so if you prefer your own tokeniser to ours, say, it is easy to make the substitution. The
Pipeline chapter explains the two steps, geotagging to find the placenames, and georesolution to ground them in
space. See the Geotagging section for details on changing the linguistic components. The Overview of Software
Structure chapter contains flowcharts and diagrams of how the whole pipeline fits together.

The geoparser is configured to work with a number of different gazetteers, as explained in the Gazetteers chapter.
Although primarily designed to detect and geo-locate spatial references, the pipeline has evolved to find and
categorise other entity categories, viz person, organisation and time expressions, as well as location. A range
of visualisation files can be produced, including a display that shows all entity categories and which locations
placenames are grounded to on a map.

The geoparser works best with fairly short texts (up to a few pages), for reasons that are explained in the Geo-
resolution section. Therefore if you have a very large corpus to process, it’s advisable to divide it into smaller
chunks.

This documentation covers the downloadable version of the Edinburgh Geoparser, to be installed on your own
local machine. There is also an online web demo of the Edinburgh Geoparser which can be tried out using an
example input text file here.

We expect the geoparser to continue to evolve, and already have plans for enhancements. We welcome suggestions
and collaboration, so please get in touch if you have ideas about how we should develop the software.

1
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CHAPTER

TWO

QUICK START GUIDE

2.1 Installation

To install the Edinburgh Geoparser, download the software bundle from the LTG’s geoparser software page and
unpack it in a suitable location (in your home directory, say). The directory structure produced will be as shown
in the File layout Figure.

The geoparser runs on 64 bit Linux and Macintosh platforms. The underlying LT-XML2 components are available
in source code for local compilation, from the LTG software page , but some required components are binary only.

2.2 MacOS only

Recent version of MacOS (since Catalina) will not, by default, run programs downloaded from the web. Before
running the geoparser for the first time, run this command in your terminal in the top-level geoparser directory:

xattr -d com.apple.quarantine bin/*/*

This will remove the “quarantine” flag from the binaries.

2.3 Mapping

The visualisation component uses Leaflet mapping software in conjunction with either Mapbox or OpenStreetMap
map tiles.

To use it with Mapbox you will need a Mapbox key (access token) which can be obtained from www.mapbox.com.
When you create a Mapbox account you are automatically asigned a public access token. You can use that or create
a new one. Before running the geoparser you should set the environment variable GEOPARSER_MAP_KEY to
your access token.

Mapbox now requires you to provide a credit card number when you create an account, and you may not want to
do this. If GEOPARSER_MAP_KEY is not set, OpenStreetMap tiles will be used instead. The main disadvantage
of this - from the point of view of an English-language geoparser - is that OpenStreetMap generally displays maps
in the language of the area, rather than English.

3
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2.4 Local Gazetteer Database

The geoparser can reference a range of different gazetteers, hosted by Information Services at the University of
Edinburgh or locally. For the former (see -g gazetteer parameter) no additional software is needed.

It is possible that you will want to set up a local copy of a gazetteer and in this case you will obviously need
to install and manage it. The pros and cons of using a local gazetteer are discussed in the Options for Local
Gazetteer section and an example using Geonames - for which the geoparser is already configured - is described.
This example uses a locally managed MySQL database. If you plan to use the geonames-local option you
will need to set the GEOPARSER_DB_COMMAND environment variable to specify how to connect to the server.
This is also explained in the Options for Local Gazetteer section.

2.5 Running the Pipeline

To test the pipeline, do this:

cd scripts
cat ../in/172172.txt | ./run -t plain -g unlock

This uses the option of plain text input and uses unlock as the gazetteer. The output xml file is sent to stdout.

Note that the order of the -t and -g options is immaterial. This applies to all the command line options.

2.5.1 Visualisation output: -o

To run and create visualisation files:

cat ../in/172172.txt | ./run -t plain -g unlock -o ../out 172172

Same as before except that -o takes two args, an output directory ../out and a prefix for the output file names
172172. The output directory must already exist. The results appear in the output directory (../out):

../out/172172.display.html ../out/172172.geotagged.html

../out/172172.events.xml ../out/172172.out.xml

../out/172172.gaz.xml ../out/172172.nertagged.xml

../out/172172.gazlist.html

../out/172172.gazmap.html

• 172172.display.html is the geoparser map display.

• 172172.timeline.html is the timeline display1 (note that person, location, organisation and date entities are
highlighted in this display).

• 172172.out.xml is the output that goes to stdout when it is run without -o.

The other files are ones used for the map display or ones which may be useful in their own right.

1 The timeline display has been tested in Firefox, Safari and Chrome and needs to be served on a web server to work properly. See more
details in Practical Examples at the bottom of Modern text on how to do that.

4 Chapter 2. Quick Start Guide
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2.5.2 Single placename markers: -top

By default, all candidate placenames are shown in the display, with the top-ranked one in green and the rest in red.
If the -top option is added to the command line then the display file will show only the top-ranked candidate for
each place, not all the alternatives considered.

2.5.3 Input type and gazetteer: -t -g

The options for -t type and -g gazetteer are:

-t plain (plain text)
ltgxml (xml file in a certain format with paragraphs marked up)
gb (Google Books html files)

-g unlock (Edina's Unlock gazetteer)
os (Just the OS part of Unlock)
naturalearth (Just the Natural Earth part of Unlock)
unlockgeonames (Just the GeoNames part of Unlock)
geonames (online world-wide gazetteer)
plplus (Pleiades+ gazetteer of ancient places)
deep (DEEP gazetteer of historical placenames in England)

[ geonames-local (locally maintained copy on ed.ac.uk network) ]
[ plplus-local (locally maintained Pleiades+, with geonames lookup) ]

The last two gazetteer options will only be usable if local gazetteers are maintained; they are included in case
useful. See Options for Local Gazetteer for how to make use of them.

If your input is xml with paragraphs already marked, it may be worth converting it to ltgxml format. See the
example in/172172.xml for the format.

For Google Books input, which can be extremely untidy, pre-processing is done to ensure it doesn’t break the xml
processes in the pipeline.

2.5.4 Docdate: -d

If you know the creation/writing date of the document you can supply this with -d docdate:

cat ../in/172172.txt | ./run -t plain -g unlock -d 2010-08-13
cat ../in/172172.txt | ./run -t plain -g unlock -o ../out 172172 -d 2010-08-13

This will be used in event and relation detection and timeline display.

2.5.5 Limiting geographical area: -l -lb

If you know that toponyms in your text are likely to be in a particular geographical area you can specify a bounding
circle -l locality or a rectangular -lb locality box. The geoparser will prefer places in the area
specified but will still choose locations outside it if other factors give them higher weighting.

To specify a circular locality:

-l lat long radius score

where

• lat and long are in decimal degrees (ie 57.5 for 57 degrees 30 mins)

• radius is in km

• score is a numeric weight assigned to locations within the area (else 0).

2.5. Running the Pipeline 5
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To specify a locality box:

-lb W N E S score

where

• W(est) N(orth) E(ast) S(outh) are decimal degrees

• score is as for -l option.

2.5.6 DEEP only options: -c -r

For DEEP2 a new -c county option has been added. This allows the user to specify the county that the
document is about in order to only consider DEEP gaz entries for that county. Multiple uses of -c allow several
counties to be specified. For example:

cat <infile> | ./run -t plain -g deep -c Oxfordshire -c Wiltshire

The values for -c are the county names in the DEEP gazetteer:

Bedfordshire, Berkshire, Buckinghamshire, Cambridgeshire, Cheshire, Cumberland, Derbyshire, De-
von, Dorset, Durham, East Riding of Yorkshire, Essex, Gloucestershire, Hertfordshire, Huntingdon-
shire, Leicestershire, Lincolnshire, Middlesex, Norfolk, North Riding of Yorkshire, Northampton-
shire, Nottinghamshire, Oxfordshire, Rutland, Shropshire, Staffordshire, Surrey, Sussex, The Isle of
Ely, Warwickshire, West Riding of Yorkshire, Westmorland, Wiltshire, Worcestershire.

Note that county names with white space need to be enclosed in double quotes:

cat <infile> | ./run -t plain -g deep -c Oxfordshire -c Wiltshire -c
"North Riding of Yorkshire" -c "East Riding of Yorkshire" -c "West
Riding of Yorkshire"

A new -r begindate enddate option is also available for DEEP to restrict the choice of DEEP gazetteer
records which have attestation dates within the date range:

cat ../in/essexff.txt | ./run -t plain -g deep -c Essex -r 1000 1400

2 DEEP, Digital Exposure of English Placenames http://deep.kdl.kcl.ac.uk/, was a JISC-funded project to digitise and make available the
86 volumes of the Survey of English Place-Names. See http://epns.nottingham.ac.uk to search or browse the source material it worked with,
which covers the evolution of placenames in England. The 86-volume county by county survey details over four million variant forms, from
classical sources, through the Anglo-Saxon period and into medieval England and beyond to the modern period. For more details about the
DEEP data see the paper “A Gazetteer and Georeferencing for Historical English Documents” in Appendix 2: LTG Publications about the
Geoparser chapter. See also Practical Examples > Historical documents (relating to England).

6 Chapter 2. Quick Start Guide
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CHAPTER

THREE

OVERVIEW OF SOFTWARE STRUCTURE

See The Pipeline for a description of the logical structure of the geoparser pipeline, and how to customise it if
required. This chapter explains the physical layout of the software directories and provides flowcharts of the run
script that drives the pipeline.

3.1 File Layout

The directory structure is as shown in Figure File layout. The scripts directory contains all the driving scripts,
with run being the master that will run the entire pipeline. The Flowcharts diagrams show how the subsidiary
scripts slot in; these in turn call routines from the lib directory libraries.

Fig. 1: File layout

There is a setup script called by all other scripts to check the platform and set paths correctly. This checks
for an environment variable $LXDEBUG which, if set, puts the pipeline into debug mode, so that intermediate
temporary files (in /tmp) are kept for examination instead of being cleaned up when the pipeline exits.

7
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3.2 Flowcharts

This section contains two flowcharts, for the geotagging and geoparsing steps, explaining the physical structure
of the software. These may be handy for reference if you are planning to customise the geoparser. They cover the
run script that drives the pipeline and calls other scripts in the scripts directory.

The pipeline is designed to be modular so that you can slot in your own components if desired. These flowcharts
show the input and output required at each stage. The command line options tested in the decision diamonds are
explained in Section Running the Pipeline.

The first chart, Figure Geotagging flowchart, shows the first stage of the peipeline, up to the production of geo-
tagged text output, ie a file with linguistic markup (paragraphs, sentences, tokens, part of speech tags, lemmas) and
with Named Entities identified and categorised. The pipeline annotates the input with more than just geographic
entities. Personal names, organisations and time expressions are also tagged, along with event relations that can
be plotted on a timeline.

The second chart, Figure Georesolution flowchart, covers the second stage, taking the output from step one as
input. The pathway will depend on the parameters specified to the run command. Without the -o option,
specifying output files destination, the visualisation steps are skipped altogether and the geogrounded textual
output goes to standard out. If -o is specified then various display files are created, primarily for mapping (using
Mapbox and OpenStreetMap), but including event detection displayed with a Timeline widget and highlighting
other entity categories besides location.

8 Chapter 3. Overview of Software Structure
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Fig. 2: Geotagging flowchart
3.2. Flowcharts 9
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Fig. 3: Georesolution flowchart
10 Chapter 3. Overview of Software Structure



CHAPTER

FOUR

PRACTICAL EXAMPLES

This chapter describes some examples of using the geoparser with text from different domains, such as modern
text, historical documents and classical works in English translation. Using the command line parameters you can
switch different lexicons and gazetteers on or off, to suit different kinds of text. Each of the examples below looks
at different aspects of the output produced.

The examples here are for the domains we have tested, and the relevant files are included in the distribution (in
the in directory) so you can run the examples as described below. These are real texts we have worked with,
not prepared examples, and the output will contain errors - of precision or recall over the entities, or through
mis-idendification of locations. The publications in Appendix 2: LTG Publications about the Geoparser discuss
the performance you can expect in various domains.

If your domain fits one of these categories you should be able to use the geoparser without adaptation, by sim-
ply specifying the -t type and -g gazetteer parameters appropriately. See -t and -g parameters for the
available options.

For a discussion of the issues involved in customising the geoparser for a new domain, see “Adapting the Edinburgh
Geoparser for Historical Geo-referencing” in Appendix 2: LTG Publications about the Geoparser.

4.1 Modern text

Plain text: “burtons.txt”

We start with a simple example using the file “burtons.txt”, without creating any visualisation files, and writing to
stdout. Here the command is being run from the geoparser root directory, but it could be run from anywhere, with
appropriately specified paths:

cat in/burtons.txt | scripts/run -t plain -g unlock

The following command, using input redirection instead of a pipe, is of course completely equivalent:

scripts/run -t plain -g unlock < in/burtons.txt

This run uses Edina’s Unlock gazetteer which is mainly UK oriented. The input file starts like this:

How the home of Mini Rolls and Smash was gobbled up

Food factory workers facing the the sack will march on Saturday for an
economy that values more than just money

Among the thousands of people who join the big anti-cuts march this
Saturday will be a coach load from Wirral. ...

The output starts like this:

<?xml version="1.0" encoding="UTF-8"?>
<document version="3">

(continues on next page)

11
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(continued from previous page)

<meta>
<attr name="docdate" id="docdate" year="2021" month="05" date="25" sdate="2021-05-
→˓25" day-number="737934" day="Tuesday" wdaynum="2">20210525</attr>
<attr name="tokeniser_version" date="20151216"/></meta>

</meta>
<text>
<p>
<s id="s1">
<w pws="yes" id="w13" p="WRB" group="B-ADVP">How</w>
<w pws="yes" id="w17" p="DT" group="B-NP">the</w>
<w l="home" pws="yes" id="w21" p="NN" headn="yes" group="I-NP">home</w>
<w pws="yes" id="w26" p="IN" group="B-PP">of</w>
<w common="true" l="minus" pws="yes" id="w29" p="NNP" event="true"

headn="yes" group="B-NP">Mini</w>
<w common="true" vstem="roll" l="roll" pws="yes" id="w34" p="NNP"

event="true" headn="yes" group="I-NP">Rolls</w>
<w pws="yes" id="w40" p="CC" headn="yes" group="I-NP">and</w>
<w common="true" l="smash" pws="yes" id="w44" p="NNP" event="true"

headn="yes" group="I-NP">Smash</w>
<w l="be" pws="yes" id="w50" p="VBD" group="B-VP">was</w>
<w l="gobble" pws="yes" id="w54" p="VBN" headv="yes" group="I-VP">gobbled</w>
<w pws="yes" id="w62" p="RP" group="I-VP">up</w>
</s>

</p>
...

The output is xml with paragraphs and sentences marked and individual tokens in <w> elements, with various
linguistic attributes added. The unique “id” attribute is based on character position in the input text. Some meta
data has been added, including a “docdate” which defaults to the current date as no -d docdate parameter
was specified. Placename mentions found in the text will have a “locname” attribute on the <w> element, but
this is part of the intermediate processing, and the final Named Entity markup is specified using standoff xml as
described below.

The <text> element is followed by a <standoff> section. The following sample shows the structure:

<standoff>
<ents source="ner-rb">
<ent date="29" month="05" year="2021" sdate="2021-05-29"

day-number="737938" id="rb1" wdaynum="6"
day="Saturday" type="date">

<parts>
<part ew="w125" sw="w125">Saturday</part>

</parts>
</ent>
...

</ents>
<ents source="events">
<ent tense="past" voice="pass" asp="simple" modal="no" id="ev1"

subtype="gobble" type="event">
<parts>
<part ew="w54" sw="w54">gobbled</part>

</parts>
</ent>
...

</ents>
<relations source="temprel">
<relation id="rbr1" type="beforeorincl" text="was gobbled up">
<argument arg1="true" ref="ev1"/>
<argument arg2="true" ref="docdate"/>

</relation>
...

(continues on next page)

12 Chapter 4. Practical Examples
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(continued from previous page)

</relations>
</standoff>

There are two sets of <ents> elements because the pipeline uses two separate steps. The first is a rule-based
process (“ner-rb”) to identify and classify the entity mentions - the above example shows a date entity. The entity
categories detected are: date, location, person, and organisation. The entities are tied back to their positions in
the text by the <part> element, which has “sw” (start word) and “ew” (end word) attributes whose values match
the “id”s on the <w> s in the text.

The second set of <ents> are mainly verbs and verb phrases, tagged as a basis for detecting events mentioned in
the text. The <relations> section relates pairs of <ent> s, identified by a “ref” attribute that points to event
<ent> s (such as “ev1”) or rule-based ones (eg “rb1”) or to the docdate as in this example.

From a purely geoparsing point of view, only the rule-based “location” entities may be required, which look like
this:

<ents source="ner-rb">
<ent id="rb3" type="location" lat="53.37141177657975"

long="-3.083005177123173" gazref="unlock:13315840"
feat-type="civila">

<parts>
<part ew="w288" sw="w288">Wirral</part>
</parts>

</ent>
<ent>

These can easily be extracted if desired. (For example one could extract these with lxgrep or remove other
unwanted nodes with lxreplace, both of which are included in the LT-XML2 toolkit). Tools to create the rest of
the markup have been added to the pipeline at various times for different projects and the full output is included.

News text with known date: “172172”

With news text the date of the story is often known, and can be specified to the geoparser to help with event detec-
tion. The next example also specifies the -o outdir prefix option so that a full set of visualisation files will
be produced in addition to the main output described above (which will be in a file named “outdir/prefix.out.xml”):

cat in/172172.txt |
scripts/run -t plain -g geonames -d 2010-08-13 -o out 172172

In this case we have directed output to the pipeline’s out directory but it can be sent anywhere using a relative or
absolute path. The online Geonames gazetteer has been chosen, as the text doesn’t relate to the UK. It begins:

Nadal and Murray set up semi showdown
(CNN) -- Rafael Nadal and Andy Murray are both through to the
semifinals of the Rogers Cup in Toronto, where they will face each
other for a place in Sunday's final.
Murray played some superb tennis in crushing the in-form David
Nalbandian but Nadal had to recover from dropping the opening set to
get past Germany's Philipp Kohlschreiber.
Nalbandian won the ATP title in Washington last weekend and came
into Friday's encounter on an 11-match unbeaten streak. ...

Specifying the -o option means that, instead of just the tagged text file, we get a collection of output files:

• 172172.display.html

• 172172.events.xml

• 172172.gaz.xml

• 172172.gazlist.html

• 172172.gazmap.html

4.1. Modern text 13
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• 172172.geotagged.html

• 172172.nertagged.xml

• 172172.out.xml

• 172172.timeline.html

The output files are described in the Quick Start Guide, Visualisation output: -o. We looked at the format of
the “172172.out.xml” file above. The other main file is “172172.display.html”, which looks as shown in Figure
Geoparser display file for news text input. The map window uses OpenStreetMap maps to display the placename
locations, with green markers for the top-ranked candidate for each place and red markers for the other candidates.
The bottom left panel shows the input text, with placenames highlighted, and the bottom right panel lists the
placenames with all the candidate locations found for each. The first in the list is the chosen one, in green. You
can see from the length of the horizontal scroll bar that there are typically a great many other candidates - this is
especially true when using Geonames, as common placenames like the ones in this file are repeated many times
all over the world. The display is centred on the first placename mention, “Toronto”, and can be re-centred by
selecting other lat/long positions from the placename list.

Fig. 1: Geoparser display file for news text input

This was quite a short file to try to detect events in, but those found are listed in “172172.events.xml” which is
used to produce the Timeline display shown in Figure Timeline file.

Note that the Timeline display will work when served from a local web server and we have tested it on Fire-
fox, Chrome and Safari. You need to have Python installed, in your terminal go to the directory containing the
geoparser output files and type the following command:

For Python 2:

python -m SimpleHTTPServer

For Python 3:
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python -m http.server

Then open your browser and point it to:

http://localhost:8000

Click on the 172172timeline.html file and the display will open as shown in Figure Timeline file.

Fig. 2: Timeline file

This display shows other entity categories besides the locations, which are in green. Personal names are in red,
organisations in blue and time expressions in yellow. The pipeline detected 5 events in this input but was only
able to assign specific dates to two of them, which are the two plotted on the timeline. The other events included
references to “this season” and “this year”, which couldn’t be placed on the timeline. In the screen shot, an “info”
box has been brought up, by clicking on one of the events. It shows the text of the event and its timestamp.

4.2 Historical documents (relating to England)

We now take a more complex example, using some historical text. The input file is “cheshirepleas.txt”, which
starts thus:

On Saturday (fn. 2) next after the feast of St. Edward the King in
the 33rd year of the reign of King Edward [1305] Robert le Grouynour
did his homage and fealty for all the tenements of Lostoke, and
acknowledged that he held the manor of Lostoke entirely from the manor
of Weverham for homage and service and fealty [fo. 38d (275 d)] and
suit at the court of Weverham every fortnight, and 17s. yearly to the
manor of Weverham at the four terms, and two customary pigs, and four
foot-men in time of war at Chester bridge over the Dee, when Weverham
finds eight foot-men, and three when the manor of Weverham finds six,
or two when Weverham finds four men, with the ward and relief of
Lostok for all service. ...

The appropriate gazetteer for this text is DEEP, a specialist gazetteer of historical placenames in England (see
footnote [1] in the Quick Start Guide for details). If we know that the text is about Cheshire we can restrict the
gazetteer to that county. The text deals with dates in the 14th century - in fact over several different years, despite
the rather specific sound of “On Saturday next”, so whilst a docdate parameter may not be appropriate, we can
limit the DEEP candidates to ones attested for the medieval period, using a date range (say for the 12th to 14th
centuries). The run command we will use is:
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cat in/cheshirepleas.txt |
scripts/run -t plain -g deep -c Cheshire -r 1100 1400 -o out chespleas

In this case we have specified that a full set of output files should be produced, in the usual out directory and
prefixed with the string “chespleas”. Figure Display file for Cheshire input and DEEP gazetteer shows the display
file created.

Fig. 3: Display file for Cheshire input and DEEP gazetteer

As expected, the chosen locations are clustered together in Cheshire, the single outlier being a reference to
“Wales”.

Note that in the previous version of the Geoparser the text window used to contain links back to the
source gazetteer material at placenames.org.uk. However, as this site no longer exists, linking is no longer
possible. The MADS format data that placenames.org.uk used to serve can be downloaded from JISC:
https://digitisation.jiscinvolve.org/wp/2017/05/24/digitisation-of-english-placenames-deep-project-data. More-
over, information from the results of the deep option look-up in the .gaz.xml output file (in this example,
chesplease.gaz.xml) contains information not shown in the display:

<placename id="rb14" name="Lostok">
<place rank="1" long="-2.142703862" lat="53.34264479" deepcounty="Cheshire"
→˓madsid="epns-deep-44-c-mappedname-001816" uriins="http://epns.nottingham.ac.uk/
→˓England/Cheshire/Macclesfield%20Hundred/Prestbury Poynton%20with%20Worth/
→˓Lostockhall%20Farm" name="Lostok">
<attestations>
<attestation>
<date begin="1285" end="1285" subtype="simple">1285</date>
<source id="ch223" style="italic">Eyre</source>

</attestation>
</attestations>

(continues on next page)
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(continued from previous page)

</place>
</placename>

The attribute @madsid refers to the record entry in the MADS data available from JISC and the attestation in-
formation gives an indication of date and source of the attestation. The url in the @uriins attribute does not
work but it does encode a pathway through the EPNS data hierarchy that can be followed when browsing on
the http://epns.nottingham.ac.uk site. Thus this reading of “Lostock” refers to a place in the county of Cheshire,
in Macclesfield Hundred, in the parish of Prestbury, in the settlement of Poynton with Worth. The place identi-
fied is “Lostokhall Farm” and the EPNS page about it at http://epns.nottingham.ac.uk/browse/Cheshire/Prestbury/
53283645b47fc408560013ea-Lostockhall+Fm can be reached by navigating the path just described. On this page
one can view both the historical forms and the etymology. For more detail about the DEEP data, see the paper
“A Gazetteer and Georeferencing for Historical English Documents” in Appendix 2: LTG Publications about the
Geoparser.

4.3 Classical texts

As part of the GAP (Google Ancient Places) project, the geoparser was adapted to deal with classical texts in
English translation. This requires different lexicons of places and personal names and uses the Pleiades gazetteer
of ancient places. (See the Pleiades+ section for details of Pleiades and Pleiades+.)

The geoparser output was post-processed by the GAP project to creat the GapVis display (versions 1 and 2 are
currently available). This only requires one location per toponym mention so only the top-ranked candidate was
passed on. If you only require the “best” location (the green markers in the displays above) then specify the -top
option:

cat in/herodotusBk1.txt |
scripts/run -t plain -g plplus -o out hbk1plplus -top

The -top option can be used for any input and will result in only the top candidate place being shown in the
display file. An example of this is illustrated in Figure Herodotus display file. The text is the opening of Book 1
of the Histories by Herodotus.

In principle it might be possible to process input in the original Latin or Greek (or indeed in any language), if
suitable linguistic components could be substituted in the geotagging stage of the pipeline. This is a project for
another day. The Hestia 2 project has taken steps along the way towards allowing students to work with the Greek
version of the Histories.

4.4 Using pre-formatted input

The examples above all use plain text input files. If your input files already contain markup, such as html or xml,
you may wish to alter the pre-processing steps of the pipeline to cater for it. Alternatively, it may be simpler to
strip the markup and treat your input as plain text. The type parameter accepts two specific formats, gb (Google
Books html files) and ltgxml (a simple xml style used by LTG, that has paragraphs pre-marked; see sample file
in/172172.xml for the format).
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Fig. 4: Herodotus display file
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4.4.1 Google Books format

Another spin-off from the GAP project was the need to process Google Books input. GAP was a Google-funded
project using bulk quantities of Google Books material, specifically classical texts. The original scanning and
OCR work was done on a very large scale by Google and the quality can be variable to say the least. The data
was made available as html files and we had the choice of either stripping all the markup - which would have
thrown away valuable information - or attempting to ingest the raw files. The prepare stage at the start of
the pipeline was amended to do just enough pre-processing of the html to ensure that the many non-printable
characters contained in the OCR-ed input don’t break the xml tools. Because the files vary so much from book to
book it was not possible to do more detailed tailoring. If this was required, the prepare-gb script might be a
starting point.

The following example uses another edition of the Herodotus text, taking a single page from a Google Books
edition as input:

cat in/gb_pg234.html | scripts/run -t gb -g plplus -top -o out gb_pg234

The output files are similar to those already shown and are available in the out directory.

The Open Library provides an alternative source of scanned and OCR-ed texts, and experiments were also done
with material from this source. The text displays many of the same OCR errors but is available as plain text (as
well as other formats less useful for processing) rather than html.

4.4.2 XML input

The “172172.txt” input used above was actually orginally generated as xml, in the “ltgxml” format - the plain text
version has the markup stripped out. In the ltgxml format the docdate can be included if known:

<?xml version="1.0" encoding="UTF-8"?>
<document version="3">
<meta>
<attr name="docdate" id="docdate" year="2010" month="08" date="13"

sdate="2010-08-13" day-number="733996" day="Friday" wdaynum="5"/>
</meta>
<text>
<p>Nadal and Murray set up semi showdown</p>
<p>(CNN) -- Rafael Nadal and Andy Murray are both through to the semifinals

of the Rogers Cup in Toronto, where they will face each other for a
place in Sunday's final.</p>

<p>Murray played some superb tennis in crushing the in-form David Nalbandian
but Nadal had to recover from dropping the opening set to get past
Germany's Philipp Kohlschreiber.</p>

<p>Nalbandian won the ATP title in Washington last weekend and came into
Friday's encounter on an 11-match unbeaten streak.</p>

...

We would get identical output to that obtained above (give or take white space) with this command:

cat in/172172.xml | scripts/run -t ltgxml -g geonames -o out 172172

The -t type is changed to reflect the input and the -d docdate is no longer required.

Apart from the docdate specification, the other substantive difference with using xml input is that paragraph
markers can be passed to the pipeline if you already have them.
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CHAPTER

FIVE

THE PIPELINE

The geoparser is implemented in modular fashion, as a sequence of steps arranged in a “pipeline”. The aim is to
make it easy to switch different components in if desired, for instance if a local POS tagger is preferred to the one
supplied here.

As illustrated in Figure Overview of the geoparser pipeline, there are two stages to the geoparsing process:

1. Geotagging

2. Georesolution

Fig. 1: Overview of the geoparser pipeline

The geotagging step process input text to identify and classify named entities within it, specifically placename
entities though other classes can also be found - see The nertag Component.

The georesolution step uses a gazetteer (see Gazetteers) to ground placename entities against specific geographic
locations mentioned in the gazetteer. Typically there will be multiple candidates - for example, there are any
number of places called “Edinburgh” in the world. The georesolver ranks the candidates in order using various
contextual clues.

21
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5.1 Geotagging

NOTE: This chapter actually describes the TTT2 pipeline software, which differs slightly from the Geoparser.
However, all the important points on the operation of the geotagging step are covered.

5.1.1 Introduction

This documentation is intended to provide a detailed description of the pipelines provided in the LT-TTT2 distri-
bution. The pipelines are implemented as Unix shell scripts and contain calls to processing steps which are applied
to a document in sequence in order to add layers of XML mark-up to that document.

This document does not contain any explanation of lxtransduce grammars or XPath expressions. For an intro-
duction to the lxtransduce grammar rule formalism, see the tutorial documentation. See also the lxtransduce
manual as well as the documentation for the LT-XML2 programs.

LT-TTT2 includes some software not originating in Edinburgh which has been included with kind permission of
the authors. Specifically, the part-of-speech (POS) tagger is the C&C tagger and the lemmatiser is morpha. See
Sections The postag Component and The lemmatise Component below for more information and conditions of
use.

LT-TTT2 also includes some resource files which have been derived from a variety sources including UMLS,
Wikipedia, Project Gutenberg, Berkeley and the Alexandria Digital Library Gazetteer. See Sections The tokenise
Component, The lemmatise Component and The nertag Component below for more information and conditions of
use.

5.1.2 Pipelines

The run script

The LT-TTT2 pipelines are found in the TTT2/scripts directory and are NLP components or sub-components,
apart from TTT2/scripts/run which is a pipeline that applies all of the NLP components in sequence to a
plain text document. The diagram in Figure The run pipeline shows the sequence of commands in the pipeline.

Fig. 2: The run pipeline

The script is used from the command line in the following kinds of ways (from the directory):

./scripts/run < data/example1.txt > your-output-file

cat data/example1.txt | ./scripts/run | more

The steps in Figure The run pipeline appear in the script as follows:

1. cat >$tmp-input

2. $here/scripts/preparetxt <$tmp-input >$tmp-prepared

3. $here/scripts/tokenise <$tmp-prepared >$tmp-tokenised

4. $here/scripts/postag -m $here/models/pos <$tmp-tokenised >$tmp-postagged

5. $here/scripts/lemmatise <$tmp-postagged >$tmp-lemmatised

(continues on next page)
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(continued from previous page)

6. $here/scripts/nertag <$tmp-lemmatised >$tmp-nertagged

7. $here/scripts/chunk -s nested -f inline <$tmp-nertagged >$tmp-chunked

8. cat $tmp-chunked

Step 1 copies the input to a temporary file $tmp-input, (see Section Setup for information about $tmp). This
is then used in Step 2 as the input to the first processor which converts a plain text file to XML and writes its
output as the temporary file $tmp-prepared. Each successive step takes as input the temporary file which is
output from the previous step and writes its output to another appropriately named temporary file. The output of
the final processor is written to $tmp-chunked and the final step of the pipeline uses the Unix command cat
to send this file to standard output.

Setup

All of the pipeline scripts contain this early step:

. `dirname $0`/setup

This causes the commands in the file TTT2/scripts/setup to be run at this point and establishes a consistent
naming convention for paths to various resources. For the purposes of understanding the content of the pipeline
scripts, the main points to note are:

• The variable takes as value the full path to the TTT2 directory.

• A $bin variable is defined as TTT2/bin and is then added to the value of the user’s PATH variable so that
the scripts can call the executables such as lxtransduce without needing to specify a path.

• The variable $tmp is defined for use by the scripts to write temporary files and en-
sure that they are uniquely named. The value of $tmp follows this pattern: /tmp/
<USERNAME>-<NAME-OF-SCRIPT>-<PROCESS-ID>. Thus the temporary file created by Step 2
above ($tmp-prepared, the temporary file containing the output of TTT2/scripts/preparetxt)
might be /tmp/bloggs-run-959-prepared.

Temporary files are removed automatically after the script has run, so cannot usually be inspected. Sometimes
it is useful to retain them for debugging purposes and the setup script provides a method to do this — if the
environment variable LXDEBUG is set then the temporary files are not removed. For example, this command:

LXDEBUG=1 ./scripts/run <data/example1.txt >testout.xml

causes the script run to be run and retains the temporary files that are created along the way.

Component Scripts

The main components of the run pipeline as shown in Figure The run pipeline are also located in the TTT2/
scripts directory. They are described in detail in Sections The preparetext Component – The chunk Component.

The needs of users will vary and not all users will want to use all the components. The script has been designed
so that it is simple to edit and configure for different needs. There are dependencies, however:

• preparetxt assumes a plain text file as input;

• all other components assume an XML document as input;

• tokenise requires its input to contain paragraphs marked up as <p> elements;

• the output of tokenise contains <s> (sentence) and <w> (word) elements and all subsequent components
require this format as input;

• lemmatise, nertag and chunk require part-of-speech (POS) tag information so postag must be
applied before them;
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• if both nertag and chunk are used then nertag should be applied before chunk.

Each of the scripts has the effect of adding more XML mark-up to the document. In all cases, except chunk, the
new mark-up appears on or around the character string that it relates to. Thus words are marked up by wrapping
word strings with a <w> element, POS tags and lemmas are realised as attributes on <w> elements, and named
entities are marked up by wrapping <w> sequences with appropriate elements. The chunk script allows the user
to choose among a variety of output formats, including BIO column format and standoff output (see Section The
chunk Component for details). Section Visualising output discusses how the XML output of pipelines can be
converted to formats which make it easier to visualise.

The components are Unix shell scripts where input is read from standard input and output is to standard output.
Most of the scripts have no arguments apart from postag and chunk: details of their command line options can
be found in the relevant sections below.

The component scripts are similar in design and in the beginning parts they follow a common pattern:

• usage and descr variables are defined for use in error reporting;

• the next part is a command to run the setup script (.~`dirname $0`/setup) as described in Section
Setup above

• a while loop handles arguments appropriately

• a lib variable is set to point to the directory in which the resource files for the component are kept. For
example, in lemmatise it is defined like this: lib=\$here/lib/lemmatise so that instances of
$lib in the script expand out to TTT2/lib/lemmatise. ($here is defined in the script as the TTT2
directory.)

5.1.3 The preparetext Component

Overview

The preparetxt component is a Unix shell script called with no arguments. Input is read from standard input
and output is to standard output.

This script converts a plain text file into a basic XML format and is a necessary step since the LT-XML2 programs
used in all the following components require XML as input. The script generates an XML header and wraps the
text with a text element. It also identifies paragraphs and wraps them as <p> elements. If the input file is this:

This is a piece of text.

It needs to be converted to XML.

the output is this:

<?xml version="1.0" encoding="ISO-646"?>
<!DOCTYPE text [
<!ELEMENT text (#PCDATA)*>
]>
<text>
<p>This is a piece of text.</p>

<p>It needs to be converted to XML.</p>
</text>

Some users may want to process data which is already in XML, in which case this step should not be used.
Instead, it should be ensured that the XML input files contain paragraphs wrapped as <p> elements. So long as
there is some kind of paragraph mark-up, this can be done using lxreplace. For example, a file containing para
elements like this:

<body><para>This is a piece of text.</para>

<para>It needs to be converted to XML.</para></body>
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can easily be converted using this command:

cat input-file | lxreplace -q para -n "'p'"

so that the output is this:

<body><p>This is a piece of text.</p>

<p>It needs to be converted to XML.</p></body>

Note that parts of the XML structure above the paragraph level do not need to be changed since the components
only affect either paragraphs or sentences and words inside paragraphs.

The preparetext script

In the early part of the script the $lib variable is defined to point to TTT2/lib/preparetxt/ which is
the location of the resource files used by the preparetxt pipeline. The remainder of the script contains the
sequence of processing steps piped together that constitute the preparetxt pipeline.

The preparetext pipeline

1. lxplain2xml -e guess -w text |

2. lxtransduce -q text $lib/paras.gr

Step 1: lxplain2xml -e guess -w text

This step uses the LT-XML2 program lxplain2xml to convert the text into an XML file. The output is the
text wrapped in a text root element (-w text) with an XML header that contains an encoding attribute which
lxplain2xml guesses (-e guess) based on the characters it encounters in the text. The output of this step
given the previous input file is this:

<?xml version="1.0" encoding="ISO-646"?>
<!DOCTYPE text [
<!ELEMENT text (#PCDATA)*>
]>
<text>
This is a piece of text.

It needs to be converted to XML.
<\text>

The file TTT2/data/utf8-example contains a UTF-8 pound character. If Step 1 is used with this file as
input, the output has a UTF-8 encoding:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE text [
<!ELEMENT text (#PCDATA)*>
]>
<text>
This example contains a UTF-8 character, i.e. £.
</text>

Step 2: lxtransduce -q text $lib/paras.gr

The second and final step in the preparetxt pipeline uses the LT-XML2 program lxtransduce with the
grammar rule file TTT2/preparetxt/paras.gr to identify and mark up paragraphs in the text as <p>
elements. On the first example in this section the output contains two paragraphs as already shown above. On a
file with no paragraph breaks, the entire text is wrapped as a <p> element, for example:

5.1. Geotagging 25



The Edinburgh Geoparser Documentation, Release 1.3

<?xml version="1.0" encoding="ISO-646"?>
<!DOCTYPE text [
<!ELEMENT text (#PCDATA)*>
]>
<text>
<p>This is a piece of text. It needs to be converted to XML.</p>
<\text>

Note that if the encoding is UTF-8 then the second step of the pipeline does not output the XML declaration since
UTF-8 is the default encoding. Thus the output of preparetxt on the file TTT2/data/utf8-example is
this:

<!DOCTYPE text [
<!ELEMENT text (#PCDATA)*>
]>
<text>
<p>This example contains a UTF-8 character, i.e. £.</p>
</text>

5.1.4 The tokenise Component

Overview

The tokenise component is a Unix shell script called with no arguments. Input is read from standard input and
output is to standard output.

This is the first linguistic processing component in all the top level scripts and is a necessary prerequisite for all
other linguistic processing. Its input is an XML document which must contain paragraphs marked up as <p>
elements. The tokenise component acts on the <p> elements by (a) segmenting the character data content into
<w> (word) elements and (b) identifying sentences and wrapping them as <s> elements. Thus an input like this:

<document>
<text>
<p>
This is an example. There are two sentences.
</p>
</text>
</document>

is transformed by and output like this (modulo white space which has been changed for display purposes):

<document>
<text>
<p>
<s id="s1">
<w id="w3" c="w" pws="yes">This</w> <w id="w8" c="w" pws="yes">is</w>
<w id="w11" c="w" pws="yes">an</w> <w id="w14" c="w" pws="yes">example</w>
<w id="w21" pws="no" sb="true" c=".">.</w>
</s>
<s id="s2">
<w id="w23" c="w" pws="yes">There</w> <w id="w29" c="w" pws="yes">are</w>
<w id="w33" c="w" pws="yes">two</w> <w id="w37" c="w" pws="yes">sentences</w>
<w id="w46" pws="no" sb="true" c=".">.</w>
</s>
</p>
</text>
</document>

The attribute on <w> elements encodes a unique id for each word based on the start position of its first character.
The attribute on <s> elements encodes unique sequentially numbered ids for sentences. The c attribute is used
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to encode word type (see Table 2 for complete list of values). It serves internal purposes only and can possibly be
removed at the end of preprocessing. All <w> elements have a pws attribute which has a no value if there is no
white space between the word and the preceding word and a yes value otherwise. The sb attribute on sentence
final full stops serves to differentiate these from sentence internal full stops. The pws and sb attributes are used
by the nertag component.

The tokenise script

In the early part of the script the $lib variable is defined to point to TTT2/lib/tokenise/ which is the
location of the resource files used by the tokenise pipeline. The remainder of the script contains the sequence
of processing steps piped together that constitute the tokenise pipeline.

The tokenise pipeline

1. lxtransduce -q p $lib/pretokenise.gr |

2. lxtransduce -q p $lib/tokenise.gr |

3. lxreplace -q "w/cg" |

4. lxtransduce -q p -l lex=$lib/mobyfuncwords.lex $lib/sents-news.gr |

5. lxtransduce -q s -l lex=$here/lib/nertag/numbers.lex $lib/posttokenise.gr |

6. lxreplace -q "w/w" |

7. lxreplace -q "w[preceding-sibling::*[1][self::w]]" -t "<w pws='no'>&attrs;&
→˓children;</w>" |

8. lxreplace -q "w[not(@pws)]" -t "<w pws='yes'>&attrs;&children;</w>" |

9. lxreplace -q cg |

10. lxaddids -e 'w' -p "'w'" -c '//text()' |

11. lxaddids -e 's' -p "'s'"

Step 1: lxtransduce -q p $lib/pretokenise.gr

The first step in the pipeline uses lxtransduce with the rules in pretokenise.gr. The query (-q p)
establishes <p> elements as the part of the XML that the rules are to be applied to. The pretokenise grammar
converts character data inside <p> elements into a sequence of ‘character groups’ (<cg> elements) so that this:

<p>"He's gone", said
Fred.</p>

is output as follows:

<p><cg c='qut' qut='d'>"</cg><cg c='uca'>H</cg><cg c='lca'>e</cg>
<cg c='qut' qut='s'>'</cg><cg c='lca'>s</cg><cg c='ws'> </cg>
<cg c='lca'>gone</cg><cg c='qut' qut='d'>"</cg><cg c='cm'>,</cg>
<cg c='ws'> </cg><cg c='lca'>said</cg><cg c='nl'>
</cg><cg c='uca'>F</cg><cg c='lca'>red</cg><cg c='stop'>.</cg></p>

Note that here and elsewhere we introduce line breaks to display examples to make them readable but that they
are not to be thought of as part of the example. Every actual character in this example is contained in a <cg>,
including whitespace and newline characters, e.g. the newline between said and Fred in the current example.
The c attribute on <cg> elements encodes the character type, e.g. lca indicates lower case. Table 1 contains a
complete list of values for the c attribute on <cg> elements. Note that quote <cg> elements (c='qut') have a
further attribute to indicate whether the quote is single or double: qut='s' or qut='d'.
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Code Meaning
amp ampersand
brk bracket (round, square, brace)
cd digits
cm comma, colon, semi-colon
dash single dash, sequence of dashes
dots sequence of dots
gt greater than (character or entity)
lca lowercase alphabetic
lc-nt lowercase n’t
lt less than entity
nl newline
pct percent character
qut quote
slash forward and backward slashes
stop full stop, question mark, exclamation mark
sym symbols such as +, -, @ etc.
tab tab character
uca uppercase alphabetic
uc-nt uppercase n’t
what unknown characters
ws whitespace

Table 1: Values for the c attribute on <cg> elements

Step 2: lxtransduce -q p $lib/tokenise.gr

The second step in the pipeline uses lxtransducewith tokenise.gr. The query again targets <p> elements
but in this step the grammar uses the <cg> elements of the previous step and builds <w> elements from them.
Thus the output of step 1 is converted to this:

<p><w c="lquote" qut="d"><cg qut="d" c="qut">"</cg></w>
<w c="w"><cg c="uca">H</cg><cg c="lca">e</cg></w>
<w c="aposs"><cg qut="s" c="qut">'</cg><cg c="lca">s</cg></w><cg c="ws"> </cg>
<w c="w"><cg c="lca">gone</cg></w>
<w c="rquote" qut="d"><cg qut="d" c="qut">"</cg></w><w c="cm"><cg c="cm">,</cg></w>
<cg c="ws"> </cg><w c="w"><cg c="lca">said</cg></w><cg c="nl">
</cg><w c="w"><cg c="uca">F</cg><cg c="lca">red</cg></w>
<w c="."><cg c="stop">.</cg></w></p>

Note that the apostrophe+s sequence in He’s has been recognised as such (aposs value for the attribute). Non-
apostrophe quote <w> elements acquire an lquote, rquote or quote value for c (left, right or can’t be
determined) and have a further attribute to indicate whether the quote is single or double: qut='s' or qut='d'.
Table 2 contains a complete list of values for the c attribute on <w> elements.

28 Chapter 5. The Pipeline



The Edinburgh Geoparser Documentation, Release 1.3

Code Meaning
. full stop, question mark, exclamation mark
abbr abbreviation
amp ampersand
aposs apostrophe s
br bracket (round, square, brace)
cc and/or
cd numbers
cm comma, colon, semi-colon
dash single dash, sequence of dashes
dots sequence of dots
hyph hyphen
hyw hyphenated word
lquote left quote
ord ordinal
pcent percent expression
pct percent character
quote quote (left/right undetermined)
rquote right quote
slash forward and backward slashes
sym symbols such as +, -, @ etc.
w ordinary word
what unknown type of word

Table 2: Values for the c attribute on <w> elements

Step 3: lxreplace -q "w/cg"

The third step uses lxreplace to remove <cg> elements inside the new <w> elements. (Word internal <cg>
elements are no longer needed, but those occurring between words marking whitespace and newline are retained
for use by the sentence grammar.) The output now looks like this:

<p><w qut="d" c="lquote">"</w><w c="w">He</w><w c="aposs">'s</w><cg c="ws"> </cg>
<w c="w">gone</w><w qut="d" c="rquote">"</w><w c="cm">,</w><cg c="ws"> </cg>
<w c="w">said</w><cg c="nl">
</cg><w c="w">Fred</w><w c=".">.</w></p>

Step 4: lxtransduce -q p -l lex=$lib/mobyfuncwords.lex $lib/sents-news.gr

The next step uses lxtransduce to mark up sentences as <s> elements. As well as using the sents-news.
gr rule file, a lexicon of function words (mobyfuncwords.lex, derived from Project Gutenberg’s Moby Part
of Speech List1) is consulted. This is used as a check on a word with an initial capital following a full stop: if it is
a function word then the full stop is a sentence boundary. The output on the previous example is as follows:

<p><s><w c="lquote" qut="d">"</w><w c="w">He</w><w c="aposs">'s</w><cg c="ws"> </
→˓cg>
<w c="w">gone</w><w c="rquote" qut="d">"</w><w c="cm">,</w><cg c="ws"> </cg>
<w c="w">said</w><cg c="nl">
</cg><w c="w">Fred</w><w c="." sb="true">.</w></s></p>

The tokenise script is set up to use a sentence grammar which is quite general but which is tuned in favour
of newspaper text and the abbreviations that occur in general/newspaper English. The distribution contains a
second sentence grammar, sents-bio.gr, which is essentially the same grammar but which has been tuned for
biomedical text. For example, the abbreviation Mr. or MR. is expected not to be sentence final in sents-news.
gr but is permitted to occur finally in sents-bio.gr. Thus this example:

1 http://www.gutenberg.org/etext/3203
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<p>
I like Mr. Bean.
XYZ interacts with 123 MR. Experiments confirm this.
</p>

is segmented by sents-news.gr as:

<p>
<s>I like Mr. Bean.</s>
<s>XYZ interacts with 123 MR. Experiments confirm this.</s>
</p>

while sents-bio.gr segments it like this:

<p>
<s>I like Mr.</s>
<s>Bean.</s>
<s>XYZ interacts with 123 MR.</s>
<s>Experiments confirm this.</s>
</p>

The sents-bio.gr qgrammar has been tested on the Genia corpus and performs very well.

Step 5: lxtransduce -q s -l lex=$here/lib/nertag/numbers.lex $lib/
posttokenise.gr

The fifth step applies lxtransduce with the rule file posttokenise.gr to handle hyphenated words and
to handle full stops belonging to abbreviations. Since an <s> layer of annotation has been introduced by the
previous step, the query now targets <s> elements rather than <p> elements. In the input to posttokenise.
gr, hyphens are split off from their surrounding words, so this grammar combines them to treat most hyphenated
words as words rather than as word sequences — it wraps a <w> element (with the attribute c='hyw') around the
relevant sequence of <w> elements, thus creating <w> inside <w> mark-up. The grammar consults a lexicon of
numbers in order to exclude hyphenated numbers from this treatment. (Later processing by the numex and timex
named entity rules requires that these should be left separated.) Thus if the following is input to tokenise:

<p>
Mr. Bean eats twenty-three ice-creams.
</p>

the output after the post-tokenisation step is:

<p>
<s><w c="abbr"><w c="w">Mr</w><w c=".">.</w></w><cg c="ws"> </cg><w c="w">Bean</w>
<cg c="ws"> </cg><w c="w">eats</w><cg c="ws"> </cg><w c="w">twenty</w>
<w c="hyph">-</w><w c="w">three</w><cg c="ws"> </cg>
<w c="hyw"><w c="w">ice</w><w c="hyph">-</w><w c="w">creams</w></w>
<w sb="true" c=".">.</w></s>
</p>

The grammar also handles full stops which are part of abbreviations by wrapping a <w> element (with the attribute
c='abbr') around a sequence of a word followed by a non-sentence final full stop (thus again creating w/w
elements). The Mr. in the current example demonstrates this aspect of the grammar.

Note that this post-tokenisation step represents tokenisation decisions that may not suit all users for all purposes.
Some applications may require hyphenated words not to be joined (e.g. the biomedical domain where entity names
are often subparts of hyphenated words (NF-E2-related)) and some downstream components may need trailing
full stops not to be incorporated into abbreviations. This step can therefore be omitted altogether or modified
according to need.

Step 6: lxreplace -q "w/w"

The sixth step in the tokenise pipeline uses lxreplace to remove the embedded mark-up in the multi-word
words created in the previous step.
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Step 7 & 8:

lxreplace -q "w[preceding-sibling::*[1][self::w]]" -t "<w pws='no'>&attrs;
&children;</w>" |

lxreplace -q "w[not(@pws)]" -t "<w pws='yes'>&attrs;&children;</w>"

The seventh and eighth steps add the attribute pws to <w> elements. This attribute indicates whether the word is
preceded by whitespace or not and is used by other, later LT-TTT2 components (e.g., the nertag component).
Step 7 uses lxreplace to add pws='no' to <w> elements whose immediately preceding sibling is a <w>.
Step 8 then adds pws='yes' to all remaining <w> elements.

Step 9: lxreplace -q cg

At this point the <cg> mark-up is no longer needed and is removed by step 9. The output from steps 6–9 is as
follows:

<p><s><w c="abbr" pws="yes">Mr.</w> <w c="w" pws="yes">Bean</w>
<w c="w" pws="yes">eats</w>
<w c="w" pws="yes">twenty</w><w c="hyph" pws="no">-</w><w c="w" pws="no">three</w>
<w c="hyw" pws="yes">ice-creams</w><w c="." sb="true" pws="no">.</w></s></p>

Steps 10 & 11:

lxaddids -e 'w' -p "'w'" -c '//text()' |

lxaddids -e 's' -p "'s'"

In the final two steps lxaddids is used to add id attributes to words and sentences. The initial example in
this section, reproduced here, shows the input and output from tokenise where the words and sentences have
acquired ids through these final steps:

<document>
<text>
<p>
This is an example. There are two sentences.
</p>
</text>
</document>

<document>
<text>
<p>
<s id="s1">
<w id="w3" c="w" pws="yes">This</w> <w id="w8" c="w" pws="yes">is</w>
<w id="w11" c="w" pws="yes">an</w> <w id="w14" c="w" pws="yes">example</w>
<w id="w21" pws="no" sb="true" c=".">.</w>
</s>
<s id="s2">
<w id="w23" c="w" pws="yes">There</w> <w id="w29" c="w" pws="yes">are</w>
<w id="w33" c="w" pws="yes">two</w> <w id="w37" c="w" pws="yes">sentences</w>
<w id="w46" pws="no" sb="true" c=".">.</w>
</s>
</p>
</text>
</document>

In step 10, the -p "'w'" part of the lxaddids command prefixes the id value with w. The -c '//text()'
option ensures that the numerical part of the id reflects the position of the start character of the <w> element
(e.g. the initial e in example is the 14th character in the text element). We use this kind of id so that retokenisa-
tions in one part of a file will not cause id changes in other parts of the file. Step 11 is similar except that for id
values on s elements the prefix is s. We have also chosen not to have the numerical part of the id reflect character
position — instead, through not supplying a -c option, the default behaviour of sequential numbering obtains.
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5.1.5 The postag Component

Overview

The postag component is a Unix shell script called with one argument via the -m option. The argument to -m
is the name of a model directory. The only POS tagging model provided in this distribution is the one found in
TTT2/models/pos but we have parameterised the model name in order to make it easier for users wishing to
use their own models. Input is read from standard input and output is to standard output.

POS tagging is the next step after tokenisation in all the top level scripts since other later components make use of
POS tag information. The input to postag is a document which has been processed by tokenise and which
contains <p>, <s>, and <w> elements. The postag component adds a p attribute to each <w> with a value
which is the POS tag assigned to the word by the C&C POS tagger using the TTT2/models/pos model. Thus
an input like this (output from tokenise):

<document>
<text>
<p>
<s id="s1">
<w id="w3" c="w" pws="yes">This</w> <w id="w8" c="w" pws="yes">is</w>
<w id="w11" c="w" pws="yes">an</w> <w id="w14" c="w" pws="yes">example</w>
<w id="w21" pws="no" sb="true" c=".">.</w>
</s>
<s id="s2">
<w id="w23" c="w" pws="yes">There</w> <w id="w29" c="w" pws="yes">are</w>
<w id="w33" c="w" pws="yes">two</w> <w id="w37" c="w" pws="yes">sentences</w>
<w id="w46" pws="no" sb="true" c=".">.</w>
</s>
</p>
</text>
</document>

is transformed by postag and output like this:

<document>
<text>
<p>
<s id="s1">
<w pws="yes" c="w" id="w3" p="DT">This</w> <w pws="yes" c="w" id="w8" p="VBZ">is</
→˓w>
<w pws="yes" c="w" id="w11" p="DT">an</w> <w pws="yes" c="w" id="w14" p="NN">
→˓example</w>
<w c="." sb="true" pws="no" id="w21" p=".">.</w>
</s>
<s id="s2">
<w pws="yes" c="w" id="w23" p="EX">There</w> <w pws="yes" c="w" id="w29" p="VBP">
→˓are</w>
<w pws="yes" c="w" id="w33" p="CD">two</w> <w pws="yes" c="w" id="w37" p="NNS">
→˓sentences</w>
<w c="." sb="true" pws="no" id="w46" p=".">.</w>
</s>
</p>
</text>
</document>

The POS tagger called by the postag script is the C&C maximum entropy POS tagger (Curran and Clark 20032)
trained on data tagged with the Penn Treebank POS tagset (Marcus, Santorini, and Marcinkiewicz 19933). We
have included the relevant Linux binary and model from the C&C release at http://svn.ask.it.usyd.edu.au/trac/

2 Curran, J. R. and S. Clark (2003). Investigating GIS and smoothing for maximum entropy taggers. In Proceedings of the 11th Meeting of
the European Chapter of the Association for Computational Linguistics (EACL-03), pp. 91–98.

3 Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz (1993). Building a large annotated corpus of English: the Penn Treebank.
Computational Linguistics 19(2).
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candc/wiki with the permission of the authors. The binary of the C&C POS tagger, which in this distribution is
named TTT2/bin/pos, is a copy of candc-1.00/bin/pos from the tar file candc-linux-1.00.tgz.
The model, which in this distribution is named TTT2/models/pos, is a copy of ptb_pos from the tar file
ptb_pos-1.00.tgz. This model was trained on the Penn Treebank (see TTT2/models/pos/info for
more details). The C&C POS tagger may be used under the terms of the academic (non-commercial) licence at
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Licence.

Note that the postag script is simply a wrapper for a particular non-XML based tagger. It converts the input
XML to the input format of the tagger, invokes the tagger, and then merges the tagger output back into the XML
representation. It is possible to make changes to the script and the conversion files in order to replace the C&C
tagger with another.

The postag script

Since postag is called with a -m argument, the early part of the script is more complex than scripts with no
arguments. The while and if loops set up the -m argument so that the path to the model has to be provided
when the component is called. Thus all the top level scripts which call the postag component do so in this way:

$here/scripts/postag -m $here/models/pos

In the next part of the script the $lib variable is defined to point to TTT2/lib/postag/ which is the location
of the resource files used by the postag pipeline. The remainder of the script contains the sequence of processing
steps piped together that constitute the postag pipeline.

The postag pipeline

1. cat >$tmp-in

2. lxconvert -w -q s -s $lib/pos.cnv <$tmp-in |

3. pos -model $model 2>$tmp-ccposerr |

4. lxconvert -r -q s -s $lib/pos.cnv -x $tmp-in

Step 1: cat >$tmp-in

The first step in the pipeline copies the input to the temporary file $tmp-in. This is so that it can both be
converted to C&C input format as well as retained as the file that the C&C output will be merged with.

Step 2: lxconvert -w -q s -s $lib/pos.cnv <$tmp-in

The second step uses lxconvert to convert into the right format for input to the C&C POS tagger (one sentence
per line, tokens separated by white space). The -s option instructs it to use the TTT2/lib/postag/pos.cnv
stylesheet, while the -q s query makes it focus on <s> elements. (The component will therefore not work on
files which do not contain <s> elements.) The -w option makes it work in write mode so that it follows the rules
for writing C&C input format. If the following tokenise output:

<p><s id="s1"><w id="w0" c="abbr" pws="yes">Mr.</w> <w id="w4" c="w" pws="yes">Bean
→˓</w>
<w id="w9" c="w" pws="yes">had</w> <w id="w13" c="w" pws="yes">an</w>
<w id="w16" c="hyw" pws="yes">ice-cream</w><w id="w25" pws="no" sb="true" c=".">.</
→˓w></s>
<s id="s2"><w id="w27" c="w" pws="yes">He</w> <w id="w30" c="w" pws="yes">dropped</
→˓w>
<w id="w38" c="w" pws="yes">it</w><w id="w40" pws="no" sb="true" c=".">.</w></s></
→˓p>

is input to the first step, its output looks like this:
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Mr. Bean had an ice-cream .
He dropped it .

and this is the format that the C&C POS tagger requires.

Step 3: pos -model $model 2>$tmp-ccposerr

The third step is the one that actually runs the C&C POS tagger. The pos command has a -model option and
the argument to that option is provided by the $model variable which is set by the -m option of the postag
script, as described above. The 2>$tmp-ccposerr ensures that all C&C messages are written to a temporary
file rather than to the terminal. If the input to this step is the output of the previous step shown above, the output
of the tagger is this:

Mr.|NNP Bean|NNP had|VBD an|DT ice-cream|NN .|.
He|PRP dropped|VBD it|PRP .|.

Here each token is paired with its POS tag following the ‘|’ separator. The POS tag information in this output
now needs to be merged back in with the original document.

Step 4: lxconvert -r -q s -s $lib/pos.cnv -x $tmp-in

The fourth and final step in the postag component uses lxconvert with the same stylesheet as before (-s
$lib/pos.cnv) to pair the C&C output file with the original input which was copied to the temporary file,
$tmp-in, in step 1. The -x option to lxconvert identifies this original file. The -r option tells lxconvert
to use read mode so that it follows the rules for reading C&C output (so as to cause the POS tags to be added as
the value of the p attribute on <w> elements). The query again identifies <s> elements as the target of the rules.
For the example above which was output from the previous step, the output of this step is as follows:

<p><s id="s1"><w pws="yes" c="abbr" id="w0" p="NNP">Mr.</w>
<w pws="yes" c="w" id="w4" p="NNP">Bean</w> <w pws="yes" c="w" id="w9" p="VBD">had
→˓</w>
<w pws="yes" c="w" id="w13" p="DT">an</w> <w pws="yes" c="hyw" id="w16" p="NN">ice-
→˓cream</w>
<w c="." sb="true" pws="no" id="w25" p=".">.</w></s>
<s id="s2"><w pws="yes" c="w" id="w27" p="PRP">He</w>
<w pws="yes" c="w" id="w30" p="VBD">dropped</w> <w pws="yes" c="w" id="w38" p="PRP
→˓">it</w>
<w c="." sb="true" pws="no" id="w40" p=".">.</w></s></p>

5.1.6 The lemmatise Component

Overview

The lemmatise component is a Unix shell script called with no arguments. Input is read from standard input
and output is to standard output.

The lemmatise component computes information about the stem of inflected words: for example, the stem of
peas is pea and the stem of had is have. In addition, the verbal stem of nouns and adjectives which derive from
verbs is computed: for example, the verbal stem of arguments is argue. The lemma of a noun, verb or adjective is
encoded as the value of the l attribute on <w> elements. The verbal stem of a noun or adjective is encoded as the
value of the vstem attribute on <w> elements.

The input to lemmatise is a document which has been processed by tokenise and postag and which there-
fore contains <p>, <s>, and <w> elements with POS tags encoded in the p attribute of <w> elements. Since
lemmatisation is only applied to nouns, verbs and verb forms which have been tagged as adjectives, the syntac-
tic category of the word is significant — thus the lemmatise component must be applied after the postag
component and not before. When the following is passed through tokenise, postag and lemmatise:

<document>
<text>

(continues on next page)
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(continued from previous page)

<p>
The planning committee were always having big arguments.
The children have frozen the frozen peas.
</p>
</text>
</document>

it is output like this (again modulo white space):

<document>
<text>
<p>
<s id="s1"><w p="DT" id="w3" c="w" pws="yes">The</w>
<w p="NN" id="w7" c="w" pws="yes" l="planning" vstem="plan">planning</w>
<w p="NN" id="w16" c="w" pws="yes" l="committee">committee</w>
<w p="VBD" id="w26" c="w" pws="yes" l="be">were</w>
<w p="RB" id="w31" c="w" pws="yes">always</w>
<w p="VBG" id="w38" c="w" pws="yes" l="have">having</w>
<w p="JJ" id="w45" c="w" pws="yes">big</w>
<w p="NNS" id="w49" c="w" pws="yes" l="argument" vstem="argue">arguments</w>
<w p="." id="w58" pws="no" sb="true" c=".">.</w></s>
<s id="s2"><w p="DT" id="w60" c="w" pws="yes">The</w>
<w p="NNS" id="w64" c="w" pws="yes" l="child">children</w>
<w p="VBP" id="w73" c="w" pws="yes" l="have">have</w>
<w p="VBN" id="w78" c="w" pws="yes" l="freeze">frozen</w>
<w p="DT" id="w85" c="w" pws="yes">the</w>
<w p="JJ" id="w89" c="w" pws="yes" l="frozen" vstem="freeze">frozen</w>
<w p="NNS" id="w96" c="w" pws="yes" l="pea">peas</w>
<w p="." id="w100" pws="no" sb="true" c=".">.</w></s>
</p>
</text>
</document>

The lemmatiser called by the lemmatise script is morpha (Minnen, Carroll, and Pearce 20004). We have
included the relevant binary and verb stem list from the release at http://www.informatics.susx.ac.uk/research/
groups/nlp/carroll/morph.html with the permission of the authors. The binary of morpha, which in this distribu-
tion is located at TTT2/bin/morpha, is a copy of morpha.ix86_linux from the tar file morph.tar.gz.
The resource file, verbstem.list, which in this distribution is located in the TTT2/lib/lemmatise/
directory is copied from the same tar file. The morpha software is free for research purposes.

Note that the lemmatise script is similar to the postag script in that it is a wrapper for a particular non-XML
based program. It converts the input XML to the input format of the lemmatiser, invokes the lemmatiser, and then
merges its output back into the XML representation. It is possible to make changes to the script and the conversion
files in order to plug out the morpha lemmatiser and replace it with another. The pipeline does a little more than
just wrap morpha, however, because it also computes the vstem attribute on certain nouns and adjectives (see
step 4 in the next section). In doing this it uses a lexicon of information about the verbal stem of nominalisations
(e.g. the stem of argument is argue). This lexicon, TTT2/lib/lemmatise/umls.lex, is derived from the
file in the 2007 UMLS SPECIALIST lexicon distribution5.

4 Minnen, G., J. Carroll, and D. Pearce (2000). Robust, applied morphological generation. In Proceedings of INLG.
5 https://data.lhncbc.nlm.nih.gov/lsg/lexicon/2007/release/LEX/LRNOM The SPECIALIST lexicon is Open Source and is freely

available subject to certain terms and conditions which are reproduced in the LT-TTT2 distribution as TTT2/lib/lemmatise/
SpecialistLexicon-terms.txt.
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The lemmatise script

In the early part of the script the $lib variable is defined to point to TTT2/lib/lemmatise/ which is the
location of the resource files used by the lemmatise pipeline. The remainder of the script contains the sequence
of processing steps piped together that constitute the lemmatise pipeline.

The lemmatise pipeline

1. cat >$tmp-in

2. lxconvert -w -q w -s $lib/lemmatise.cnv <$tmp-in |

3. morpha -f $lib/verbstem.list |

4. lxconvert -r -q w -s $lib/lemmatise.cnv -x $tmp-in

Step 1: cat >$tmp-in

The first step in the pipeline copies the input to the temporary file $tmp-in. This is so that it can both be
converted to morpha input format as well as retained as the file that the morpha output will be merged with.

Step 2: lxconvert -w -q w -s $lib/lemmatise.cnv <$tmp-in

The second step uses lxconvert to convert $tmp-in into an appropriate format for input to the morpha
lemmatiser (one or sometimes two word_postag pairs per line). The -s option instructs it to use the TTT2/
lib/lemmatise/lemmatise.cnv stylesheet, while the -q w query makes it focus on <w> elements. (The
component will therefore work on any file where words are encoded as <w> elements and POS tags are encoded
in the attribute p on <w>.) The -w option makes it work in write mode so that it follows the rules for writing
morpha input format. If the following postag output:

<p>
<s id="s1">
<w pws="yes" c="w" id="w3" p="DT">The</w> <w pws="yes" c="w" id="w7" p="NN">
→˓planning</w>
<w pws="yes" c="w" id="w16" p="NN">committee</w> <w pws="yes" c="w" id="w26" p="VBD
→˓">were</w>
<w pws="yes" c="w" id="w31" p="RB">always</w> <w pws="yes" c="w" id="w38" p="VBG">
→˓having</w>
<w pws="yes" c="w" id="w45" p="JJ">big</w> <w pws="yes" c="w" id="w49" p="NNS">
→˓arguments</w>
<w c="." sb="true" pws="no" id="w58" p=".">.</w>
</s>
<s id="s2">
<w pws="yes" c="w" id="w60" p="DT">The</w> <w pws="yes" c="w" id="w64" p="NNS">
→˓children</w>
<w pws="yes" c="w" id="w73" p="VBP">have</w> <w pws="yes" c="w" id="w78" p="VBN">
→˓frozen</w>
<w pws="yes" c="w" id="w85" p="DT">the</w> <w pws="yes" c="w" id="w89" p="JJ">
→˓frozen</w>
<w pws="yes" c="w" id="w96" p="NNS">peas</w><w c="." sb="true" pws="no" id="w100"
→˓p=".">.</w>
</s>
</p>

is input to the first step, its output looks like this:

planning_NN planning_V
committee_NN
were_VBD
having_VBG
big_JJ

(continues on next page)
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(continued from previous page)

arguments_NNS
children_NNS
have_VBP
frozen_VBN
frozen_JJ frozen_V
peas_NNS

Each noun, verb or adjective is a placed on a line and its POS tag is appended after an underscore. Where a noun or
an adjective ends with a verbal inflectional ending, a verb instance of the same word is created (i.e. planning_V,
frozen_V ) in order that morpha’s output for the verb can be used as the value for the vstem attribute.

Step 3: morpha -f $lib/verbstem.list

The third step is the one that actually runs morpha. The morpha command has a -f option to provide a path to
the verbstem.list resource file that it uses. If the input to this step is the output of the previous step shown
above, the output of morpha is this:

planning plan
committee
be
have
big
argument
child
have
freeze
frozen freeze
pea

Here it can be seen how the POS tag affects the performance of the lemmatiser. The lemma of planning is planning
when it is a noun but plan when it is a verb. Similarly, the lemma of frozen is frozen when it is an adjective but
freeze when it is a verb. Irregular forms are correctly handled (children:child, frozen:freeze).

Step 4: lxconvert -r -q w -s $lib/lemmatise.cnv -x $tmp-in

The fourth and final step in the lemmatise component uses lxconvert with the same stylesheet as before
(-s $lib/lemmatise.cnv) to pair the morpha output file with the original input which was copied to the
temporary file, $tmp-in, in step 1. The -x option to lxconvert identifies this original file. The -r option
tells lxconvert to use read mode so that it follows the rules for reading morpha output. The query again
identifies <w> elements as the target of the rules. For the example above which was output from the previous step,
the output of this step is as follows (irrelevant attributes suppressed):

<p><s><w p="DT">The</w> <w p="NN" l="planning" vstem="plan">planning</w>
<w p="NN" l="committee">committee</w> <w p="VBD" l="be">were</w>
<w p="RB">always</w> <w p="VBG" l="have">having</w> <w p="JJ">big</w>
<w p="NNS" l="argument" vstem="argue">arguments</w><w p=".">.</w></s>
<s><w p="DT">The</w> <w p="NNS" l="child">children</w>
<w p="VBP" l="have">have</w> <w p="VBN" l="freeze">frozen</w>
<w p="DT">the</w> <w p="JJ" l="frozen" vstem="freeze">frozen</w>
<w p="NNS" l="pea">peas</w><w p=".">.</w></s></p>

Here the lemma is encoded as the value of l and, where a second verbal form was input to morpha (planning,
frozen as an adjective), the output becomes the value of the vstem attribute. Whenever the lemma of a noun
can be successfully looked up in the nominalisation lexicon (TTT2/lib/lemmatise/umls.lex), the verbal
stem is encoded as the value of vstem (argument:argue). The relevant entry from TTT2/lib/lemmatise/
umls.lex is this:

<lex word="argument" stem="argue"/>
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5.1.7 The nertag Component

Overview

The nertag component is a Unix shell script called with no arguments. Input is read from standard input and
output is to standard output.

The nertag component is a rule-based named entity recogniser which recognises and marks up certain kinds of
named entity: numex (sums of money and percentages), timex (dates and times) and enamex (persons, organisa-
tions and locations). These are the same entities as those used for the MUC7 named entity evaluation (Chinchor
1998)6. (In addition nertag also marks up some miscellaneous entities such as urls.)

Unlike the other components, nertag has a more complex structure where it makes calls to subcomponent
pipelines which are also located in the TTT2/scripts directory. Figure The nertag pipeline shows the structure
of the nertag pipeline.

Fig. 3: The nertag pipeline

The input to nertag is a document which has been processed by tokenise, postag and lemmatise and
which therefore contains <p>, <s>, and <w> elements and the attributes p, l and vstem on the <w> elements.
The rules identify sequences of words which are entities and wrap them with the elements <numex>, <timex>
and <enamex>, with subtypes encoded as the value of the type attribute. For example, the following might be
input to a sequence of tokenise, postag and nertag.

<document>
<text>
<p>
Peter Johnson, speaking in
London yesterday
afternoon, said that profits for
ABC plc were up
5% to $17 million.
</p>
</text>
</document>

The output is a relatively unreadable XML document where all the <p>, <s>, and <w> elements and attributes
described in the previous sections have been augmented with further attributes and where <numex>, <timex>
and <enamex> elements have been added. For clarity we show the output below after <w> and <phr> mark
up has been removed using the command lxreplace -q w|phr. Removing extraneous mark-up in this way
and at this point might be appropriate if named entity recognition was the final aim of the processing. If further
processing such as chunking is to be done then the <w> and <phr> mark-up must be retained.

<document>
<text>
<p>
<s id="s1">><enamex type="person">Peter Johnson</enamex>, speaking in
<enamex type="location">London</enamex> <timex type="date">yesterday</timex>
<timex type="time">afternoon</timex>, said that profits for
<enamex type="organization">ABC plc</enamex> were up
<numex type="percent">5%</numex> to <numex type="money">$17 million</numex>.</s>
</p>

(continues on next page)

6 Chinchor, N. A. (1998). Proceedings of the Seventh Message Understanding Conference (MUC-7).
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</text>
</document>

The nertag script

In the early part of the script the $lib variable is defined to point to TTT2/lib/nertag/ which is the location
of the resource files used by the nertag pipeline. The remainder of the script contains a sequence of processing
steps piped together:

1. $here/scripts/numtimex |

2. $here/scripts/lexlookup |

3. $here/scripts/enamex |

($here is defined in the setup as the TTT2 directory). Unlike previous components, these steps are calls to
subcomponents which are themselves shell scripts containing pipelines. Thus the nertag process is sub-divided
into three subcomponents, numtimex to identify and mark up <numex> and <timex> elements, lexlookup
to apply dictionary lookup for names and, finally, enamex `` which marks up ``<enamex> elements
taking into account the output of lexlookup. The following subsections describe each of these subcomponents
in turn.

Note that the lxtransduce grammars used in the numtimex subcomponent are updated versions of the gram-
mars used in Mikheev, Grover, and Moens (1998)7 and previously distributed in the original LT-TTT distribution.
The output of numtimex is therefore of relatively high quality. The other two subcomponents are new for this
release and the enamex rules have not been extensively tested or tuned.

The numtimex script

In the early part of the script the $lib variable is defined to point to TTT2/lib/nertag/ which is the location
of the resource files used by the numtimex pipeline. The remainder of the script contains the sequence of
processing steps piped together that constitute the numtimex pipeline.

The numtimex pipeline

1. lxtransduce -q s -l lex=$lib/numbers.lex $lib/numbers.gr |

2. lxreplace -q "phr/phr" |

3. lxreplace -q "phr[w][count(node())=1]" -t "&children;" |

4. lxtransduce -q s -l lex=$lib/currency.lex $lib/numex.gr |

5. lxreplace -q "phr[not(@c='cd') and not(@c='yrrange') and not(@c='frac')]" |

6. lxtransduce -q s -l lex=$lib/timex.lex -l numlex=$lib/numbers.lex $lib/timex.gr
→˓|

7. lxreplace -q "phr[not(.~' ')]" -t
"<w><xsl:apply-templates select='w[1]/@*'/>&attrs;<xsl:value-of select=’.’/></w>

→˓"

Step 1: lxtransduce -q s -l lex=$lib/numbers.lex $lib/numbers.gr

7 Mikheev, A., C. Grover, and M. Moens (1998). Description of the LTG system used for MUC-7. In Seventh Message Understanding
Conference MUC-7).
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Numerical expressions are frequent subparts of <numex> and <timex> entities so the first step in the pipeline
identifies and marks up a variety of numerical expressions so that they are available for later stages of processing.
This step uses lxtransduce with the rules in the numbers.gr grammar file and uses the query -q s so
as to process the input sentence by sentence. It consults a lexicon of number words (numbers.lex) which
contains word entries for numbers (e.g. eighty, billion). If the following sentence is processed by step 1 after first
having been put through tokenise and postag (and lemmatise but this doesn’t affect numtimex and is
disregarded here):

The third announcement said that the twenty-seven billion euro deficit
was discovered two and a half months ago.

the output will be this (again modulo white space):

<p><s id="s1"><w p="DT" id="w1" c="w" pws="yes">The</w>
<phr c="ord"><w p="JJ" id="w5" c="ord" pws="yes">third</w></phr>
<w p="NN" id="w11" c="w" pws="yes">announcement</w> <w p="VBD" id="w24" c="w" pws=
→˓"yes">said</w>
<w p="IN" id="w29" c="w" pws="yes">that</w> <w p="DT" id="w34" c="w" pws="yes">the
→˓</w>
<phr c="cd"><w p="NN" id="w38" c="cd" pws="yes">twenty</w><w p=":" id="w44" pws="no
→˓" c="hyph">-</w>
<w p="CD" id="w45" pws="no" c="cd">seven</w> <w p="CD" id="w51" c="cd" pws="yes">
→˓billion</w></phr>
<w p="NN" id="w59" c="w" pws="yes">euro</w> <w p="NN" id="w64" c="w" pws="yes">
→˓deficit</w>
<w p="VBD" id="w72" c="w" pws="yes">was</w> <w p="VBN" id="w76" c="w" pws="yes">
→˓discovered</w>
<phr c="cd"><w p="CD" id="w87" c="cd" pws="yes">two</w>
<w p="CC" id="w91" c="w" pws="yes">and</w>
<phr c="frac"><w p="DT" id="w95" c="w" pws="yes">a</w>
<w p="JJ" id="w97" c="w" pws="yes">half</w></phr></phr>
<w p="NNS" id="w102" c="w" pws="yes">months</w> <w p="RB" id="w109" c="w" pws="yes
→˓">ago</w>
<w p="." id="w112" pws="no" sb="true" c=".">.</w></s></p>

This output can be seen more clearly if we remove the <w> elements:

<p><s id="s1">The <phr c="ord">third</phr> announcement said that the
<phr c="cd">twenty-seven billion</phr> euro deficit was discovered
<phr c="cd">two and <phr c="frac">a half</phr></phr> months ago.</s></p>

Subsequent grammars are able to use such phr elements when building larger entity expressions.

Step 2: lxreplace -q phr/phr

The second step uses lxreplace to remove embedded <phr> mark-up so that numerical phrases don’t have
unnecessary internal structure:

<p><s id="s1">The <phr c="ord">third</phr> announcement said that the
<phr c="cd">twenty-seven billion</phr> euro deficit was discovered
<phr c="cd">two and a half</phr> months ago.</s></p>

Step 3: lxreplace -q phr[w][count(node())=1] -t &children;

The third step makes another minor adjustment to the <phr> mark-up. The grammar will sometimes wrap single
words as <phr> elements (e.g. the third in the current example) and, since this is unnecessary, in this step
lxreplace is used to remove any <phr> tag where there is a single <w> daughter. Thus the current example
is changed to this:

<p><s id="s1">The third announcement said that the
<phr c="cd">twenty-seven billion</phr> euro deficit was discovered
<phr c="cd">two and a half</phr> months ago.</s></p>
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Step 4: lxtransduce -q s -l lex=$lib/currency.lex $lib/numex.gr

The fourth step of the pipeline recognises <numex> entities using the rules in numex.gr. It is this step which
is responsible for the two instances of <numex> mark-up in the example in section nertag Overview. For the
current example, the output of this step (after removing <w> elements) is this:

<p><s id="s1">The third announcement said that the
<numex type="money"><phr c="cd">twenty-seven billion</phr> euro</numex>
deficit was discovered <phr c="cd">two and a half</phr> months ago.</s></p>

The grammar makes use of the currency.lex lexicon which contains a list of the names of a wide range of
currencies. Using this information it is able to recognise the money <numex> element.

Step 5: lxreplace -q phr[not(@c=’cd’) and not(@c=’yrrange’) and
not(@c=’frac’)]

It is not intended that <phr> mark-up should be part of the final output of a pipeline—it is only temporary mark-
up which helps later stages and it should be deleted as soon as it is no longer needed. At this point, <phr>
elements with cd, frac and yrrange as values for the c attribute are still needed but other <phr> elements
are not. This step removes all <phr> elements which are not still needed.

Step 6: lxtransduce -q s -l lex=$lib/timex.lex -l numlex=$lib/numbers.lex
$lib/timex.gr

The sixth step of the pipeline recognises <timex> entities using the rules in timex.gr. It is this step which
is responsible for the two instances of <timex> mark-up in the example in section Overview. For the current
example, the output of this step (after removing <w> elements) is this:

<p><s id="s1">The third announcement said that the
<numex type="money"><phr c="cd">twenty-seven billion</phr> euro</numex>
deficit was discovered
<timex type="date"><phr c="cd">two and a half</phr> months ago</timex>.
</s></p>

The grammar makes use of two lexicons, timex.lex, which contains entries for the names of days, months,
holidays, time zones etc., and numbers.lex. In addition to examples of the kind shown here, the timex rules
recognise standard dates in numerical or more verbose form (08/31/07, 31.08.07, 31st August 2007 etc.), times
(half past three, 15:30 GMT etc.) and other time related expressions (late Tuesday night, Christmas, etc.).

Step 7: lxreplace -q phr[not(.\sim’ ’)] -t <w><xsl:apply-templates
select=’w[1]/@*’/>&attrs;<xsl:value-of select=’.’/></w>

By this point the only <phr> mark-up that will still be needed is that around multi-word phrases, i.e. those
containing white space (e.g. three quarters). Where there is no white-space, this step creates a <w> element
instead of the original <phr>. The new <w> element acquires first the attributes of the first <w> in the old <phr>
(’w[1]/@*’) and then the attributes of the old <phr> itself (&attrs;) — since both have a c attribute, the
one from the <phr> is retained. The text content of the embedded <w> elements are copied but the embedded
<w> element tags are not. The following is an example of input to this step. Note that the line break between three
and - is there for layout purposes and does not exist in the actual input.

<p>
<s id="s1"><phr c="cd"><w pws="yes" c="cd" id="w1" p="CD">two</w>
<w pws="yes" c="cd" id="w5" p="CD">thousand</w></phr><w c="cm" pws="no" id="w13" p=
→˓":">;</w>
<phr c="frac"><w pws="yes" c="cd" id="w15" p="CD">three</w>
<w c="hyph" pws="no" id="w20" p=":">-</w><w c="w" pws="no" id="w21" p="NNS">
→˓quarters</w></phr>
</s></p>

The output for this example is this:

<p>
<s id="s1"><phr c="cd"><w p="CD" id="w1" c="cd" pws="yes">two</w>

(continues on next page)
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(continued from previous page)

<w p="CD" id="w5" c="cd" pws="yes">thousand</w></phr><w p=":" id="w13" pws="no" c=
→˓"cm">;</w>
<w p="CD" id="w15" c="frac" pws="yes">three-quarters</w></s>
</p>

The result is that three-quarters is now recognised as a single word token, rather than the three from before. This
brings the mark-up more into line with standard tokenisation practise which does not normally split hyphenated
numbers: subsequent steps can therefore assume standard tokenisation for such examples. The two thousand ex-
ample is left unchanged because standard tokenisation treats this as two tokens. However, since we have computed
that together two and thousand constitute a numerical phrase, we keep the <phr> mark-up for future components
to benefit from. For example a noun group chunking rule can describe a numeric noun specifier as either a <phr
c=cd> or a <w p=CD> instead of needing to make provision for one or more numeric words in specifier position.
If, however, the numtimex component is to be the last in a pipeline and no further LT-TTT2 components are to be
used, either the last step can be changed to remove all <phr> mark-up or the call to numtimex can be followed
by a call to lxreplace to remove <phr> elements.

The lexlookup script

In the early part of the script the $lib variable is defined to point to TTT2/lib/nertag/ which is the location
of the resource files used by the lexlookup pipeline. The remainder of the script contains the sequence of
processing steps piped together that constitute the lexlookup pipeline.

The lexlookup pipeline

1. lxtransduce -q s -a firstname $lib/lexlookup.gr |

2. lxtransduce -q s -a common $lib/lexlookup.gr |

3. lxtransduce -q s -a otherloc $lib/lexlookup.gr |

4. lxtransduce -q s -a place $lib/lexlookup.gr

Step 1: lxtransduce -q s -a firstname $lib/lexlookup.gr

This step uses lexlookup.gr to mark up words which are known forenames. The -a option to lxtransduce
instructs it to apply the firstname rule:

<rule name="firstname" attrs="pername='true'">
<first>
<lookup match="w[@p~'^N' and .~'^[A-Z]']" lexicon="fname" phrase="true"/>
<lookup match="w[@p~'^N' and .~'^[A-Z]']" lexicon="mname" phrase="true"/>

</first>
</rule>

This rule does look-up against two lexicons of female and male first names where the locations of the lexicons are
defined in the grammar like this:

<lexicon name="fname" href="femalefirstnames.lex"/>
<lexicon name="mname" href="malefirstnames.lex"/>

i.e. the lexicons are expected to be located in the same directory as the grammar itself. The lexicons are derived
from lists at http://www.ssa.gov/OACT/babynames/.

This step adds the attribute pername=true to words which match so that

<w p="NNP">Peter</w>

becomes

<w p="NNP" pername="true">Peter</w>.
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Step 2: lxtransduce -q s -a common $lib/lexlookup.gr

This step uses lexlookup.gr to identify capitalised nominals which are known to be common words. The -a
option to lxtransduce instructs it to apply the common rule:

<rule name="common" attrs="common='true'">
<lookup match="w[@p~'^N' and .~'^[A-Z]']" lexicon="common" phrase="true"/>

</rule>

This rule does look-up against a lexicon of common words where the location of the lexicon is defined in the
grammar like this:

<lexicon name="common" href="common.mmlex"/>

i.e. the lexicon is expected to be located in the same directory as the grammar itself. The common word lexicon
is derived from an intersection of lower case alphabetic entries in Moby Part of Speech (http://www.gutenberg.
org/etext/3203) and a list of frequent common words derived from docfreq.gz available from the Berkeley
Web Term Document Frequency and Rank site (http://elib.cs.berkeley.edu/docfreq/). Because this is a very large
lexicon (25,307 entries) it is more efficient to use a memory-mapped version (with a .mmlex extension) since the
default mechanism for human-readable lexicons loads the entire lexicon into memory and incurs a significant start-
up cost if the lexicon is large. Memory-mapped lexicons are derived from standard lexicons using the LT-XML2
program, lxmmaplex. The source of common.mmlex, common.lex, is located in the TTT2/lib/nertag
directory and can be searched. If it is changed, the memory-mapped version needs to be recreated.

The effect of step 2 is to add the attribute common=true to capitalised nominals which match so that

<w p="NNP">Paper</w>

becomes

<w p="NNP" common="true">Paper</w>.

Step 3: lxtransduce -q s -a otherloc $lib/lexlookup.gr

This step uses lexlookup.gr to identify the names of countries (e.g. France) as well as capitalised words
which are adjectives or nouns relating to place names (e.g. French). The -a option to lxtransduce instructs it
to apply the otherloc rule:

<rule name="otherloc">
<first>
<lookup match="w[.~'^[A-Z]']"

lexicon="countries" phrase="true" attrs="country='true'"/>
<lookup match="w[@p~'^[NJ]' and .~'^[A-Z]']"

lexicon="locadj" phrase="true" attrs="locadj='true'"/>
</first>

</rule>

The first lookup in the rule accesses the lexicon of country names while the second accesses the lexicon of loca-
tional adjectives, where the location of the lexicons are defined in the grammar like this:

<lexicon name="locadj" href="locadj.lex"/>
<lexicon name="countries" href="countries.lex"/>

i.e. the lexicons are expected to be located in the same directory as the grammar itself. The lexicons are derived
from lists at http://en.wikipedia.org/wiki/United_Nations_member_states and http://en.wikipedia.org/wiki/List_
of_adjectival_forms_of_place_names.

The effect of step 3 is to add the attributes country=true and locadj=true to capitalised words which
match so that

<w p="NN">Portuguese</w> and <w p="NNP">Brazil</w>

become

<w p="NN" locadj="true">Portuguese</w> and <w p="NNP" country="true">Brazil</
w>.
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Step 4: lxtransduce -q s -a place $lib/lexlookup.gr

The final step uses lexlookup.gr to identify the names of places. The -a option to lxtransduce instructs
it to apply the place rule:

<rule name="place">
<first>
<ref name="place-multi"/>
<ref name="place-single"/>

</first>
</rule>

This accesses two rules, one for multi-word place names and one for single word place names. For multi-word
place names, the assumption is that these are unlikely to be incorrect, so the rule wraps them as <enamex
type=location>:

<rule name="place-multi" wrap="enamex" attrs="type='location'">
<and>
<query match="w[.~'^[A-Z]']"/>
<first>

<lookup match="w" lexicon="alexm" phrase="true"/>
<lookup match="w[@p~'^N' and .~'^[A-Z]+$']"

lexicon="alexm" case="no" phrase="true"/>
</first>

</and>
</rule>

Single word place names are highly likely to be ambiguous so the rule for these just adds the attribute
locname=single to words which match.

<rule name="place-single" attrs="locname='single'">
<and>
<query match="w[.~'^[A-Z]']"/>
<first>

<lookup match="w" lexicon="alexs" phrase="true"/>
<lookup match="w[@p~'^N' and .~'^[A-Z][A-Z][A-Z][A-Z]+$']"

lexicon="alexs" case="no" phrase="true"/>
</first>

</and>
</rule>

These rules access lexicons of multi-word and single-word place names, where the location of the lexicons are
defined in the grammar like this:

<lexicon name="alexm" href="alexandria-multi.mmlex"/>
<lexicon name="alexs" href="alexandria-single.mmlex"/>

i.e. the lexicons are expected to be located in the same directory as the grammar itself. The source of
the lexicons is the Alexandria Digital Library Project Gazetteer (http://legacy.alexandria.ucsb.edu/gazetteer/),
specifically, the name list, which can be downloaded from http://legacy.alexandria.ucsb.edu/downloads/gazdata/
adlgaz-namelist-20020315.tar8. Various filters have been applied to the list to derive the two separate lexicons, to
filter common words out of the single-word lexicon and to discard certain kinds of entries. As with the common
word lexicon, we use memory-mapped versions of the two lexicons because they are very large (1,797,719 entries
in alexandria-multi.lex and 1,634,337 entries in alexandria-single.lex).

The effect of step 4 is to add <enamex> mark-up or locname=single to words which match so that

<w p="NNP">Manhattan</w>

becomes

<w p="NNP" locname="single">Manhattan</w>

8 This list is available for download and local use within the limits of the ADL copyright statement, which is reproduced in the LT-TTT2
distribution as TTT2/lib/nertag/ADL-copyright-statement.txt.
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and

<w p="NNP">New</w> <w p="NNP">York</w>

becomes

<enamex type="location"><w p="NNP">New</w> <w p="NNP">York</w></enamex>.

Note that because the rules in lexlookup.gr are applied in a sequence of calls rather than all at once, a word
may be affected by more than one of the look-ups. See, for example, the words Robin, Milton and France in the
output for Robin York went to the British Rail office in Milton Keynes to arrange a trip to France.:

<s><w common="true" pername="true">Robin</w> <w locname="single">York</w>
<w>went</w> <w>to</w> <w>the</w> <w locadj="true">British</w>
<w common="true">Rail</w> <w>office</w> <w>in</w>
<enamex type="location"><w pername="true">Milton</w> <w>Keynes</w></enamex>
<w>to</w> <w>arrange</w> <w>a</w> <w>trip</w> <w>to</w>
<w locname="single" country="true">France</w><w>.</w></s>

The new attributes on <w> elements are used by the rules in the <enamex> component, while the multi-word
location mark-up prevents these entities from being considered by subsequent rules. Thus Milton Keynes will not
be analysed as a person name.

The enamex script

In the early part of the script the $lib variable is defined to point to TTT2/lib/nertag/ which is the location
of the resource files used by the enamex pipeline. The remainder of the script contains the sequence of processing
steps piped together that constitute the enamex pipeline.

The enamex pipeline

1. lxtransduce -q s -l lex="$lib/enamex.lex" $lib/enamex.gr |

2. lxreplace -q "enamex/enamex" > $tmp-pre-otf

3. $here/scripts/onthefly <$tmp-pre-otf >$tmp-otf.lex

4. lxtransduce -q s -l lex=$tmp-otf.lex $lib/enamex2.gr <$tmp-pre-otf |

5. lxreplace -q subname

Step 1: lxtransduce -q s -l lex=$lib/enamex.lex $lib/enamex.gr

Step 1 in the enamex pipeline applies the main grammar, enamex.gr, which marks up <enamex> elements
of type person, organization and location, as well as miscellaneous entities such as urls. An input like
this:

<p>
Mr. Joe L. Bedford (www.jbedford.org) is President of JB Industries Inc.
Bedford has an office in Paris, France.
</p>

is output as this (<w> mark-up suppressed):

<p>
<s id="s1"><enamex type="person">Mr. Joe L. Bedford</enamex> (<url>www.jbedford.org
→˓</url>)
is President of <enamex type="organization">JB Industries Inc</enamex>.</s>
<s id="s2">Bedford has an office in Paris, <enamex type="location">France</enamex>.
→˓</s>
</p>

5.1. Geotagging 45



The Edinburgh Geoparser Documentation, Release 1.3

At this stage, single-word place names are not marked up as they can be very ambiguous — in this example
Bedford is a person name, not a place name. The country name France, has been marked up, however, because
the lexlookup component marked it as a country and country identification is more reliable.

Step 2: lxreplace -q enamex/enamex > $tmp-pre-otf

Multi-word locations are identified during lexlookup and can form part of larger entities, with the result that it
is possible for step 1 to result in embedded marked, e.g.:

<enamex type="organization"><enamex type="location">Bishops
Stortford</enamex> Town Council</enamex>

Since embedded mark-up is not consistently identified, it is removed. This step applies lxreplace to remove
inner <enamex> mark-up. The output of this step is written to the temporary file $tmp-pre-otf because it
feeds into the creation of an ‘on the fly’ lexicon which is created from the first pass of enamex in order to do a
second pass matching repeat examples of first pass <enamex> entities.

Step 3: $here/scripts/onthefly <$tmp-pre-otf >$tmp-otf.lex

The temporary file from the last step, $tmp-pre-otf, is input to the script TTT2/scripts/onthefly
(described in Sections The onthefly script and The onthefly pipeline) which creates a small lexicon containing the
<enamex> elements which have already been found plus certain variants of them. If the example illustrating step
1 is input to TTT2/scripts/onthefly, the lexicon which is output is as follows:

<lexicon>
<lex word="Bedford"><cat>person</cat></lex>
<lex word="France"><cat>location</cat></lex>
<lex word="JB Industries Inc"><cat>organization</cat></lex>
<lex word="Joe"><cat>person</cat></lex>
<lex word="Joe Bedford"><cat>person</cat></lex>
<lex word="Joe L. Bedford"><cat>person</cat></lex>
</lexicon>

Step 4: lxtransduce -q s -l lex=$tmp-otf.lex $lib/enamex2.gr <$tmp-pre-otf

The ‘on the fly’ lexicon created at step 3 is used in step 4 with a second enamex grammar, enamex2.gr. This
performs lexical lookup against the lexicon and in our current example this leads to the recognition of Bedford
in the second sentence as a person rather than a place. The grammar contains a few other rules including one
which finally accepts single word placenames (<w locname=single>) as locations — this results in Paris in
the current example being marked up.

Step 5: lxreplace -q subname

The final step of the enamex component (and of the nertag component) is one which removes a level of mark-
up that was created by the enamex rules in the enamex.gr grammar, namely the element <subname>. This
was needed to control how a person name should be split when creating the ‘on the fly’ lexicon, but it is no longer
needed at this stage. The final output of the nertag component for the current example is this:

<p><s id="s1"><enamex type="person">Mr. Joe L. Bedford</enamex> (<url>www.jbedford.
→˓org</url>)
is President of <enamex type="organization">JB Industries Inc</enamex>.</s>
<s id="s2"><enamex type="person" subtype="otf">Bedford</enamex> has an office in
<enamex type="location">Paris</enamex>, <enamex type="location">France</enamex>.</
→˓s></p>
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The onthefly script

This script uses the LT-XML2 programs to extract names from the first pass of enamex and convert them into
an ‘on the fly’ lexicon (the lexicon $tmp-otf.lex referred to above). The conversion is achieved through
sequences of lxreplace and lxt as well as use of lxsort and lxuniq. This is a useful example of how
simple steps using these programs can be combined together to create a more complex program.

In the early part of the script the $lib variable is defined to point to TTT2/lib/nertag/ which is the location
of the resource files used by the onthefly pipeline. The remainder of the script contains the sequence of
processing steps piped together that constitute the onthefly pipeline.

The onthefly pipeline

1. lxgrep -w lexicon
enamex[@type='person' and not(subname[@type='fullname'])]
|subname[@type='fullname']|enamex[@type='location']|enamex[@type='organization

→˓']" |

2. lxreplace -q "enamex" -t "<name>\&attrs;\&children;</name>" |

3. lxreplace -q "w/@*" |

4. lxreplace -q "name/subname" -t "<w>\&children;</w>" |

5. lxreplace -q "w/w" |

6. lxreplace -q "lexicon/subname" -t "<name type='person'>\&children;</name>" |

7. lxreplace -q "lexicon/*/text()" -r "normalize-space(.)" |

8. lxreplace -q "w[.~'^(.|[A-Z]\.)$']" -t "<w init='yes'>\&children;</w>" |

9. lxt -s $lib/expandlex.xsl |

10. lxreplace -q "w[position()``\ ``!``\ ``=1]" -t "<xsl:text> </xsl:text>\&this;" |

11. lxreplace -q w |

12. lxreplace -q "name[not(node())]" -t "" |

13. lxreplace -q name -t "<lex word='{.}'><cat><xsl:value-of select='@type'/></cat>
→˓</lex>" |

14. lxt -s $lib/merge-lexicon-entries.xsl |

15. lxsort lexicon lex @word |

16. lxuniq lexicon lex @word |

17. lxsort lex cat . |

18. lxuniq lex cat .

Step 1

The first step uses lxgrep to extract location and organization <enamex> elements as well as either full person
<enamex> elements or a relevant subpart of a name which contains a title. The input is a document with <p>,
<s>, <w>, and <numex>, <timex> and <enamex> mark-up and the output of this call to lxgrep for the
previous Mr. Joe L. Bedford example is this:
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<lexicon>
<subname type="fullname">

<w pername="true" l="joe" id="w4" c="w" pws="yes" p="NNP" locname="single">Joe</
→˓w>
<w l="bedford" id="w8" c="w" pws="yes" p="NNP" locname="single">Bedford</w>

</subname>
<enamex type="organization">

<w l="jb" id="w51" c="w" pws="yes" p="NNP">JB</w>
<w l="industry" id="w54" c="w" pws="yes" p="NNPS" common="true">Industries</w>
<w l="inc" id="w65" c="w" pws="yes" p="NNP">Inc</w>

</enamex>
<enamex type="location">

<w country="true" l="france" id="w102" c="w" pws="yes" p="NNP" locname="single">
→˓France</w>
</enamex>
</lexicon>

Steps 2–8

The next seven steps use lxreplace to gradually transform the <enamex> and <subname> elements in the
lxgrep output into <name> elements: The <w> elements inside the <name> elements lose their attributes and
the white space between them is removed (because the original white space in the source text may be irregular and
include newlines). In Step 8, <w> elements which are initials are given the attribute init=yes so that they can
be excluded from consideration when variants of the entries are created. The output from these five steps is this:

<lexicon>
<name type="person"><w>Joe</w><w init="yes">L.</w><w>Bedford</w></name>
<name type="organization"><w>JB</w><w>Industries</w><w>Inc</w></name>
<name type="location"><w>France</w></name>
</lexicon>

Step 9

Step 9 uses lxt with the stylesheet TTT2/lib/nertag/expandlex.xsl to create extra variant entries for
person names. The output now looks like this:

<lexicon>
<name type="person"><w>Joe</w><w init="yes">L.</w><w>Bedford</w></name>
<name type="person"><w>Bedford</w></name>
<name type="person"><w>Joe</w></name>
<name type="person"><w>Joe</w></name>
<name type="person"><w>Bedford</w></name>
<name type="person"><w>Bedford</w></name>
<name type="person"><w>Joe</w><w>Bedford</w></name>
<name type="organization"><w>JB</w><w>Industries</w><w>Inc</w></name>
<name type="location"><w>France</w></name>
</lexicon>

The duplicates are a side-effect of the rules in the stylesheet and are removed before the end of the pipeline.

Steps 10–13

The next four steps use lxreplace to continue the transformation of the <name> elements. Regular white
space is inserted between the <w> elements and then the <w> mark up is removed. Any empty <name> elements
are removed and the conversion to proper lxtransduce lexicon format is done with the final lxreplace.
The output now looks like this:

<lexicon>
<lex word="Joe L. Bedford"><cat>person</cat></lex>
<lex word="Bedford"><cat>person</cat></lex>
<lex word="Joe"><cat>person</cat></lex>
<lex word="Joe"><cat>person</cat></lex>

(continues on next page)
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(continued from previous page)

<lex word="Bedford"><cat>person</cat></lex>
<lex word="Bedford"><cat>person</cat></lex>
<lex word="Joe Bedford"><cat>person</cat></lex>
<lex word="JB Industries Inc"><cat>organization</cat></lex>
<lex word="France"><cat>location</cat></lex>
</lexicon>

Step 14

At this stage there are still duplicates so this step uses lxt with the stylesheet TTT2/lib/nertag/
merge-lexicon-entries.xsl to add to each entry the <cat> elements of all its duplicates. The output
from this step looks like this:

<lexicon>
<lex word="Joe L. Bedford"><cat>person</cat></lex>
<lex word="Bedford"><cat>person</cat><cat>person</cat><cat>person</cat></lex>
<lex word="Joe"><cat>person</cat><cat>person</cat></lex>
<lex word="Joe"><cat>person</cat><cat>person</cat></lex>
<lex word="Bedford"><cat>person</cat><cat>person</cat><cat>person</cat></lex>
<lex word="Bedford"><cat>person</cat><cat>person</cat><cat>person</cat></lex>
<lex word="Joe Bedford"><cat>person</cat></lex>
<lex word="JB Industries Inc"><cat>organization</cat></lex>
<lex word="France"><cat>location</cat></lex>
</lexicon>

Note that in this example, each entity is only of one type. In other examples, the same string may have been
identified by the enamex grammar as belonging to different types in different contexts, for example, Prof. Ireland
happens to work in Ireland. In this case the output at this stage looks like this:

<lexicon>
<lex word="Ireland"><cat>person</cat><cat>location</cat></lex>
<lex word="Ireland"><cat>person</cat><cat>location</cat></lex>
</lexicon>

Steps 15–18

The final four steps of the pipeline use lxsort and lxuniq to remove duplicate entries and duplicate <cat>
elements. The final result for the running example is this:

<lexicon>
<lex word="Bedford"><cat>person</cat></lex>
<lex word="France"><cat>location</cat></lex>
<lex word="JB Industries Inc"><cat>organization</cat></lex>
<lex word="Joe"><cat>person</cat></lex>
<lex word="Joe Bedford"><cat>person</cat></lex>
<lex word="Joe L. Bedford"><cat>person</cat></lex>
</lexicon>

5.1.8 The chunk Component

Overview

The chunk component is a Unix shell script. Input is read from standard input and output is to standard output.
The script requires two parameters supplied through -s and -f options. The -s option specifies the style of
output that is required with possible arguments being: conll, flat, nested or none. The -f option specifies
the format of output with possible arguments being: standoff, bio or inline.

The chunk component is a rule-based chunker which recognises and marks up shallow syntactic groups such
as noun groups, verb groups etc. A description of an earlier version of the chunker can be found at Grover and
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Tobin (2006)9. The earlier version only marked up noun and verb groups while the current version also marks up
preposition, adjective, adverb and sbar groups. The first part of the pipeline produces mark-up which is similar
to, though not identical to, the chunk mark-up in the CoNLL 2000 data (Tjong Kim Sang and Buchholz 2000)10.
This mark-up is then converted to reflect different chunking styles and different formats of output through use of
the -s and -f parameters.

The output of the first part of the pipeline, when applied after tokenisation and POS tagging, converts this input:

In my opinion, this example hasn't turned out well.

to this output (whitespace altered):

<text>
<p><s id="s1">
<pg><w p="IN" pws="yes" id="w1">In</w></pg>
<ng>

<w p="PRP$" pws="yes" id="w4">my</w>
<w p="NN" pws="yes" id="w7" headn="yes">opinion</w>

</ng>
<w p="," pws="no" id="w14">,</w>
<ng>

<w p="DT" pws="yes" id="w16">this</w>
<w p="NN" pws="yes" id="w21" headn="yes">example</w>

</ng>
<vg tense="pres" voice="act" asp="perf" modal="no" neg="yes">

<w p="VBZ" pws="yes" id="w29">has</w><w p="RB" pws="no" id="w32" neg="yes">n't</
→˓w>
<w p="VBN" pws="yes" id="w36" headv="yes">turned</w>
<w p="RP" pws="yes" id="w43">out</w>

</vg>
<rg><w p="RB" pws="yes" id="w47">well</w></rg>
<w p="." sb="true" pws="no" id="w51">.</w></s></p>
</text>

Note that <vg> elements have attributes indicating values for tense, aspect, voice, modality and negation and
that head verbs and nouns are marked as headv=yes and headn=yes respectively. These attributes are extra
features which are not normally output by a chunker but which are included in this one because it is relatively
simple to augment the rules for these features.

The effects of the different style and format options are described below.

The chunk rules require POS tagged input but can be applied before or after lemmatisation. The chunk com-
ponent would typically be applied after the nertag component since the rules have been designed to utilise the
output of nertag; however, the rules do not require nertag output and the chunker can be used directly after
POS tagging.

The chunk script

Since chunk is called with arguments, the early part of the script is more complex than scripts with no arguments.
The while and if loops) set up the -s and -f options so that style and format parameters can be provided when
the component is called. For example, the run script calls the chunk component in this way:

$here/scripts/chunk -s nested -f inline

In the early part of the script the $lib variable is defined to point to TTT2/lib/chunk/ which is the location
of the resource files used by the chunk pipeline. The remainder of the script contains the sequence of processing
steps piped together that constitute the basic chunk pipeline as well as conditional processing steps which format
the output depending on the the choice of values supplied to the -s and -f parameters.

9 Grover, C. and R. Tobin (2006). Rule-based chunking and reusability. In Proceedings of LREC 2006, Genoa, Italy, pp. 873–878.
10 Tjong Kim Sang, E. F. and S. Buchholz (2000). Introduction to the CoNLL-2000 shared task: Chunking. In Proceedings of the Conference

on Natural Language Learning (CoNLL-2000).
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The chunk pipeline

1. lxtransduce -q s $lib/verbg.gr |

2. lxreplace -q "vg[w[@neg='yes']]" -t "<vg neg='yes'>&attrs;&children;</vg>" |

3. lxtransduce -q s $lib/noung.gr |

4. lxtransduce -q s -l lex=$lib/other.lex $lib/otherg.gr |

5. lxreplace -q "phr|@c" > $tmp-chunked

Step 1: lxtransduce -q s $lib/verbg.gr

The first step applies a grammar to recognise verb groups. The verb groups are wrapped as <vg> elements and
various values for attributes encoding tense, aspect, voice, modality, negation and the head verb are computed.
For example, the verb group from the previous example is output from this step as follows:

<vg modal="no" asp="perf" voice="act" tense="pres">
<w id="w29" c="w" pws="yes" p="VBZ">has</w>
<w neg="yes" id="w32" pws="no" c="w" p="RB">n't</w>
<w headv="yes" id="w36" c="w" pws="yes" p="VBN">turned</w>
<w id="w43" c="w" pws="yes" p="RP">out</w>

</vg>

The <vg> element contains the attributes tense, asp, voice and modal while the headv attribute occurs on
the head verb and a neg attribute occurs on any negative words in the verb group.

Step 2: lxreplace -q vg[w[@neg=’yes’]] -t <vg neg=’yes’>&attrs;&children;</vg>

In the second step, information about negation is propagated from a negative word inside a verb group to the
enclosing <vg> element. Thus the previous example now looks like this:

<vg tense="pres" voice="act" asp="perf" modal="no" neg="yes">
<w p="VBZ" pws="yes" c="w" id="w29">has</w>
<w p="RB" c="w" pws="no" id="w32" neg="yes">n't</w>
<w p="VBN" pws="yes" c="w" id="w36" headv="yes">turned</w>
<w p="RP" pws="yes" c="w" id="w43">out</w>

</vg>

Step 3: lxtransduce -q s $lib/noung.gr

In this step the noun group grammar is applied. Noun groups are wrapped as <ng> elements and the head noun is
marked with the attribute headn=yes — see for example the two noun groups in the current example in Section
chunk Overview. In the case of compounds, all the nouns in the compound are marked with the headn attribute:

<ng>
<w id="w1" c="w" pws="yes" p="DT">A</w>
<w headn="yes" id="w3" c="w" pws="yes" p="NN">snow</w>
<w headn="yes" id="w8" c="w" pws="yes" p="NN">storm</w>

</ng>

In the case of coordination, the grammar treats conjuncts as separate noun groups if possible:

<ng>
<w p="JJ" pws="yes" c="w" id="w8">green</w>
<w p="NNS" pws="yes" c="w" id="w14" headn="yes">eggs</w>

</ng>
<w p="CC" pws="yes" c="w" id="w19">and</w>
<ng>

<w p="JJ" pws="yes" c="w" id="w23">blue</w>
<w p="NN" pws="yes" c="w" id="w28" headn="yes">ham</w>

</ng>
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but where a noun group seems to contain a coordinated head then there is one noun group and all head nouns as
well as conjunctions are marked as headn=yes:

<ng>
<w p="JJ" pws="yes" c="w" id="w8">green</w>
<w p="NNS" pws="yes" c="w" id="w14" headn="yes">eggs</w>
<w p="CC" pws="yes" c="w" id="w19" headn="yes">and</w>
<w p="NN" pws="yes" c="w" id="w23" headn="yes">ham</w>

</ng>

In this particular case, there is a genuine ambiguity as to the scope of the adjective green depending on whether
it is just the eggs that are green or both the eggs and the ham that are green. The output of the grammar does not
represent ambiguity and a single analysis will be output which will sometimes be right and sometimes wrong. The
output above gives green scope over both nouns and therefore gives the second reading. This is appropriate for
this case but would probably be considered wrong for red wine and cheese.

The noun group grammar rules allow for the possibility that the text has first been processed by the nertag
component by defining <enamex>, <numex> and <timex> elements as possible sub-parts of noun groups.
This means that the output of the noun group grammar may differ depending on whether nertag has been
applied or not. For example, the nertag component identifies the Office for National Statistics as an <enamex>
element and this is then treated by the noun group grammar as an <ng>:

<ng>
<enamex type="organization">
<w p="DT" pws="yes" id="w300">the</w>
<w p="NNP" pws="yes" id="w304" common="true">Office</w>
<w p="IN" pws="yes" id="w311">for</w>
<w p="NNP" pws="yes" id="w315" common="true">National</w>
<w p="NNP" pws="yes" id="w324" common="true">Statistics</w>

</enamex>
</ng>

When nertag isn’t first applied, the chunker outputs the example as a sequence of noun group, preposition
group, noun group:

<ng>
<w p="DT" pws="yes" id="w300">the</w>
<w p="NNP" pws="yes" id="w304" headn="yes">Office</w>

</ng>
<pg>

<w p="IN" pws="yes" id="w311">for</w>
</pg>
<ng>

<w p="NNP" pws="yes" id="w315" headn="yes">National</w>
<w p="NNP" pws="yes" id="w324" headn="yes">Statistics</w>

</ng>

Step 4: lxtransduce -q s -l lex=$lib/other.lex $lib/otherg.gr

The fourth step uses the grammar otherg.gr to identify all other types of phrases. The lexicon it consults is a
small list of multi-word prepositions such as in addition to. The grammar identifies preposition groups (<pg>),
adjective groups (<ag>), adverb groups (<rg>) and sbar groups (<sg>) so the output for And obviously, over
time, it seems that things get better. is this (<w> mark up suppressed):

<p><s id="s1">
And <rg>obviously</rg>, <pg>over</pg> <ng>time</ng>, <ng>it</ng>
<vg tense="pres" voice="act" asp="simple" modal="no">seems</vg>
<sg>that</sg> <ng>things</ng>
<vg tense="presorbase" voice="act" asp="simple" modal="no">get</vg>
<ag>better</ag>.
</s></p>

The only words which are not part of a chunk are punctuation marks and occasional function words such as the
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And in this example. The heads of the chunks identified by otherg.gr are not marked as such though it would
be fairly simple to do so if necessary.

Step 5: lxreplace -q phr|@c > $tmp-chunked

The fifth step is the final part of the chunking part of the chunk pipeline. This step uses lxreplace to discard
mark-up which is no longer needed: <phr> elements were added by the nertag component and are used by the
chunk rules but can be removed at this point. The c attribute on words is also no longer needed. The output at this
stage is written to a temporary file, $tmp-chunked, which is used as the input to the next steps in the pipeline
which format the chunk output depending on the choices made with the -s and -p parameters.

Final steps: style and format

Through the -s parameter, the user can require the chunker output to conform to a particular style. The possible
options for this parameter are conll, flat, nested or none. As described in Grover and Tobin (2006)?,
different people may make different assumptions about how to mark up more complex chunks and there is a
difference between our assumptions and those behind the mark-up of the CoNLL chunk data. To make it easier
to compare with CoNLL-style chunkers, the grammars in the previous steps of the pipeline create an initial chunk
mark-up which can be mapped to the CoNLL style or to some other style. The none option for -s causes this
initial mark-up to be output. If the example Edinburgh University’s chunker output can be made to vary is first
processed with the nertag component so that Edinburgh University is marked up as an <enamex> and is then
processed by the following two steps:

$here/scripts/chunk -s none -f inline |
lxreplace -q w

then the output is as follows:

<s>
<ng>
<ng>

<enamex type="organization">Edinburgh University</enamex>
</ng>
<cng>'s chunker output</cng>

</ng>
<cvg>
<vg modal="yes" asp="simple" voice="pass" tense="pres">can be made</vg>
<vg modal="no" asp="simple" voice="act" tense="inf">to vary</vg>

</cvg>
</s>

The example contains a possessive noun phrase and a verb with an infinitival complement, which cause the main
points of difference in style. The <cng> and <cvg> elements have been created as temporary mark-up which can
be modified in different ways to create different styles. CoNLL style is created through the following lxreplace
steps:

lxreplace -q cvg -t "<vg>&children;</vg>" |
lxreplace -q "vg/vg" |
lxreplace -q "ng[cng]" -t "&children;" |
lxreplace -q "cng" -t "<ng>&children;</ng>" |
lxreplace -q "ng[ng]" -t "&children;" |
lxreplace -q "numex|timex|enamex"

Here the embedded <ng> and the <cng> are output as <ng> elements while the embedded <vg> elements
are discarded and the <cvg> is mapped to a <vg>. Mark up created by nertag (<numex>, <timex> and
<enamex> elements) is also discarded:

<s>
<ng>Edinburgh University</ng>
<ng>'s chunker output</ng>
<vg>can be made to vary</vg>

</s>
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An alternative non-hierarchical style is created using the -s flat option which causes the following
lxreplace steps to be taken:

lxreplace -q cvg |
lxreplace -q "cng|ng/ng" |
lxreplace -q "numex|timex|enamex"

Here the <cvg> is removed and the embedded <vg> elements are retained while embedded mark up in <ng>
elements is removed and nertag mark-up is also removed:

<s>
<ng>Edinburgh University's chunker output</ng>
<vg tense="pres" voice="pass" asp="simple" modal="yes">can be made</vg>
<vg tense="inf" voice="act" asp="simple" modal="no">to vary</vg>

</s>

The nested style is provided for users who prefer to retain a hierarchical structure and is achieved through the
following lxreplace steps:

lxreplace -q "cng" |
lxreplace -q "cvg" -n "'vg'"

The output of this style is as follows:

<s>
<ng>
<ng>

<enamex type="organization">Edinburgh University</enamex>
</ng>
's chunker output

</ng>
<vg>
<vg modal="yes" asp="simple" voice="pass" tense="pres">can be made</vg>
<vg modal="no" asp="simple" voice="act" tense="inf">to vary</vg>

</vg>
</s>

So far all the examples have used the -f inline option, however, two other options are provided, bio and
standoff. The bio option converts chunk element mark-up to attribute mark-up on <w> elements using the
CoNLL BIO convention where the first word in a chunk is marked as beginning that chunk (e.g. B-NP for the first
word of a noun group), other words in a chunk are marked as in that chunk (e.g. I-NP for non-initial words in a
noun group) and words outside a chunk are marked as O. These labels appear as values of the attribute group on
<w> elements and the chunk element mark-up is removed. This conversion is done using lxt with the stylesheet
TTT2/lib/chunk/tag2attr.xsl. If the previous example is put through $here/scripts/chunk -s
flat -f bio, the output is this (irrelevant attributes suppressed):

<s>
<w group="B-NP">Edinburgh</w>
<w group="I-NP">University</w>
<w group="I-NP">'s</w>
<w group="I-NP" headn="yes">chunker</w>
<w group="I-NP" headn="yes">output</w>
<w group="B-VP">can</w>
<w group="I-VP">be</w>
<w group="I-VP" headv="yes">made</w>
<w group="B-VP">to</w>
<w group="I-VP" headv="yes">vary</w>
<w group="O">.</w>

</s>

Chunk-related attributes on words are retained (e.g. headn and headv) but attributes on <vg> elements have
been lost and would need to be mapped to attributes on head verbs if it was felt necessary to keep them. Note that
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BIO format is incompatible with hierarchical styles and an attempt to use it with the nested or none styles will
cause an error. If the bio format option is chosen the output can then be passed on for further formatting, for
example to create non-XML output. The stylesheet TTT2/lib/chunk/biocols.xsl has been included as
an example and will produce the following column format:

Edinburgh NNP B-NP
University NNP I-NP
's POS I-NP
chunker NN I-NP
output NN I-NP
can MD B-VP
be VB I-VP
made VBN I-VP
to TO B-VP
vary VB I-VP
. . O

The standoff format is included to demonstrate how NLP component mark-up can be encoded as standoff mark-
up. If the previous example is put through $here/scripts/chunk -s flat -f standoff, the output
is this:

<text>
<p>

<s>
<w p="NNP" pws="yes" id="w1" locname="single">Edinburgh</w>
<w p="NNP" pws="yes" id="w11" common="true">University</w>
<w p="POS" pws="no" id="w21">'s</w>
<w headn="yes" p="NN" pws="yes" id="w24">chunker</w>
<w headn="yes" p="NN" pws="yes" id="w32">output</w>
<w p="MD" pws="yes" id="w39">can</w>
<w p="VB" pws="yes" id="w43">be</w>
<w headv="yes" p="VBN" pws="yes" id="w46">made</w>
<w p="TO" pws="yes" id="w51">to</w>
<w headv="yes" p="VB" pws="yes" id="w54">vary</w>
<w p="." sb="true" pws="no" id="w58">.</w>

</s>
</p>
<standoff>

<ng sw="w1" ew="w32">Edinburgh University's chunker output</ng>
<vg sw="w39" ew="w46" modal="yes" asp="simple" voice="pass" tense="pres">
can be made

</vg>
<vg sw="w51" ew="w54" modal="no" asp="simple" voice="act" tense="inf">
to vary

</vg>
</standoff>
</text>

Using lxt with the stylesheet TTT2/lib/chunk/standoff.xsl, the chunk mark up is removed from its
inline position and a new <standoff> element is created as the last element inside the <text> element. This
contains <ng>, <vg> etc. elements. The text content of the elements in <standoff> is a copy of the string
that they wrapped when they were inline. The relationship between the <w> elements in the text and the chunk
elements in <standoff> is maintained through the use of the sw and ew attributes whose values are the id
values of the start and end words of the chunk. If the nested style option is chosen then all levels of nertag
and chunk mark-up are put in the <standoff> element:

<standoff>
<ng sw="w1" ew="w32">Edinburgh University's chunker output</ng>
<ng sw="w1" ew="w11">Edinburgh University</ng>
<enamex sw="w1" ew="w11" type="organization">Edinburgh University</enamex>
<vg sw="w39" ew="w54">can be made to vary</vg>
<vg sw="w39" ew="w46" tense="pres" voice="pass" asp="simple" modal="yes">

(continues on next page)
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(continued from previous page)

can be made
</vg>
<vg sw="w51" ew="w54" tense="inf" voice="act" asp="simple" modal="no">
to vary

</vg>
</standoff>

5.1.9 Visualising output

XML documents with many layers of annotation are often hard to read. I this section we describe ways in which
the mark-up from the pipelines can be viewed more easily. Often, simple command line instructions can be useful.
For example, the output of run can be piped through a sequence of LT-XML2 programs to allow the mark-up you
are interested in to be more visible:

echo 'Mr. Joe L. Bedford (www.jbedford.org) is President of JB Industries Inc.
→˓Bedford
opened an office in Paris, France in September 2007.' |
./run |
lxreplace -q w |
lxgrep "s/*"

This command processes the input with the run script and then removes the word mark-up and pulls out the
chunks (immediate daughters of <s>) so that they each appear on a line:

<ng><enamex type="person">Mr. Joe L. Bedford</enamex></ng>
<ng><url>www.jbedford.org</url></ng>
<vg tense="pres" voice="act" asp="simple" modal="no">is</vg>
<ng>President</ng>
<pg>of</pg>
<ng><enamex type="organization">JB Industries Inc</enamex></ng>
<ng><enamex type="person" subtype="otf">Bedford</enamex></ng>
<vg tense="past" voice="act" asp="simple" modal="no">opened</vg>
<ng>an office</ng>
<pg>in</pg>
<ng><enamex type="location">Paris</enamex></ng>
<ng><enamex type="location">France</enamex></ng>
<pg>in</pg>
<ng><timex type="date">September 2007</timex></ng>

Another approach to visualising output is to convert it to HTML for viewing in a browser. In TTT2/lib/
visualise we provide three style sheets, one to display nertag mark-up (htmlner.xsl), one to display
chunkmark-up (htmlchunk.xsl) and one to display both (htmlnerandchunk.xsl). The following com-
mand:

echo 'Mr. Joe L. Bedford (www.jbedford.org) is President of JB Industries Inc.
→˓Bedford
opened an office in Paris, France in September 2007.' |
./run |
lxt -s ../lib/visualise/htmlnerandchunk.xsl > visualise.html

creates an HTML file, visualise.html which when viewed in a browser looks like this:
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Fig. 4: Visualisation of nertag and chunk mark-up

5.2 Georesolution

The georesolution step takes the tagged text file as input and processes the location entities to give them spatial
co-ordinates. The chosen gazetteer is queried to produce a list of candidate locations for each toponym and these
are ranked, with the highest ranking one chosen to be shown as a green marker on the map display, or as the only
marker if the -top option is used.

The tagged text file produced by the geotagging step contains further markup - for other entity categories besides
location (person, organisation, time expressions) and for temporal events, which are expressed as binary relations
between pairs of entities. Although obviously the geoparser’s main business is with spatial entities, the temporal
relations are processed at the end of the georesolution step, to produce a timeline display of events detected in the
text.

The input file for this step is in a temporary file, labelled “tmp-temprel” in the flowcharts of the Overview chapter;
see Georesolution flowchart. The actual file will be in the /tmp directory, with a name that includes the username
of the process in which the script was run and a unique string generated from the name of the script that’s running
and its process number, suffixed in this case with “temprel” to identify the content, eg “$USER-run-5648-temprel”.
These temporary files are removed when the pipeline exits unless the $LXDEBUG environment variable is set, in
which case they are kept for examination.

The final output file - written to $outdir.out.xml if -o outdir is specified and to stdout otherwise - is
described at output file in the Practical Examples chapter, and there is an example file here (html documentation
only). The “tmp-temprel” file differs only in respect of the location entities. In the unprocessed temprel file these
look like this:

<ent type="location" id="rb6">
<parts>
<part sw="w148" ew="w148">Toronto</part>

</parts>
</ent>

The georesolution step adds extra attributes to this element, from the Geonames gazetteer in this example:

<ent id="rb6" type="location" lat="43.7001138" long="-79.4163042"
in-country="CA" gazref="geonames:6167865" feat-type="ppl"
pop-size="4612191">

<parts>
<part ew="w148" sw="w148">Toronto</part>

</parts>
</ent>

This is the top-ranked candidate, http://www.geonames.org/6167865/toronto.html. The other candidates are listed
in $outdir/gaz.xml - see example file here (html documentation only). In this example there were 20
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candidates for Toronto, which is the maximum number the geoparser considers. The first five are shown below:

<placenames>
<placename id="rb6" name="Toronto">
<place rank="1" score="1.762934636" scaled_type="0.8" scaled_pop=
"0.9327814568" scaled_contained_by="0" scaled_contains="0" scaled_near="0"
in-cc="CA" long="-79.4163" lat="43.70011" type="ppla" gazref=
"geonames:6167865" name="Toronto" pop="4612191" clusteriness="870.3494166"
scaled_clusteriness="0.03015317872" clusteriness_rank="9" locality="0"
distance-to-known="99999" scaled_known="0"/>

<place rank="2" score="1.363160631" scaled_type="0.4" scaled_pop=
"0.9327814568" scaled_contained_by="0" scaled_contains="0" scaled_near="0"
in-cc="CA" long="-79.66632" lat="43.60012" type="rgn" gazref=
"geonames:6167864" name="Toronto" pop="4612191" clusteriness="869.4440736"
scaled_clusteriness="0.03037917422" clusteriness_rank="8" locality="0"
distance-to-known="99999" scaled_known="0"/>

<place rank="3" score="1.162435057" scaled_type="0.2" scaled_pop=
"0.9327814568" scaled_contained_by="0" scaled_contains="0" scaled_near="0"
in-cc="CA" long="-79.61286" lat="43.68066" type="fac" gazref=
"geonames:6296338" name="Toronto Pearson International Airport"
pop="4612191" clusteriness="872.3540873" scaled_clusteriness=
"0.02965359988" clusteriness_rank="10" locality="0" distance-to-known=
"99999" scaled_known="0"/>

<place rank="4" score="0.6922152501" scaled_type="0.6" scaled_pop="0"
scaled_contained_by="0" scaled_contains="0" scaled_near="0" in-cc="US"
long="-92.52546" lat="38.00365" type="ppl" gazref="geonames:4411872"
name="Toronto" clusteriness="653.9875787" scaled_clusteriness=
"0.09221525012" clusteriness_rank="1" locality="0" distance-to-known=
"99999" scaled_known="0"/>

<place rank="5" score="0.6883702413" scaled_type="0.6" scaled_pop="0"
scaled_contained_by="0" scaled_contains="0" scaled_near="0" in-cc="US"
long="-89.62982" lat="39.71394" type="ppl" gazref="geonames:4251360"
name="Toronto" clusteriness="665.6708161" scaled_clusteriness=
"0.08837024133" clusteriness_rank="2" locality="0" distance-to-known=
"99999" scaled_known="0"/>

...
</placename>
...

</placenames>

There is one <placename> element for each distinct placename found in the input document - note, not for each
individual mention. If a place is mentioned multiple times in a document the geoparser assumes the same place is
being talked about each time. Clearly there are examples where this would be an erroneous assumption, eg in the
text snippet:

“Are we talking about London, England or London, Ontario?”

There is in fact a special rule to catch containment expressed in this co-ordinated way, but nevertheless the current
version of the geoparser will only pick a single location for London (the first one, in England).

The rest of the output files produced if -o is specified are for visualisation in a browser.

The rest of this chapter looks at each step of the georesolution process in a little more detail: firstly the collection
of candidate places from the gazetteer, then the ranking process and finally the production of display files.
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5.2.1 Gazetteer Lookup

The run script calls another, named geoground, which carries out two tasks by calling further scripts. The
first is gazetteer lookup, done by the geogaz script which calls a version of gazlookup tailored for the
gazetteer and including the gazetteer name. So for example, if -g geonames were specified to the run
script then gazlookup-geonames would be used at this point, whereas if Pleiades+ were required then
gazlookup-plplus would be invoked.

If you look in the scripts directory you will find a collection of these gazlookup scripts, most being com-
pletely separate routines, needed because the connection methods and queries to be used differ greatly between
different gazetteers. The “Unlock” option is an exception as it has three variants - “unlock”, “unlockgeonames”
and “naturalearth” (see -t and -g parameters) - but these can be dealt with by parameterisation within a sin-
gle script, gazlookup-unlock. There are soft links to this script to cover the other two variants because,
in order to make it straightforward to add new gazetteer options, the geogaz script looks for a script named
gazlookup-$gaz, where “$gaz” is the -g $gaz command line parameter. (The OS option differs slightly
from the other Unlock gazlookups and is a separate script rather than a soft link.)

This means that to add a new gazetteer to the pipeline, all you need do is create a script named
gazlookup-newgaz that handles the connection and querying appropriately, and returns a set of candidates
formatted as required for the next stage; and then alter the run script to accept “$newgaz” as a valid -g option.
Of course, if the domain covered by the new gazetteer is completely new, then alterations to the geotagging stage
would also be needed - as for example was the case when the Pleiades gazetteer of ancient places was added to
cater for classical texts.

The input to the gazlookup-$gaz step is a list of the locations found in the input, extracted by an XSL
stylesheet named extractlocs.xsl. The list is formatted as shown in this example:

<?xml version="1.0" encoding="UTF-8"?>
<placenames>

<placename id="rb6" name="Toronto"/>
<placename id="rb11" name="Germany"/>
<placename id="rb14" name="Washington"/>
<placename id="rb22" name="Montreal"/>
<placename id="rb28" name="Wimbledon"/>
<placename id="rb32" name="France"/>

</placenames>

The output of the gazetteer lookup is a collection of up to 20 candidate <place> nodes for each <placename>.
The final step of the geogaz script is to sort and deduplicate - as explained above, the assumption is made that
multiple references to the same toponym string within a single document are referring to the same place.

The output of this stage is in a temporary file suffixed “gazunres.xml”, following the naming conventions described
above. An example is here (html documentation only). It contains feature information extracted from the
gazetteer for each candidate location, to be used by the ranking algorithm. The first few lines for our example are
as follows:

<placenames>
<placename name="Toronto" id="rb6">
<place name="Toronto" gazref="geonames:149454" type="ppl"

lat="-4.9000000" long="38.1000000" in-cc="TZ" pop="0"/>
<place name="Toronto" gazref="geonames:2146222" type="ppl"

lat="-33.0000000" long="151.6000000" in-cc="AU" pop="0"/>
<place name="Toronto" gazref="geonames:3535110" type="ppl"

lat="22.7833300" long="-82.5000000" in-cc="CU" pop="0"/>
<place name="Toronto" gazref="geonames:3666869" type="ppl"

lat="8.4039600" long="-75.2790700" in-cc="CO" pop="0"/>
...

This example makes clear the need for ranking over a reasonable number of candidates, at least for a gazetteer
like Geonames with so many candidates for most placenames. For Toronto, the first four places returned were in
Tanzania, Austria, Cuba and Columbia. We are up to numbers 13 and 14 before Canadian places appear in the list.
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For many places Geonames will return an extremely long list; the geoparser truncates the results at 20, which will
almost always include the right one and makes the ranking process manageable in terms of processing time.

5.2.2 Ranking

The ranking of the <place> candidates is done by the georesolve script. If the gazetteer supplies feature
information the ranking makes use of it, for example preferring populated places (Geonames code “PPL”) over
natural features, and preferring larger to smaller places (based on population size).

Apart from the attributes of the candidate places, the ranking algorithm considers their locations compared pair-
wise with each of the other places in the document. It will prefer places that cluster with other locations in the
same document. For example, if most of the places mentioned in a text seem to be in Canada, a mention of
“London” will probably be placed in Ontario rather than England.

If you know the geographical area that your input document deals with, you can specify either a locality circle
or box using the -l or -lb command line options. These are explained in in the Quick Start chapter, Limiting
geographical area: -l -lb. This is another factor that will be considered by the ranker, making it prefer locations
in the area specified but still allowing the selection of places elsewhere that may be mentioned in the text. The
“score” parameter can be used for weighting the degree of preference; if using this option it is probably best to
experiement with different weights.

The output of the georesolve ranking step is the $outdir/gaz.xml that was described above. It is a ranked
list of <place> candidates for each <placename>. The candidates have the features from the gazetteer and
the extra attributes added by the ranking algorithm, such as “clusteriness” referring to how well the places mention
form a spatial group. The raw scores are scaled and combined to produce an overall “score” attribute, which in
turn determines the “rank” for each candidate <place>. See the sample output here (html documentation only).

It is worth noting here that for various reasons including the clustering factor, the geoparser works better with short
texts than very long ones. It was originally designed to handle large numbers of short text documents (roughly
one page at a time) processed in a loop. If an attempt is made to process an entire book in one go, the ranking
algorithm may be overloaded - pairwise comparisons of locations throughout the document may break it - and in
any case the assumption about locality will probably be invalid. We advise that long texts are split into small parts,
preferably into coherent chunks of narrative.

5.2.3 Formatting Output

If the -o outdir option is not specified then the output of the pipeline is written to standard out (and can of
course be redirected to a file), and consists of a single xml <document> as described at output file in the Practical
Examples chapter, with an example file here (html documentation only). The output is a tagged version of the
input file, in standoff xml format, with the <document> node having <text> and <standoff> children (plus
a metadata node).

The placenames are tagged entities within the text, appearing as <ent> nodes in the standoff section with pointers
back to their position in the tokenised text. Only the top candidate for each place is included in this output, as a
tagged entity, such as:

<ent id="rb6" type="location" lat="43.70011" long="-79.4163"
gazref="geonames:6167865" in-country="CA" feat-type="ppla"
pop-size="4612191">

<parts>
<part ew="w150" sw="w150">Toronto</part>

</parts>
</ent>

The ranking detail is removed and only the most important gazetteer features are retained: the latitude and longi-
tude co-ordinates, and (for Geonames which supplies them) the country and feature type codes and population.

If the -o outdir option is specified then the georesolution component has several extra steps, which are simply
reformatting of all the output generated so far, using XSL stylesheets to produce a collection of files for visualising
the output. These steps are illustrated on the Georesolution flowchart.
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The “plainvis.xsl” stylesheet is used to format the input text as an html page with the toponyms highlighted. The
gazmap script pulls this html page together with the xml list of candidate placename locations (in the $outdir/
gaz.xml file described earlier) and adds a map display created by plotting the locations using Mapbox / Open-
StreetMap. The three components are combined in a single file named $outdir.display.html. Various
examples are shown in the Practical Examples chapter, including Geoparser display file for news text input, which
has the maps panel at the top (green markers for top candidates, red for others), the tagged text on the left and the
$outdir/gaz.xml list on the right.

If the -top option is specified then the display file only shows the top candidate locations (green markers).
Herodotus display file shows an example.

Finally, the timeline script takes the tagged file and produces a display highlighting all the entities found:
names, organisations and time expressions as well as locations. It also extracts the events detected and, where
these can be given a specific date, uses javascript to create a timeline visualisation using a Simile widget. Timeline
file shows an example of the $outdir.timeline.html file. The events found are listed in $outdir.
events.xml, which is in the format required by the Timeline widget, as illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<data date-time-format="iso8601">

<event start="2010-08-15T00:00:00Z" title="will face each other for a place in
→˓Sunday">

Nadal and Murray set up semi showdown (CNN) -- Rafael Nadal and Andy
Murray are both through to the semifinals of the Rogers Cup in Toronto,
where they will face each other for a place in Sunday's final.

</event>
...

</data>

The complete file for this example is here (html documentation only).

In summary, with the -o out option, the following files are created:

File Description
$out.out.xml Main output: tagged and geogrounded text
$out.gaz.xml Locations list
$out.gazlist.html Locations list in html format
$out.gazmap.html Locations plotted using Mapbox / OpentStreetMap
$out.geotagged.html Geotagged text as html file
$out.display.html 3-panel display: map + text + locations list
$out.nertagged.xml Output from NER stage
$out.events.xml Events extracted in Timeline format
$out.timeline.html Display page with all NEs and timeline
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CHAPTER

SIX

GAZETTEERS

6.1 Online Resources

The geoparser allows the user to choose from several different online gazetteers as the source authority against
which to ground placenames. All gazetteers, except Geonames, are hosted by Information Services at the Uni-
versity of Edinburgh. In fact this also includes a mirror of Geonames, which is accessible through either the
unlock or unlockgeonames options to the -g parameter, but the geonames option is configured to go directly to
the http://www.geonames.org site.

When the pipeline is executed using the run command (see Running the Pipeline) the gazetteer to be used must
be specified using the -g parameter. The complete set of six online gazetteer options is as follows:

• Geonames, -g geonames - a world-wide gazetteer of over eight million placenames, made available free
of charge.

• OS, -g os - a detailed gazetteer of UK places, derived from the Ordnance Survey 1:50,000 scale gazetteer,
under the OS Open Data initiative. The geoparser code adds GeoNames entries for large populated places
around the globe when using this option to allow resolution of place names outside the UK.

• Natural Earth, -g naturalearth - a public domain vector and raster map collection of small scale
(1:10m, 1:50m, 1:110m) mapping, built by the Natural Earth project.

• Geonames through Unlock, -g unlockgeonames - access to GeoNames via Unlock.

• Unlock, -g unlock - a comprehensive gazetteer mainly for the UK, using all of OS, Natural Earth
and GeoNames resources. This is the default option on the Unlock Places service and combines all their
gazetteers except DEEP.

• DEEP, -g deep - a gazetteer of historical placenames in England, built by the DEEP project (Digital
Exposure of English Placenames). See footnote [1] in the Quick Start Guide and Historical documents
(relating to England) in Practical Examples.

• Pleiades+, -g plplus - a gazetteer of the ancient Greek and Roman world, based on the Pleiades dataset
and augmented with links to Geonames.

It may be necessary to experiment with different gazetteer options to see what works best with your text.

Pleiades+

The Pleiades gazetteer of the classical Greek and Roman world was added to the geoparser’s resources as part of
the GAP project in 2012-13. The version used was a snapshot of the Pleiades source dataset augmented with links
to Geonames - this was dubbed Pleiades+. This static copy of the data is mirrored on the IS server and available
with the -g plplus option. A locally hosted copy of it at Edinburgh’s School of Informatics was used by GAP.

Too late for the GAP project, the Pleiades dataset has been considerably augmented and daily snapshots are now
available - see the Pleiades data download page. The Pleiades+ project - to align ancient places with their modern
equivalents in Geonames where possible - has also been extended, and also provides daily downloads from the
Pleiades Plus Github site. The organising teams behind both of these developments have kindly agreed that other
sites can mirror their datasets, and IS and we (the Language Technology Group) are hoping to do that. If you are
interested in using this data and would like to help us update the geoparser service for it, please get in touch.
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6.2 Options for Local Gazetteer

The standard way to use the geoparser is by referring to an online gazetteer service, as described above. There
may be circumstances in which a locally hosted gazetteer is preferable - for example if the online service is slow,
for the multiple hits required by the pipeline. The Edinburgh Language Technology Group (LTG) have set up local
gazetteers in this way and this section explains how to do it. If you decide to do it these models may be helpful to
follow.

The advantages of hosting your gazetteer yourself are that access will typically be much faster so overall process-
ing times are reduced, and you have complete control over the gazetteer so can correct errors or add new items. It
may be necessary to have a local copy if your usage rates are so high that you exceed the limits placed by online
services. The obvious disadvantage is that you create a maintenance burden for yourself, as you need to create
and manage a database and write the software routines to interact with it.

A local gazetteer we use is a local copy of Geonames and of. Its setup is described below, as examples of how to
go about the process. The code for running a local gazetteer is included in the geoparser download bundle but it
is not possible to access the local MySQL databases on our servers remotely, as they are not configured as public
services.

6.2.1 Example Setup: Geonames

The Geonames service includes a download option with daily updates provided on their download server. The
Geonames database is large - around 8 million main entries plus alternative name records - and the online service
provides update files so that insertions and deletions can be applied to a local copy, without having to recreate and
re-index the tables every day.

In the LTG we created a MySQL database to hold the Geonames dataset It has a simple structure comprising a
main table named “geoname” with one row per place, and a linked subsidiary table named “alternatename” that
holds one row for each alternative name for a given place in the main table. There is also a smaller table named
“hierarchy” that allows a hierarchical tree of places located within larger places to be constructed.

The database can be created by downloading the relevant files from the Geonames download server: “allCoun-
tries.zip”, “alternateNames.zip” and “hierarchy.zip”. Once unzipped, these can be imported into a MySQL
database - set the character encoding to UTF-8 when you create the database:

create database geonames character set utf8 collate utf8_general_ci;

You will need to set up suitable access permissions and will probably also want to create indexes to speed query
performance.

We keep our copy of the database up to date by running nightly cron jobs to download and apply changes. To
make this easy, an extra set of tables is used: “updates_geoname”, “updates_alternatename”, “deletes_geoname”,
“deletes_alternatename”. The steps are:

1. Download the update files from the Geonames download server. These are named either “modifications”
or “deletes” for the main table or the alternatename table, with a datestamp appended. Also download the
hierarchy file.

2. Load the modification and deletion data into the four holding tables (clearing these of previous data first).

3. For the deletions, simply remove rows from “geoname” and “alternatename” that have a match in the hold-
ing tables for deletions.

4. For the modifications, remove matching rows from “geoname” and “alternatename” and then insert the rows
from the holding tables.

5. Drop the hierarchy table then recreate and re-index it from the downloaded data.

6. Log the transactions carried out, for reporting.

If you want to create a local copy of geonames for yourself there is a zip file of the database creation routine, daily
update scripts and cron file here (html documentation only). The directory names would need to be tailored to
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your local setup. You may need to create a Geonames account name - see the Geonames website for details, as
the policy seems to vary.

If a local copy of geonames is set up in this way then the -g geonames-local option can be used to access
it with the geoparser; otherwise this option does not work. The command for connecting to the local database
is specified by an environment variable GEOPARSER_DB_COMMAND. This variable should be set before running
the pipeline. For a MySQL server running on a machine “dbserver”, with a database username “pipeline” and
password “passwd”, a suitable command would be:

lxmysql -h dbserver -u pipeline -p passwd -d geonames

The -h option can be omitted if the database is running on the same machine as the pipeline, and the -p option if
there is no password.

It is also possible to use a PostgreSQL database. Use the lxpostgresql command for this. It takes the same
arguments as lxmysql.

The lxmysql and lxpostgresql binaries provided may not run on your machine. If necessary you can build your
own binaries; they are part of our LTXML2 toolkit which can be downloaded (along with the required XML
parser, RXP) from:

https://www.ltg.ed.ac.uk/software
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CHAPTER

SEVEN

APPENDIX 1: LT-TTT2 TUTORIAL

The geotagging part of the pipeline is built using the Text Tokenisation Tool (LT-TTT2) developed by the Language
Technology Group at Edinburgh. This in turn makes use of the LT-XML2 toolkit. Both LT-TTT2 and LT-XML2
are downloadable from the LTG software page.

There is a tutorial on the LTG website explaining how to use the LT-TTT2 suite, and in particular how to write
and modify the grammars used by the lxtransduce program which is at the heart of LT-TTT2:

LT-TTT2 tutorial

This tutorial is also included in the documentation provided with the download of LT-TTT2.
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CHAPTER

EIGHT

APPENDIX 2: LTG PUBLICATIONS ABOUT THE GEOPARSER

This is a list of some research papers relating to the Edinburgh Geoparser published by the Language Technology
Group and our collaborators:

• Claire Grover, Richard Tobin, Kate Byrne, Matthew Woollard, James Reid, Stuart Dunn, and Julian Ball
(2010). Use of the Edinburgh Geoparser for georeferencing digitised historical collections. Philosophical
Transactions of the Royal Society A, 368(1925):3875-3889. In Edinburgh Research Explorer bibtex

• Richard Tobin, Claire Grover, Kate Byrne, James Reid and Jo Walsh (2010). Evaluation of georeferencing.
In Proceedings of the 6th Workshop on Geographic Information Retrieval (GIR’10), Zurich, Switzerland,
Feb 2010. In Edinburgh Research Explorer bibtex

• Claire Grover, Richard Tobin, Beatrice Alex, and Kate Byrne (2010). Edinburgh-LTG: TempEval-2 system
description. In Proceedings of SemEval-2010, Uppsala, Sweden. In Edinburgh Research Explorer bibtex

• Bea Alex and Claire Grover (2010). Labelling and spatio-temporal grounding of news events. In Pro-
ceedings of the workshop on Computational Linguistics in a World of Social Media at NAACL 2010, Los
Angeles, USA. In Edinburgh Research Explorer bibtex

• Leif Isaksen, Elton Barker, Eric C. Kansa and Kate Byrne (2011). GAP: A NeoGeo Approach to Classical
Resources. Leonardo Transactions, May 2011. pdf

• Claire Grover and Richard Tobin (2014). A gazetteer and georeferencing for historical English documents.
In Proceedings of the 8th Workshop on Language Technology for Cultural Heritage, Social Sciences, and
Humanities (LaTeCH), pp. 119-127. In Edinburgh Research Explorer pdf

• Beatrice Alex, Kate Byrne, Claire Grover and Richard Tobin (2014). A Web-based Geo-resolution Annota-
tion and Evaluation Tool. In Proceedings of the 8th Linguistic Annotation Workshop (LAW VIII), COLING
2014, Dublin, Ireland, pp. 59-63. In Edinburgh Research Explorer pdf

• Jim Clifford, Beatrice Alex, Colin Coates, Andrew Watson and Ewan Klein (2014). Geoparsing History:
Locating Commodities in Ten Million Pages of Nineteenth-Century Sources. Historical Methods, 49(3), pp.
115-131. In Edinburgh Research Explorer

• Beatrice Alex, Kate Byrne, Claire Grover and Richard Tobin (2015). Adapting the Edinburgh Geoparser
for Historical Georeferencing. International Journal for Humanities and Arts Computing, 9(1), pp. 15-35,
March 2015. In Edinburgh Research Explorer pre-print

• Beatrice Alex, Clare Llewellyn, Claire Grover, Jon Oberlander and Richard Tobin (2016). Homing in
on Twitter users: Evaluating an Enhanced Geoparser for User Profile Locations. In Proceedings of the
10th Language Resources and Evaluation Conference (LREC), 23-28 May 2016, Portorož, Slovenia. In
Edinburgh Research Explorer pdf

• Beatrice Alex, Claire Grover, Richard Tobin and Jon Oberlander (2019). Geoparsing Historical and Con-
temporary Literary Text set in the City of Edinburgh, Language Resources and Evaluation, 53(4): 651-675.
In Edinburgh Research Explorer pdf

• Rosa Filgueira, Claire Grover, Melissa Terras and Beatrice Alex (2020). Geoparsing the historical
Gazetteers of Scotland: accurately computing location in mass digitised texts. In Proceedings of the 8th
Workshop on the Challenges in the Management of Large Corpora (CMLC-8 2020) at LREC 2020, pp.24-
30. In Edinburgh Research Explorer pdf

For a tutorial on how to install and run the Geoparser see also:
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https://www.research.ed.ac.uk/en/publications/adapting-the-edinburgh-geoparser-for-historical-georeferencing
https://homepages.inf.ed.ac.uk/balex/publications/IJHAC2015preprint.pdf
https://www.research.ed.ac.uk/en/publications/homing-in-on-twitter-users-evaluating-an-enhanced-geoparser-for-u
https://www.research.ed.ac.uk/en/publications/homing-in-on-twitter-users-evaluating-an-enhanced-geoparser-for-u
http://www.lrec-conf.org/proceedings/lrec2016/pdf/129_Paper.pdf
https://www.research.ed.ac.uk/en/publications/geoparsing-historical-and-contemporary-literary-text-set-in-the-c
https://link.springer.com/content/pdf/10.1007%2Fs10579-019-09443-x.pdf
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• Beatrice Alex (2017). Geoparsing English Text with the Edinburgh Geoparser, The Programming Historian
lesson, October 2017. https://programminghistorian.org/en/lessons/geoparsing-text-with-edinburgh
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