
Enhancing the performance of Grid
Applications with Skeletons and

Process Algebras

(funded by the EPSRC, grant number GR/S21717/01)

A. Benoit, M. Cole, S. Gilmore, J. Hillston

http://groups.inf.ed.ac.uk/enhance/

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 1

Introduction - Context of the work

Parallel programs in a heterogeneous context
run on a widely distributed collection of computers

resource availability and performance unpredictable

scheduling/rescheduling issues

High-level parallel programming
library of skeletons (parallel schemes)

many real applications can use these skeletons

modularity, configurability � easier for the user

Edinburgh Skeleton Library eSkel (MPI) [Cole02]

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 2

Introduction - Performance evaluation

Use of a particular skeleton:
information about implied scheduling dependencies

Model with stochastic process algebra
include aspects of uncertainty

automated modelling process

dynamic monitoring of resource performance

allow better scheduling decisions and
adaptive rescheduling of applications

Enhance the performance of parallel programs

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 3

Structure of the talk

The Edinburgh Skeleton Library eSkel
and comparison with the P3L concepts

Motivation and general concepts

Skeletons in eSkel

Using eSkel

Performance models of skeletons
Pipeline model

AMoGeT (Automatic Model Generation Tool)

Some results

Conclusions and Perspectives
abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 4

eSkel - Brief history

Concept of skeletons widely motivated

eSkel
Murray Cole, 2002

Library of C functions, on top of MPI

Address issues raised by skeletal programming

eSkel-2
Murray Cole and Anne Benoit, 2004

New interface and implementation

More concepts addressed for more flexibility

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 5

eSkel - Fundamental concepts

Nesting Mode
define how we can nest several skeletons together

Interaction Mode
define the interaction between different parts of
skeletons, and between skeletons

Data Mode
related to these other concepts, define how the data
are handled

� How do we address such issues in eSkel?
How are they addressed in P3L?

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 6

eSkel - Nesting Mode

Can be either transient or persistent

Transient nesting
an activity invokes another skeleton

the nested skeleton carries or creates its own data

Persistent nesting
nested skeleton invoked once

gets the data from the outer level skeleton

Linked to the data mode (detailed later)

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 7

eSkel - Nesting Mode: call tree

Call tree built at the first interaction of each
activity

Structure of the persistently nested skeletons
search in the tree to find interaction partners

Transiently nested skeletons
not in the main tree

created dynamically, limited life time

subtree built dynamically when invoked

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 8

eSkel - Nesting Mode in P3L

P3L (Anacleto, SkIE)
all nesting of skeletons is persistent

Defined within the P3L layer

Clearly separated from the sequential code defining
the activities

P3L-based libraries (Lithium, SKElib)
Concept of transient nesting not explicitly
addressed

Not forbidden but not supported

ASSIST: not relevant
abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 9

eSkel - Interaction Mode

Can be either implicit or explicit

Implicit
an activity has no control over its interactions

function taking input data and returning output data

Explicit
interactions triggered in the activity code

direct calls to the generic functions Take and Give

Additional devolved mode for nested
skeletons: the outer level skeleton may use the
interaction mode of the inner skeleton

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 10

eSkel - Interaction Mode in P3L

P3L and related libraries
Interaction via streams of data

Implicitly defined by the skeleton

ASSIST
more flexibility

implicit or explicit interaction is possible

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 11

eSkel - Data Mode

Related to the previous concepts

Buffer mode / Stream mode
BUF: data in a buffer (transient nesting)

STRM: the data flow into the skeleton from the
activities of some enclosing skeleton call (persistent
nesting)

eSkel Data Model eDM

semantics of the interactions

unit of transfer: eDM molecule

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 12

eSkel - eSkel Data Model

eDM molecule: collection of eDM atoms

Type: defined using standard MPI datatypes

eDM atom: local versus global spread

P1

P2

Local Spread: 3 distinct items

Global Spread: 1 item

P0

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 13

eSkel - Skeletons: brief description

Pipeline & Farm: classical skeletons, defined in a
very generic way

Deal: similar to farm, except that the tasks are
distributed in a cyclic order

HaloSwap: 1-D array of single process activities,
repeatedly (1) exchanging data with immediate
neighbours, (2) processing data locally, (3) deciding
collectively whether to proceed with another iteration

Butterfly: class of divide & conquer algorithms

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 14

eSkel - Skeletons: task/data parallel

Skeletons are commonly classified as
task parallel: dynamic communication processes to
distribute the work – pipeline, farm

data parallel: works on a distributed data structure
– map, fold

control skeletons: sequential modules and iteration
of skeletons – seq, loop

eSkel: only requires task parallel skeletons

data parallel skeletons: use of the eDM

control expressed directly through the C/MPI code

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 15

eSkel - Skeletons: interface

eSkel:
not meant to be easy

based on MPI, the user must be familiar with it

structuring parallel MPI code

P3L:
much easier to use, simple structure

less flexibility, structuring sequential code

data/task parallel and control skeletons

3-stage pipeline: (create data, process, collect output)

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 16

eSkel - Interface: Pipeline

void Pipeline (int ns, Amode t amode[], eSkel molecule t *

(*stages[])(eSkel molecule t *), int col, Dmode t dmode, spread t

spr[], MPI Datatype ty[], void *in, int inlen, int inmul, void

*out, int outlen, int *outmul, int outbuffsz, MPI Comm comm);

general information about pipeline (ns, ...)

specify the several modes: interaction mode (amode);
data mode (dmode), spread (spr) and type (ty)

information relative to the input buffer

information relative to the output buffer

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 17

eSkel - Interface: Deal

void Deal (int nw, Amode t amode, eSkel molecule t *worker

(eSkel molecule t *), int col, Dmode t dmode, void *in, int inlen,

int inmul, spread t inspr, MPI Datatype inty, void *out, int

outlen, int *outmul, spread t outspr, MPI Datatype outty, int

outbuffsz, MPI Comm comm);

general information about deal (nw, ...)

specify the several modes: interaction mode (amode)
and data mode (dmode)

information relative to the input buffer

information relative to the output buffer

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 18

eSkel - Use of the library

C/MPI program calling skeletons functions

Great care should be taken for the
parameters

Definition of nested skeletons, workers, ...
through standard C/MPI functions

Only Pipeline and Deal implemented so far in
eSkel version 2.0

Demonstration of the use of eSkel

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 19

Structure of the talk

The Edinburgh Skeleton Library eSkel
Motivation and general concepts

Skeletons in eSkel

Using eSkel

Performance models of skeletons
Pipeline model

AMoGeT (Automatic Model Generation Tool)

Some results

Conclusions and Perspectives

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 20

Pipeline - Principle of the skeleton

inputs outputs
Stage 1 Stage 2 ... Stage Ns

��� stages process a sequence of inputs to produce a
sequence of outputs

All input passes through each stage in the same order

The internal activity of a stage may be parallel, but this
is transparent to our model

Model: mapping of the application onto the computing
resources: the network and the processors

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 21

Pipeline - Application model

Application model: independent of the resources

1 PEPA component per stage of the pipeline (

��� �	� �
��)
��� �� � def� ��� �� � ��� � �� ���� � �! ! �� � �� ��� �� � �" � � � ��
��� �� �

Sequential component: gets data (� �� � �), processes it
(�� � �! ! �), moves the data to the next stage (� �� � �" �)
Unspecified rates (

�

): determined by the resources

Pipeline application = cooperation of the stages#$ � � % $'& � def�
� � � � �()*+, - .

 ��� � �0/ () *+, 1 . � � � ()*+, 2 � .
� � � �
�

Boundary: 345 6 � : arrival of an input in the application3 45 6
� " � : transfer of the final output out of the Pipeline

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 22

Pipeline - Network model

Network model: information about the efficiency of the
link connection between pairs of processors

Assign rates

7 � to the � �� � � activities (
$ � 8� � � � 9 8

)�� ��: �� ; def� ��� �� � � � 7 � �� �<� �: �� ; 9 � � �

9 �� �� �
� " � � 7
� " � �� �<� �: �� ;

= � represents the connection between the processor

> �@? �

hosting stage

ACB D

and the processor

> � hosting stage

A

Boundary cases:>FE is the processor providing inputs to the Pipeline>
� " � is where we want the outputs to be delivered

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 23

Pipeline - Processors model

Processors model: Application mapped on a set of

��G

processors

Rate H � of the �� � �! ! � activities (

$ � 8� � � �): load of the
processor, and other performance information

One stage per processor (

�G � �� I $ � 8� � ���):#� � � def� ��� � � �! ! �� H � �� #� � �

Several stages per processor:#� � � def� ���� � �! ! � � H � �� #� � � 9 �� � � �! ! / � H/ �� #� � �

Set of processors: parallel composition#� � �! ! �� ! def� #� � � J J #� � / J J � � � J J #� �
�K

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 24

Pipeline - Overall model

The overall model is the mapping of the
stages onto the processors and the network
by using the cooperation combinator

LM N OQP RS TUV V W@XY Y Y X P R S T UV V Z\[]
synchronize^P U _ ^@` U and RS T UV V S RV

La N OQb Sc U WX Y Y Y X b Sc U Zd[e W]

synchronize^P U _ ^@` U and U f'g S R h

iP P ^` j defN U f'g S R h
k l

^P U _ ^@` U k m RS TUV V S RV

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 25

AMoGeT - Overview

performance
information

results
Compare

description
files

information
from NWS

models
Generate PEPA

Workbench
PEPA
models results

AMoGeT

AMoGeT: Automatic Model Generation Tool

Generic analysis component

Ultimate role: integrated component of a
run-time scheduler and re-scheduler

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 26

AMoGeT - Description files (1)

Specify the names of the processors
file hosts.txt: list of IP addresses

rank

$

in the list � processor

$
processor

8

is the reference processor

wellogy.inf.ed.ac.uk

bw240n01.inf.ed.ac.uk

bw240n02.inf.ed.ac.uk

france.imag.fr

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 27

AMoGeT - Description files (2)

Describe the modelled application mymodel
file mymodel.des

stages of the Pipeline: number of stages

� � and
time

�� � (sec) required to compute one output for
each stage! � 8� � ��� on the reference processor
nbstage=

��� ; tr1=10; tr2=2; ...

mappings of stages to processors: location of the
input data, the processor where each stage is
processed, and where the output data must be left.
mappings=[1,(1,2,3),1],[1,(1,1,1),1];

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 28

AMoGeT - Using the Network Weather Service

The Network Weather Service (NWS) [Wolski99]

Dynamic forecast of the performance of network
and computational resources

Just a few scripts to run on the monitored nodes

Information we use:� � � fraction of CPU available to a newly-started
process on the processor

$

%� �	n o - latency (in ms) of a communication from
processor

$
to processor

p

 �q � - frequency of the processor

$

in MHz (/proc/cpuinfo)

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 29

AMoGeT - Generating the models

One Pipeline model per mapping

Problem: computing the rates
Stage! (! � 8� � � �) hosted on processor

p
(and a

total of& r o stages hosted on this processor):

H � � � � o
& r o s �q o
 � q � s 8
�� �

Rate

7 � (! � 8� � �t� 9 8
): connection link between the

processor

p � ? � hosting stage! u 8

and the
processor

p � hosting stage! :

7 � � 8v wx %� o �y z n o �

(boundary cases: stage

{

= input and stage

Z [e W

= output)

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 30

AMoGeT - Solving the models and comparing the results

Numerical results obtained with the PEPA
Workbench [Gilmore94]

Performance result: throughput of the b Sc U}|

activities = throughput of the application

Result obtained via a simple command line,
all the results saved in a single file

Which mapping produces the best
throughput?

Use this mapping to run the application

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 31

Numerical Results

Example 1: 3 Pipeline stages, up to 3 processors

27 states, 51 transitions ~ less than 1 second to solve

latency of the com

��� � � D

sec; all stages/processors are
identical; time required to complete a stage

�

� � � D �� ��� � � o � (� � o : nb stages on processor

>

)

Mappings compared: all the mappings with the first stage on
the first processor (mappings

� D�� � D�� �� � � � � �)� � ��� D

: optimal mappings (1,2,3) and (1,3,2) with a
throughput of 5.64� � ��� �

: same optimal mappings (one stage on each
processor), but throughput divided by 2 (2.82)

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 32

Numerical Results

Example 2: 4 Pipeline stages, up to 4 processors,
� � D �

Mappings:

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50

T
hr

ou
gh

pu
t

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50

[1,(1,1,2,2),1]
[1,(1,1,2,3),1]
[1,(1,2,3,4),1]

Latency (seconds)

[1,(1,1,1,1),1]

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 33

Structure of the talk

The Edinburgh Skeleton Library eSkel
Motivation and general concepts

Skeletons in eSkel

Using eSkel

Performance models of skeletons
Pipeline model

AMoGeT (Automatic Model Generation Tool)

Some results

Conclusions and Perspectives

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 34

Conclusions - Part 1

Why structured parallel programming
matters? (Murray Cole’s invited talk to EuroPar 2004 in Pisa)

Presentation of the Edinburgh Skeleton
Library eSkel

Concepts at the basis of the library

How do we address these concepts

Comparison with the P3L language and
concepts, designed in Pisa.

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 35

Perspectives - Part 1 (1)

eSkel: ongoing development and
implementation phase

Still several skeletons to implement

Interface could be made a bit easier and
user-friendly

Necessity of a debugging mode to help the writing
of application (checking the correctness of the
definitions in the application code, the coherence
between modes, ...)

� Demo for interested people
abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 36

Perspectives - Part 1 (2)

Validation of these concepts
Develop a real application with eSkel

Promote the idea of skeletons

Comparison with other approaches
P3L, ASSIST, ...

Kuchen’s skeleton library

Parallel functional language Eden

� Motivation for my visit in Pisa

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 37

Conclusions - Part 2

Use of skeletons and performance models to
improve the performance of high-level parallel
programs

Pipeline and Deal skeleton

Tool AMoGeT which automates all the steps to
obtain the result easily

Models: help us to choose the mapping to produce
the best throughput of the application

Use of the Network Weather Service to obtain
realistic models

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 38

Perspectives - Part 2

Provide more detailed timing information on
the tool to prove its usefulness - Recent work

Extension to other skeletons

Experiments with a realistic application on an
heterogeneous computational Grid

Integrate in a graphical tool to help the design
of applications with eSkel

First case study � we have the potential to enhance the performance
of high-level parallel programs with the use of skeletons and process
algebras

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 39

Thank you for you attention!

Grazie per la vostra attenzione!

Any questions?

abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 40

Related projects

The Network Weather Service – [Wolski99]

benchmarking and monitoring techniques for the Grid

no skeletons and no performance models

ICENI project – [Furmento02]

performance models to improve the scheduling decisions

no skeletons, models = graphs which approximate data

Use of skeleton programs within grid nodes – [Alt02]
each server provides a function capturing the cost of its
implementation of each skeleton

each skeleton runs only on one server

scheduling = select the most appropriate servers
abenoit1@inf.ed.ac.uk – Seminar in Pisa – 7th December 2004 – 41

	
	Introduction {�ootnotesize - Context of the work}
	Introduction {�ootnotesize - Performance evaluation}
	Structure of the talk
	eSkel {�ootnotesize - Brief history}
	eSkel {�ootnotesize - Fundamental concepts}
	eSkel {�ootnotesize - Nesting Mode}
	eSkel {�ootnotesize - Nesting Mode: call tree}
	eSkel {�ootnotesize - Nesting Mode in P3L}
	eSkel {�ootnotesize - Interaction Mode}
	eSkel {�ootnotesize - Interaction Mode in P3L}
	eSkel {�ootnotesize - Data Mode}
	eSkel {�ootnotesize - {em eSkel Data Model}}
	eSkel {�ootnotesize - Skeletons: brief description}
	eSkel {�ootnotesize - Skeletons: task/data parallel}
	eSkel {�ootnotesize - Skeletons: interface}
	eSkel {�ootnotesize - Interface: Pipeline}
	eSkel {�ootnotesize - Interface: Deal}
	eSkel {�ootnotesize - Use of the library}
	Structure of the talk
	Pipeline {�ootnotesize - Principle of the skeleton}
	Pipeline {�ootnotesize - {mybleu Application model}}
	Pipeline {�ootnotesize - {mygreen Network model}}
	Pipeline {�ootnotesize - {myorange Processors model}}
	Pipeline {�ootnotesize - Overall model}
	AMoGeT {�ootnotesize - Overview}
	AMoGeT {�ootnotesize - Description files (1)}
	AMoGeT {�ootnotesize - Description files (2)}
	AMoGeT {�ootnotesize - Using the Network Weather Service}
	AMoGeT {�ootnotesize - Generating the models}
	AMoGeT {�ootnotesize - Solving the models and comparing the results}
	Numerical Results
	Numerical Results
	Structure of the talk
	Conclusions {small - Part 1}
	Perspectives {small - Part 1 (1)}
	Perspectives {small - Part 1 (2)}
	Conclusions {small - Part 2}
	Perspectives {small - Part 2}
	
	Related projects

