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Abstract 
Audio recordings of speakers using speech-driven systems 

show phenomena that are characteristic for on-line speech 
responses, such as out-of-task utterances, self-talk and speech 
disfluencies. This paper focuses on a survey of these 
phenomena as they were recorded during interactions by 
subjects using a multimodal system, and reports on 
experiments concerning the treatment of these phenomena for 
automatic speech recognition. This study is a starting point 
for the study of a richer set of on-line phenomena in speech 
addressed to multimodal systems and the implications for 
automatic speech recognition. 

1. Introduction 
This paper addresses spontaneous speech phenomena 

observed in recordings that were made from users who 
interacted with a multimodal system for an architectural 
design application. We have annotated the database with 
labels that distinguish several different types of phenomena. 
The first type comprises disfluencies (restarts, repeats, 
hesitations, filled pauses) which are due to the on-line 
character of interactions. The second type of phenomena 
comprises various ‘noise’ events (such as loud breath sounds, 
lip smacks, microphone clicks, background speech/noise). 
The last type concerns non-grammatical and out-of-task 
responses (such as self-talk). 

We have started annotating spontaneous speech 
phenomena to investigate their distribution in a real-life 
recorded database, and to investigate their impact on the 
performance of ASR in a multimodal interaction system. In 
this paper we provide a first distribution, and we investigate 
how ASR performance can be improved by including a 
garbage model to handle disfluencies and other spontaneous 
speech phenomena. An additional motivation to specifically 
annotate the different types of phenomena is that some of 
these (in combination with prosody) may help to detect and 
diagnose problems in human-machine communication [2, 9]. 
We intend to use the (continuously growing) database 
introduced in this paper for developing procedures to use 
disfluencies and prosodic information as additional 
information for a dialogue management module.  

The speech analysed in this paper was addressed to a 
multimodal system while the users had to perform a specific 
design task. The experiments were performed in the context of 
the European IST project COMIC1. The COMIC project aims 
at the study of natural and intuitive interaction between 
humans and multimodal systems. A system is envisaged that 
reacts in an intuitive and plausible way to the intentions of a 
user, expressed in any combination of available input 
                                                           
1 www.hcrc.ed.ac.uk/comic 

channels. In order to move beyond the conventional map and 
form-filling applications, an architectural design application is 
implemented, which is instantiated in the form of a bathroom 
design task. More specifically, a multimodal system has been 
designed to help a non-expert, cooperative user to enter the 
relevant details of the desired bathroom using pen and speech 
for input. During the first phase of the interaction, the user is 
asked to draw the ground plan, i.e. the walls, windows and 
doors and to specify the lengths, heights, and widths of these 
objects. Also the direction in which the door(s) open(s) must 
be specified. This ground plan fully specifies the constraints 
for placing sanitary ware and additional bathroom furniture. 
In the second phase of the interaction, the user can discuss 
and compare a number of design options, available via guided 
browsing, to complete the bathroom ([6, 8, 10]). 

The multimodal system in this study consisted of several 
modules: two input recognisers (a speech recognition module 
and a recogniser for pen input), a fusion module that does 
natural language processing and merges the information from 
the recognisers, a dialogue-action management module, and 
an output module, rendering beautified graphical information 
and  speech prompts asking for additional information or 
explaining what the user can do next. A strict turn-taking 
protocol was implemented to ensure that the recognisers and 
the fusion module were able to process the multimodal input 
of the user in a coherent way. This protocol takes the moment 
at which the acoustic system prompt finishes as a starting 
point for the user’s turn. After the prompt, the user must start 
providing input (either speech or pen or both) within a time 
window of two seconds. If the user starts within this two-
second window, a window of five seconds is given to 
complete the response. Barge-in was disabled. 

In the current implementation of the system, the 
interaction is based on a system-driven dialogue strategy. 
System-driven dialogues were chosen because inexperienced 
users need help for completing a complex task that they do 
not know how to perform. Moreover, this strategy can be used 
to gently push users towards expressions within the range of 
what the speech and pen input recognisers can handle.  

In [8] a summary is presented of the performance of the 
input recognition modules in the system. Here we go into 
more detail on disfluencies and other phenomena in the 
speech that affect ASR. In the last decade, considerable 
attention has been paid to the phonetic and prosodic 
properties of disfluencies (e.g. [5, 7]). Although these studies 
provide a description of disfluencies in spontaneous speech, 
the results cannot be used directly to build acoustic models in 
ASR.  

In the following sections, we will first provide an 
overview of the phenomena that were encountered in the 
audio recordings made, and introduce the ASR. Next, 
experiments are described that were performed to adapt the 



ASR to better cope with the various speech phenomena. A 
discussion and conclusion are presented in the final section. 

2. Description of the data  
The speech data used in this study are speech files 

recorded in interactive sessions by 28 native, German 
speaking subjects. In a human-factors experiment [8], subjects 
had to enter the blueprint of three different bathrooms in one 
single session. The recordings from this ongoing experiment 
were converted to a growing database comprising audio files, 
verbatim transcriptions and annotations of the non-verbal 
audio events, such as non-speech sounds produced by the 
speaker, noise, back-channels, loud breath sounds, truncated 
words, repeats, self-talk, out-of-grammar speech, or 
background speech from other speakers. Back-channels such 
as ‘hmm’, which in human-human communication serve as a 
signal to the speaker that the listener is paying attention and 
understands the speaker, are considered as a special type of 
utterance, different from filled pauses. This collection of 
experimental data will here be referred to as the EXP-
database. The total number of logged wave files (and 
annotation files) in the EXP-database is 2728. 

Apart from the data recorded during the formal HF 
experiment, additional recordings have been made during the 
development of the multimodal system under the same 
conditions as the eventual experiment. This extra set is 
referred to as the ADD-database. This database contains 563 
wave files. The total number of utterances in the union of 
both databases is presently 3291. 

Each utterance is stored as a header-less, 16 bit/sample, 
16 kHz mono sampled data file. The length of the speech files 
was determined by the automatic end pointing of the ASR 
system. Each audio file contains the recording between the 
moment of opening and closing of the microphone. The 
microphone was opened by command of the dialogue-action 
management module in the system, while the microphone was 
closed by the end pointing in the ASR module. The average 
duration of the wave files is 3.55 seconds. 

Not all of the audio files contain speech, for two reasons. 
First, in about half of the system prompts the user was asked 
to provide information for which the pen is the obvious input 
channel. For example, at some point in the interaction the 
system instructs users to draw walls, an activity that obviously 
requires pen input. Most users do not speak during this 
drawing activity – some however, produce backchannel 
speech or self-talk (e.g., ‘[hmm] the wall goes here’, ‘maybe I 
had better start [hmm] at the other side’). Second, although 
lengths and other sizes could be entered by speech and pen, 
most subjects ended up using the modality with the lowest 
error rates (which turned out to be the pen modality, cf. [8]).  
Table I shows the distribution of the number of lexical items 
per utterance (transcription length) for the databases EXP and 
ADD taken together. From the total number of 3291 wave 
files, 1419 contain just silence (the row with Transcription 
Length 0 Table I). Of the remaining 1872 wave files, the 
majority (86 %) of the utterances comprise just one (often 
‘yes’, ‘no’), two (such as in ‘zwei meter’, ‘ja richtig’) or three 
words (mostly a length, e.g. ‘drei meter zehn’). In this respect, 
the utterances are similar to what has been observed in spoken 
dialogue systems.  
Of these 1872 utterances that contain at least one word, 812 
(43%) contain either a mix of speech and non-speech sounds, 

or speech that was not directly addressed to the system, but 
was nevertheless processed by the ASR. These 812 ‘noisy’ 
utterances can be categorised according to the properties 
shown in Table II. In case an utterance matched multiple 
properties, the most salient property was chosen for its 
categorisation. 

From Table II it can be deduced that Restarts occur rarely 
in the combined EXP+ADD database. In fact, we encountered 
only 33 cases. Examples are (square brackets denoting the 
reparandum): ‘[cen…] centimeter’, ‘[hun…] hundert 
centimeter’, and ‘[zwei…] zweihundert centimeter’. Repeats 
(of words of entire phrases) occur 37 times in the database. 
Examples are ‘nein nein nein’ and variants  (15 occurrences), 
‘ein meter ein meter’ and other variants of lengths (8 times), 
‘ich möchte ich möchte das löschen [...]’, ‘ja ja’, ‘[...] ja 
[mmm] ja’. Almost all repetitions express frustration and 
irritation of a subject, caused by repeated recognition errors.  
 

Table I. Distribution of utterance transcription length (first 
column) in the combined database EXP + ADD. 

Transcription 
Length 

# 
Occurrence Proportion 

0 1419 0.43 
1 1049 0.32 
2 365 0.11 
3 210 0.06 
4 154 0.05 
5 65 0.02 
6 22 0.01 
7 6 0.00 
8 1 0.00 

 

Table II. Distribution of the 812 ‘noisy’ utterances 
(utterances with non-speech sounds or with speech not 
addressed to the system) as a function of the type of 
phenomenon. 

Number of  
occurrences 
(total 812) 

Description of category 

263 Utterances with single audible breath 
only. 

143 Utterances with at least one filled pause 
(‘hmm’). 

126 Utterances with audible breath sounds 
before, within or after the utterance. 

88 Self-talk, out-of-task speech, mostly 
out-of-grammar. 

70 Utterances with 
truncation/restarts/repeats of words. 

59 Recordings with back-channels only. 

45 Recordings with non-speaker noise 
(including background speech) only. 

11 Recording with clicks only. 
7 Recording with lip smacks only. 

 
Many inexperienced speakers slow down the speaking 

rate after a recognition error of the ASR module – probably 
hoping that the ASR performance will increase. In the EXP 
database, we found two speakers (out of 28) exaggerating this 



strategy by explicitly pausing within words (‘centi [pause] 
meter’). We found 31 c lear examples of such within-word 
pauses. In the majority of cases (26), the duration of these 
within-word pauses exceeds 300 ms. Almost all speakers (25) 
consistently use some utterances with pauses between words 
that are longer than 300 ms seconds (e.g. ‘vier [pause] 
meter’).  

Table III gives an overview of the distribution of non-
speech phenomena in the EXP and ADD parts of the total 
database.  

Table III. Distribution of utterance types over the two 
databases. 

Database EXP ADD EXP+ADD 
total # recordings 2728 563 3291 
# silent recordings 1217 202 1419 
# utterances with 

speech only 832 228 1060 

# utterance with 
speech & non-speech 679 133 812 

 

3. The automatic speech recogniser 
The automatic speech recogniser that was used in the 
multimodal system is based on HTK 3.1. In order to have 
HTK operating as a ‘client’ module in the system, the original 
HTK code was substantially modified to change the 
autonomous behaviour of HTK and to let HTK interact via 
various communication pools. The original ‘on-line’ HTK 
audio recording facility was kept to capture the audio input 
from a wire-connected close-talk head-mounted microphone. 

The acoustic models used in the experiments were trained 
with the German SpeechDat database. For the training about 
80,000 utterances (8 kHz sampling freq.) have been used. 
Models were based on 12 MFCC coefficients and one energy 
component, plus delta and delta-delta components. No 
cepstral or energy normalisation (utterance level or speaker 
level) was performed. In the tests reported here, gender-
independent, context-independent models were used with 8 
Gaussians/state, with 3 emitting states per phone. During the 
tests, the 16 kHz audio data were processed by the same filter 
bank as the one used during training. There was no on-line 
cepstral/energy normalisation available. 

In order to handle non-speech events, two acoustic 
models were created to model ‘general speech’. These models 
were also trained on SpeechDat. A garbage phone ‘gp’ has 
been modelled as a 3-state phone model; the garbage phone 
sequence ‘gps’ has been modelled by a 10 -state HMM. The 
garbage models were bootstrapped by the schwa-model and 
by a sequence of schwa-models, respectively. Next, both 
models were trained in 3 full Baum-Welch re-estimation 
passes, after replacing randomly chosen single phone 
segments in the phone transcriptions by ‘gp’, and replacing 
randomly chosen phone sequences of length 3 by ‘gps’. 
Afterwards, these newly trained general-speech models were 
added to the set of already trained phone models. In the 
lexicon, a garbage word garb was phonetically defined in 
terms of the ‘phones’ gp or gps (see below).  

For the specific bathroom application domain, no 
language model was available. Therefore, the eventual LM 
that was used in the experiments was based on a handcrafted 

regular grammar (in BNF). This grammar contained 135 
words and the grammar perplexity as calculated with HTK 
was 9.6. Since this grammar does not provide for optional 
inter-word garbage, we constructed a tool to extend the HTK 
search network with optional inter-word garbage entries. To 
that end, the ‘clean’ decoding lattice has been extended, by 
introducing one optional garbage word between each word 
pair.  Parallel to each original arc w1-w2 in the network, three 
new arcs w1-garb, garb-garb, and garb-w2 were added to 
the lattice. In the present implementation all transitions to a 
garbage word were given the same garbage entrance penalty, 
which made for an additional tuning parameter in the 
experiments, next to the word entrance penalty.  

4. Experimental results 
In this section, we present recognition results based on the 

modelling and tuning of the two different garbage models. We 
will focus on string error rates, since string error rates are 
often of importance for evaluating the ASR-output in terms of 
the semantic interpretation on utterance level. (In these tests, a 
string accuracy of 65 % corresponds with a word accuracy of 
approximately 75-77 %.) The garbage penalties were tuned by 
optimising the word accuracy on the development set of the 
361 (228+133) non-silent utterances in the ADD database. 
The 1511 non-silent utterances from the EXP-database were 
used as test set. 

 

 
Figure 1. Results of the recognition experiments (string error 
rates) for all data (ave), the clean data only (clean) and the 
noisy data (noise) for different implementations of ‘garbage’.  

 
Fig. 1 shows string accuracies (SACC) for the evaluation 

set. The table presents accuracies (percentages) when a 
garbage model was absent, when the lexical entry garb was 
modelled by a sequence of 1, 2, 3, or 4 garbage phones (gp) 
or by a single 10-state model gps (indicated by word).  
 

From the figure it is clear that there is a large difference in 
the results for ‘clean’ and ‘noisy’ utterances: adding garbage 
arcs deteriorates the performance for the utterances that are in 
the grammar. At the same time, it is obvious that utterances 
which do not fully conform to the grammar gain enormously 
from the addition of garbage arcs. In our test database the 
performance increase for noisy data outweighs the decrease 
for the clean data. The highest SACC was obtained in the case 
where the garbage word consisted of two garbage phones.  



Table IV gives an overview of the ASR performance 
(SACC) on the entire EXP-database, but now as a function of 
the expectation (displayed column-wise) of the system prompt 
to which the utterance was a reply. All entries denote numbers 
of occurrence. Five expectations were used: Size, 
Confirmation (denoted by ‘Conf’), Wall, Door, and Window. 
An utterance of category ‘Size’ is a reply to a system prompt 
asking for a size, and is therefore expected to contain 
information about a length (e.g. ‘zwei’, ‘zwei meter’, ‘zwei 
meter dreizehn’). A confirmation refers to a ‘yes/no’ reply. 
The columns for Wall, Door and Window refer to utterances 
produced while users were drawing. Along the rows, the 
number of utterances is indicated for which the ASR was 
incorrect (inc.), correct (cor.), whether the utterance out-of-
grammar (oog.), and whether there was just silence of any 
noise (sil/n), respectively. The number given for correct and 
incorrectly recognized responses refer to word strings. the 
multimodal character of the interaction The large number of 
silent audio recordings (690) when the system prompt asks for 
a ‘size’, are a to the multimodal character of the interaction.  

 
 

Table IV. Overview of the ASR performance on the entire 
EXP-database, categorised according to the expectation of 
the system prompt. The entries represent numbers of 
occurrence. Numbers referring to incorrect (‘inc’) and correct 
(‘cor’) are string -based.  

 

Exp Size Conf. Wall Door Win- 
dow Total 

inc. 258 33 17 23 3 331 
cor. 279 260 51 36 3 629 
oog. 129 32 42 21 7 231 
sil/n 690 53 462 207 125 1537 
tot.  1356 378 569 287 138 2728 

 
 
When the silent, noisy, and out-of-grammar inputs are left out 
of consideration, the recognition rate over all turns is 65.5 
percent (string accuracy), in accordance with Figure 1, case 
‘clean data’, ‘2 phones’.  

5. Discussion and conclusion 
A survey has been provided of the distribution of 

spontaneous speech phenomena in interactions of users with a 
multimodal system. The performance of the ASR is shown to 
be dependent on the structure of the garbage model. In the 
present experiment we used a unique garbage entry to deal 
with all phenomena. However, the ASR performance in on-
line applications is expected to gain much more from specific, 
dedicated garbage modelling that is focussed on capturing the 
various acoustic phenomena. 

The ASR performance (50-60 percent string error rate) 
that we obtained with what can be considered as off-the-shelf 
acoustic models is inappropriate in a realistic online 
application. Among ASR improvements that will be 
addressed in the near future are on-line acoustic 
normalisation, gender modelling, use of triphones, and the 
inclusion of special acoustic models for non-speech 
background noise. However, future research will specifically 
address the fact that disfluencies are not randomly distributed, 
but obey linguistic patterns [11]. We will investigate ways in 
which this knowledge can be exploited to select context-

specific garbage modelling. One obvious way of doing this is 
to select the garbage model on the basis of the expectation 
that is generated by the dialogue-action manager. For 
example, when a user is prompted to draw something, one 
might want to use a model specialised for dealing with 
backchannels, while one would probably prefer a model for 
dealing with hesitations and filled pauses when the user was 
prompted to enter a length or similar information.  

The results further raise the question how the modelling 
of speech disfluencies can be improved by using additional 
(e.g. paralinguistic) features. Disfluencies and utterance 
structure are associated with specific prosodic patterns (e.g., 
[3]). Since disfluencies, in combination with prosody, may 
provide useful information about annoyance or frustration [1], 
and help to flag problems in human-machine communication 
[2], future research will be focused on incorporating 
paralinguistic features in ASR for multimodal systems. 
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