
Authors: Peter Poller Date: September 2002

Deliverable 1.1: Review of the state of the art
in system architectures

Public document

Document
History

Version Editor Date Explanation Status
0.1
0.2
1.0

Peter Poller
Peter Poller
Peter Poller

03.05.02
12.08.02
27.09.02

WP1 state-of-the-art
WP1 state-of-the-art
PCC approval

DRAFT
DRAFT
FINAL

C CM
o i

D1..1
 September 2002

Public Use 2/23

D1.1
September 2002

Public Use 3/23

COMIC

Information sheet issued with Deliverable D1.1

Title: Review of the state of the art in system architectures

Abstract: This document gives an overview of the state of the art in
system architectures suitable for distributed multimodal systems
such as COMIC.

Author(s): Peter Poller
Reviewers:
Project: COMIC
Project number: IST- 2001-32311
Date: 12.08.2002

For Public Use

Key Words: Multimodal systems, system architectures, distributed
processing

Distribution List:

COMIC partners MPI Nijmegen, KUN, DFKI, MPI Tübingen, ViSoft, UEDIN,
USHFD

External COMIC IST, public web site

The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

D1..1
 September 2002

Public Use 4/23

D1.1
September 2002

Public Use 5/23

Contents

Summary.. 7

1 State of the art in system architectures .. 9

1.1 Galaxy Communicator: .. 10

1.2 Open Agent Architecture (OAA).. 12

1.3 Pool Architecture (PA) ... 13
1.3.1 The Blackboard Metaphor ... 13
1.3.2 The Module Manager .. 14
1.3.3 The Testbed: Framework for a Distributed Environment 14

2 COMIC-specific system architecture comparison.. 17

3 Conclusions & Recommendations .. 21

4 References.. 23

D1.1
September 2002

Public Use 6/23

D1.1
September 2002

For Public Use 7/23

Summary

This document presents an overview of relevant system architectures for the multimodal
distributed dialog system of the COMIC project. In a first step the various existing
communication frameworks based on different communication and messaging models were
critically appraised in order to preselect powerful, flexible, appropriate and easy-to-use system
architecture candidates for the project. The remaining architectures were then compared within
the COMIC Workpackage 1 “System Architecture and Integration” during the first six months of
the project (T1 – T6, March 2002 - September 2002). Three different architectures (based on
different communication models) emerged as candidates: the Open Agent Architecture (OAA),
the Galaxy Communicator and the Pool Communication Architecture (PA). This comparison is
intended to prepare the final selection of a system architecture for the project. This document
presents first the preselection step, then the main characteristics of these three architectures
and then presents the comparison with a special focus on the project-specific requirements.

D1.1
September 2002

Public Use 8/23

D1.1
September 2002

For Public Use 9/23

1 State of the art in system architectures

The COMIC system is a distributed, multimodal, multi-component system. Therefore COMIC
needs a software architecture that enables and supports agile, flexible and dynamic composition
of the modules and hides as many details of the communication protocol as possible from the
module programmers.

This section gives a short overview of the major distributed communication frameworks that can
be used to spread interacting components of a large system across multiple computers to
achieve distributed processing.

First of all, there are very simple and elementary communication frameworks in which the
interactions between components are preconfigured (hard-coded). All details of communication
protocols have to be maintained by the programmers themselves. An example of such a hard-
coded communication model is Sun’s Jini [8]. It realizes just a simple infrastructure to establish
a connection over a network.

There are more sophisticated and comfortable distributed models which include an additional
communication layer, the so called “middleware”, which offers a more powerful mechanism to
create distributed applications based on “meaningful” communication objects and hiding some
of the more complex protocol tasks from the programmers. Examples are the Common Object
Request Broker Architecture (CORBA) [7] or Microsoft’s Distributed Component Object Model
(DCOM) [6]. A disadvantage of these communication frameworks is that they still need fixed
point-to-point communication in the sense that communication partners have to know each
other.

The format of the messages being communicated is also a relevant point to look at. E.g., in
messages based on the Knowledge Query and Manipulation Language (KQML) [4] intended
speech acts can be expressed and arbitrary content can be embedded into textual messages.
Unfortunately the models described above also suffer from the necessity of hard-coded point-to-
point interactions among components.

Finally, there are communication architectures including a “middleware” layer in which a
component can publish requests without any knowledge about the component that fulfils this
request. In such architectures data producers are decoupled from data consumers. There are
two communication models that fulfil this requirement: the Blackboard Metaphor and the
Delegated Computing Model in which a central message brokering unit is responsible for
maintenance, coordination, and delivery of requests and their responses to the correct
recipients.

The blackboard approach is a widely used architecture and consists of three parts: (i) a set of
independent modules, called knowledge sources, which provide the expertise needed to solve
the problem; (ii) a blackboard, which is a shared global database which the modules send
messages to and receive messages from; and (iii) a control component, which makes runtime
decisions about the resource allocation and the order in which the modules operate on the
blackboard. At the beginning, each module informs the blackboard about the kind of events it is
interested in and contributes with its expertise to the solution of the overall problem. This leads
to an incremental solution of the problem. The entire communication between the modules
takes place solely through the blackboard. This database encompasses the problem-solving
state data, e.g., the hypotheses, the partial solutions, and, more generally, all data exchanged
between the modules. Moreover, there are also further developments of the blackboard
concept, such as decentralized or parallel extensions of the blackboard architecture.

D1.1
September 2002

Public Use 10/23

In a framework based on the Delegated Computing Model there is a specialized central
brokering unit that coordinates the activities of the individual modules. At the beginning, each
module informs the central broker about its capabilities. Service request messages can then be
published to the broker whose task it is to maintain their processing, i.e., the delegation of the
request to the recipient(s), the coordination of their efforts and the delivery of the result(s) to the
requester.

Architectures that are based on these elaborated computing models do not only contain the
necessary communication infrastructure. They are complete integration platforms that
significantly support the complex process of integrating a new module into an overall system of
communicating modules. Furthermore these architectures include several helpful tools, e.g. a
graphical user interface (GUI), methods for easy debugging, and monitoring/logging tools. They
are sophisticated architectures that have been successfully used in several complex systems.

In COMIC, such an easy-to-use architecture of either of these two kinds is needed because it
hides time-consuming interface and communication programming from the module developers
to a significant degree. Only frameworks of this kind are usable in COMIC because they offer
the most comfortable and flexible communication and allow module developers to focus on their
module functionality instead of loosing time for intermodular interface programming. Finally, they
must be freely available either as open source or by one of the project partners.

Consequently, only the following architectures of this kind are relevant for COMIC:

• Galaxy Communicator
• Open Agent Architecture (OAA)
• Pool Architecture (PA)

The following subsections give a short introduction into the main characteristics of the
mentioned architectures.

1.1 Galaxy Communicator:

The Galaxy Communicator [1] is an open source system architecture based on the plug-and-
play approach that enables developers to combine architecture-compliant commercial software
and research components. It is a distributed, message-based, hub-and-spoke infrastructure that
was especially optimised for spoken dialog systems. The Communicator infrastructure is an
extension and evolution of the MIT Galaxy System, and is being developed, maintained, and
provided by the MITRE Corporation. The current version 4.0 contains API’s for C, C++, Java,
Python and Allegro Common Lisp. It runs under Sparc Solaris, Intel Linux and Win32 (x86-NT).

An instance of a Communicator infrastructure consists of arbitrary many processes that may be
running on separate computers. The processes are arranged in a hub-and-spoke configuration,
which means that a central processing unit (the hub) is used to mediate message based
connections between communicating servers/modules (the spokes). The figure below shows a
skeleton of a Galaxy Communicator based spoken dialog system:

D1.1
September 2002

For Public Use 11/23

Figure 1: Example Galaxy Communicator instance for a spoken dialog system

The Galaxy Communicator distribution actively supports the platforms Sparc Solaris, Intel Linux
and Win32 and consists of:

• A hub, implemented in C, which mediates connections between Communicator servers
(such as speech recognition and synthesis, parsing, dialogue management, etc.)

• Server libraries for constructing Communicator-compliant servers in C (and C++), Java,
Python, and Allegro Common Lisp

• Examples illustrating basic and advanced functionality for creating servers and setting up
the hub to communicate with them

• Extensive documentation

• Example servers such as wrappers for the TrueTalk and Festival speech synthesizers, and
for Oracle and PostGres database clients

The infrastructure and especially the hub offers several helpful features/functionalities/tools that
ease the development and implementation of a complex Communicator based dialog system:

• The hub explicitly contains message-logging support.
• The message traffic routing can be explicitly programmed by special hub scripts.
• There is a possibility for breakpoint triggering via the so-called “BuiltIn” server, which is a

hub internal server that has special access to the internals of hub operations.
• The server libraries support backchannel connections for high-bandwidth data that can be

passed directly from server to server.

D1.1
September 2002

Public Use 12/23

1.2 Open Agent Architecture (OAA)

The Open Agent Architecture (OAA) [5] is a framework for integrating a community of
heterogeneous software agents in a distributed environment. The architecture is developed and
maintained by SRI, Menlo Park, CA. The architecture runs under Unix, Linux and Windows. It
contains API’s for C, (Visual) C++, PROLOG and Java.

In OAA an agent is defined as any software process that meets the conventions of the
conventions of OAA. A key distinguishing feature of OAA is its delegated computing model that
enables both human users and software agents to express their requests in terms of what is to
be done without requiring a specification of who is to do the work or how it should be performed.
Similar to the Galaxy Communicator there is also a central processing unit, the so called
facilitator (programmed in PROLOG), which is a specialized server agent within OAA that
coordinates the activities of agents for the purpose of achieving higher-level, often complex
problem-solving objectives. The knowledge necessary to meet these objectives is distributed in
four locations in OAA:

• the requester: It specifies a goal to the facilitator and provides advice on how it should be
met,

• providers: They register their capabilities with the facilitator, know what services they can
provide, and understand limits on their ability to do so,

• the facilitator: It maintains a list of available provider agents and a set of general strategies
for meeting goals

• meta-agents: They contain domain- or goal-specific knowledge and strategies that are used
as an aid by the facilitator

Based on this knowledge, the facilitator matches a request to one or more agents providing that
service, delegates the task to them, coordinates their efforts, and delivers the results to the
requester.

All communication and cooperation between modules is achieved via messages expressed in
the Common “universal” Interagent Communication Language (ICL). ICL includes a
conversation layer and content layer. The conversational layer is defined by event types
together with the parameter lists associated with them.

On the other hand the content layer consists of the specific goals, triggers and data elements
that may be embedded within various events. The content layer of ICL has been designed as an
extension of the PROLOG programming language to take advantage of unification and other
PROLOG features. Thus, compound goals can be expressed by using PROLOG-like operators
and also parallel goals to be processed competitively or simultaneously by different modules.
Furthermore conditional execution and constraints on executions can also be expressed.
Altogether, OAA’s ICL offers a very powerful communication mechanism.

The following figure shows an example dialog system embedded into an OAA community.

D1.1
September 2002

For Public Use 13/23

Figure 2: Example OAA agent community instance for a dialog system.

1.3 Pool Architecture (PA)

The Pool Architecture (PA) [3] is a multi-blackboard system architecture for distributed
systems that consist of independent cooperating modules, which may be running on separate
computers under different operating systems. In the VerbMobil project, DFKI developed and
continuously improved and extended the Pool Architecture for the multimodal SmartKom
system. There are module APIs for the following programming languages: C, C++, Java and
PROLOG. The data delivery is based on PVM (Parallel Virtual Machine, [2]). The architecture
itself runs under UNIX, LINUX and Windows (NT and 2000).

Modules are realized as independent processes that interact by publishing and subscribing data
to and from global data stores (so-called pools). This makes arbitrary communication paths in a
dynamic community of distributed processes possible because data producers and data
consumers are decoupled. The architecture does not only consist of the necessary
infrastructure for inter-process communications. It also contains several kinds of helpful tools for
integrators as well as for module developers.

The following paragraphs describe some essential features and details of the Pool Architecture.

1.3.1 The Blackboard Metaphor

Within the blackboard paradigm, modules are seen as data producers or data consumers that
solely interact by exchanging data over blackboards (the so-called pools in the PA terminology).
In addition to the pools where actual content data is exchanged between the functional
modules, there are control pools where control messages and information about the module
states are published (e.g., stateControl or moduleState, which enable the user to see the
modules' states on the system GUI). A module can be both, producer and consumer, even to
the same pool. To gain access to a pool, the module has to subscribe to this pool from where it
reads its input and where it publishes its output. Subscription means that a module wishes to be
informed about a specific subject or when a certain event occurs or just at regular intervals.
There is no direct communication between the modules that therefore do not have to know of
the existence of other modules and their internal workings are invisible from the outside.

D1.1
September 2002

Public Use 14/23

Besides, each module can have several instances (e.g., if there are several competing modules
with the same functionality).

1.3.2 The Module Manager

The ModuleManager, which builds a uniform interface (API) to the supported programming
languages is a special communication layer on top of the Pool Communication layer to hide the
details of a complex pool communication protocol from the module programmers. At the
beginning, each module informs the ModuleManager about the functionalities it provides and
the corresponding pools it wants to subscribe to or publish on. On this basis, the
ModuleManager decides whether these pools should be provided with data or not. Furthermore,
it controls (i) the reading from pools by providing event masks to inform the modules when data
is published on the pools they have subscribed to; (ii) the publishing of data to pools since a
module can write on a pool only if it has registered for this pool. For each supported
programming language, the ModuleManager provides handlers for managing the control
protocol. Furthermore, the ModuleManager allows for synchronization of time-critical processes
by introducing internal module states (connected, waiting, ready, active, inactive). For example,
during the start process, no module should write on a pool before all modules to be started have
logged on. During this phase, the modules that have already finished their initialisation process
skip from the connected state to the waiting state. The ModuleManager also provides functions
for prioritisation of messages, e.g., some control messages should be made available on the
pool and processed with a higher priority.

Several benefits from the introduction of the ModuleManager are gained:

o by hiding some of the more complex protocol tasks from the programmers;
o by adding control information to messages used for internal purposes;
o by deleting old invalid messages as soon as possible to bring the system faster into a

defined coherent state faster;
o by hiding the switching between competing modules from the module developer; and
o by making small protocol changes transparent for the users.

1.3.3 The Testbed: Framework for a Distributed Environment

The multi-blackboard architecture used in VerbMobil and SmartKom turned out to be a great
advantage for developing a test environment. The open architecture allows for detailed
monitoring features, since any process connected to the communication system is in a position
to see all interchanged data. Input of data for test purposes can be managed easily at any time
and any point. So the prerequisites are given to provide an environment for the specific needs
of programmers and users. First of all, there has to be support for developers to enable
integration and testing of single modules in stand-alone mode. For this purpose, a modular
system is needed, that allows data to be fed into the system at arbitrary module interfaces
(pools). Furthermore, there must be a possibility to allow an accurate look at all data produced
by the modules involved.
The capabilities of the system have to be demonstrated to diverse groups such as to specialists
or to a non-professional audience. Therefore a graphical user interface, easy to handle even by
a non-computer specialist and providing attractive visualizations of the module activities is an
indispensable requirement for modern system development.
When putting together modules developed at different locations, it is very probable that some
cooperation difficulties will occur. Then, some specific debugging tools are needed to effectively
trace the reason for malfunction of the system or specific modules.
It is an important feature to control the different processes (representing the single modules) in
a running system. This includes "hot swapping" (if there are several modules of the same
functionality), killing or restarting a process that got out of hand and changing module-specific
adjustments.

D1.1
September 2002

For Public Use 15/23

Control mechanisms concerning complex correlations without being assigned to one single
module can be made available by the environment. Two examples for this strategy in VerbMobil
and SmartKom were the opening and closing of the microphone for speech input and the
mapping of verbal user commands to concrete module configuration settings.
The possibility of distributing a system via network enables parallel processing and therefore
leads to a considerable speeding up of concurrent tasks. Even a distribution beyond the bounds
of development sites should be feasible in modern interprocess communication.
All these features were realized in the VerbMobil and SmartKom testbed, a framework serving
as a solid basis for the development of modules and usage of the system. Most of these main
concepts are not specific to the projects so that they can be utilized by any modular system.

The following figure 3 shows the testbed-GUI for the SmartKom system. The features
mentioned above can be accessed via the menu bar. Each button represents a module. The
white lines/data buses indicate intermodular data exchange via pools.

Figure 3: SmartKom-GUI

D1.1
September 2002

Public Use 16/23

D1.1
September 2002

For Public Use 17/23

2 COMIC-specific system architecture comparison

The first task within WP 1 “System Architecture and Integration” was a review of the state of the
art by compiling hardware and software modules that were already available at the partners in
order to identify project-specific requirements on the architecture imposed by module
prerequisites. At the beginning of the project a questionnaire was compiled and distributed to all
partners asking for various details concerning their future modules in COMIC in order to collect
all architecture relevant requirements coming from partner software prerequisites. Here are
some of the most important architecture-relevant items in the partner module questionnaire:

• I/O data (size)
• Programming languages
• Operating systems

Due to the intended system functionalities and hardware definitions of the project several
important requirements on COMIC’s system architecture could also be identified from the
beginning. The following list combines obligatory system architecture functionalities and
features that ease the development, implementation and testing of the COMIC system based on
such a system architecture:

• Distributed processing with bi-directional communication
• Multimodal full duplex interaction in mobile environments
• All modules can function in an interrupt-driven real-time environment
• Limited processing power of mobile terminals -> distributed processing
• Minimal effort for adding completely new modules (extendibility)
• Capability of maintaining operation even if some input and/or output channels are

unavailable (configurability)

Based on the software module features and the above mentioned COMIC-specific architecture
requirements the following criterias were used to compare the three architecture candidates:

• Message processing/delivery performance: COMIC will process large data sets (e.g., pen
data). Therefore the architecture should have high performance of data delivery for large
data sets.

• Source code availability: In case of architecture implementation bugs, the source code of
the module API’s in all supported programming languages as well as the underlying kernel
communication source code should be available for rapid bug fixing.

• Support: For system integration as well as for module programmers COMIC needs the best
possible support (from the architecture developers as well as from experienced architecture
users) to speed up time consuming bug fixes or problems of any kind as far as possible

• Helpful tools: The architecture should contain helpful tools that ease integration, running
and debugging of the COMIC system. A graphical user interface (GUI) that visualizes
important aspects of the overall system and provides easy access to interesting data or
interfaces highly eases the system handling and debugging. An elegant start-up tool for
distributed runs would allow for a very easy system handling as well. Finally, monitoring and
logging tools are very important to ease debugging and testing.

D1.1
September 2002

Public Use 18/23

• Documentation: The system/architecture handling as well as the module API’s in all
programming languages and operating systems, the existing tools as well as the system
handling should be well documented.

• Estimated Effort: Here the estimated effort to adapt the existing architecture to a project
specific testbed distribution for COMIC is meant.

The following table gives an overview of the comparison of the three architectures with respect
to the above-mentioned criteria:

Galaxy Communicator Open Agent
Architecture Pool Architecture

Performance

High on the same
machine under

LINUX, unmeasured
for distributed runs

Low, there is a
inherent 64K size limit

to be bypassed
High

Source code
availability

For LINUX only
(communication

software and module
API’s)

Module API’s for
LINUX and Windows,

but not for the
essential facilitator

Module API’s and
communication

software

Support

User mailing list,
architecture developer
(MITRE Corp.), project

partner

User mailing list,
architecture developer
(SRI), project partner

Best possible, DFKI
developer

Tools

No GUI, no start-up
tool, for LINUX :

debugging,
monitoring, data

logging

Dynamic GUI,
monitor, and

debugging tools for
LINUX and Windows

slowing down the
system, start-up
uncomfortable

Static GUI, start-up
tool, debugging,
monitoring and

logging (partially
LINUX only)

Documentation Tutorial, module API’s
for LINUX only

Module API’s, system
handling and tools

Module API’s, system
handling and tools (to
be translated partially

in English)

Effort
Difficult because of
missing points for

Windows

Feasible if
performance problem

is solved
Feasible

The table above shows that for each architecture at least one of the essential features is
incomplete. It seems that the PA could be the best choice for COMIC because the only really
missing point is the completeness of the English documentation while the other two
architectures would also need technical extensions with respect to the strong completeness
criteria above.

Another difference between the architectures not covered by the table above is the fact that
OAA and the Galaxy Communicator are being centrally managed and maintained as open
source distributions by MITRE Corp. and SRI, respectively. Thereby the architectures became
“stand-alone” architectures that can and have been used in various systems independent of the

D1.1
September 2002

For Public Use 19/23

modular architecture of the respective systems. On the other hand, PA has not yet reached this
open source state. The communication software underlying PA also runs independent of the
systems PA is used for. For VerbMobil and SmartKom highly complex individual GUIs had been
developed that were individually designed and adapted to the project specific characteristics
and needs. While the methods and functionalities that are covered by the GUI in PA are
universally usable, they have only been graphically combined with project specific GUI layouts
by now. On the other hand, the only task to develop and implement a new project specific GUI
is the adaptation of the functional architecture to an appropriate graphical visualisation which is
more or less just a design task. While OAA’s monitor agent contains a simple hub and spoke
layout for graphical visualization of the participated agents within arbitrary agent communities,
PA allows to design and implement a project specific GUI layout that especially focuses on and
emphasizes project specific features within its layout without loosing any of the mentioned
general GUI capabilities.

D1.1
September 2002

Public Use 20/23

D1.1
September 2002

For Public Use 21/23

3 Conclusions & Recommendations

Conclusions:

This document shows that for large and distributed systems the choice of the most appropriate
system architecture is a very crucial step to be done in the very beginning. Fully operational
architectures that offer high flexibility with respect to communication, coordination, integration,
testing and debugging of a large distributed system as well as lowest possible effort for module
programmers are to be preferred. Therefore only three architectures were considered in this
document.

As shown in the previous section, all three architectures are reasonable candidates for COMIC’s
system architecture. They all offer easy-to-use module APIs for different programming
languages that make the module programming task much easier. There are different kinds of
helpful tools for programming modules and debugging systems. For all architectures there are
also wide support opportunities by the owner and experienced users as well. The performance
of all architectures is also acceptable. Differences lie in the availability of the source code and in
the completeness of the distribution for different operating systems.

From COMIC’s point of view the PA seems to be the best choice because the architecture has
been developed by one of the project partners which ensures the best and quickest possible
support within the project. PA would also permit for the fastest possible bug fixing procedure,
especially because WP1 “system architecture and integration” is performed by DFKI too. Finally,
PA offers the development of a project specific GUI with minor effort. So, from the practicability
point of view within COMIC, there is a clear preference on PA.

Recommendations:

Although the comparison above could be improved by more detailed performance
measurements for the PA, experiences in VerbMobil and SmartKom have never shown that
slow processing of input data is due to the delivery of the data within the architecture but the
overall runtime is always an accumulation of the runtimes of the individual modules. Therefore
PA is recommended here.

D1.1
September 2002

Public Use 22/23

D1.1
September 2002

For Public Use 23/23

4 References

[1] Galaxy Communicator Web Page, http://communicator.sourceforge.net/, 2002.

[2] A. Geist, A. Bequelin, J. Dongorra, W. Jiang, R. Manchek, and V. Sunderman, „PVM:
Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel Computing”,
Cambridge, MA: MIT Press, 1994.

[3] A. Klüter, A. Ndiaye, and H. Kirchmann, “VerbMobil From a Software Engineering Point of
View: System Design and Software Integration”, in W. Wahlster (ed.), “VerbMobil:
Foundations of Speech-to-Speech Translation”, ISBN 3-540-067783-6, Springer, 2000.

[4] Labrou, Yannis, and Tim Finin, "A Proposal for a New KQML Specification," Technical
Report CS-97-03, Computer Science and Electrical Engineering Department, University
of Maryland Baltimore County, Baltimore, MD, February, 1997. Also available online at
http://www.cs.umbc.edu/kqml/.

[5] D. L. Martin, A. J. Cheyer, and D. B. Moran, "The Open Agent Architecture: A framework
for building distributed software systems," Applied Artificial Intelligence: An International
Journal. Volume 13, Number 1-2, January-March 1999. pp 91-128.

[6] Microsoft Corporation, "Distributed Component Object Model Protocol -- DCOM/1.0,"
January 1998. Available online at
http://www.microsoft.com/com/wpaper/default.asp#DCOMpapers.

[7] Object Management Group (OMG), "CORBA/IIOP 2.2 Specification," February 1998.
Available online at http://www.omg.org/corba/corbiiop.html.

[8] Sun Microsystems Inc., "Jini(TM) Technology Architectural Overview," Available online at
http://www.sun.com/jini/whitepapers/architecture.html.

