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INTRODUCTION
"How 1s humap vision possible?”

Although the question has been addressed by philosophers and
scientists for more than two thousand years, we cannot answer it with
any degree of confidence. While the vast body of research work
carried out by psychologists &and physiologists has provided an
enormous amount of information about both the human vision system’s
performanc: (by means of psychophysical experiments) and some of its
neurophysiological structures, we still lack adequate explanations of
how it functions. Some attempts have been made to provide
functional explanations in the form of analogies with the
technological devices of the day. An early example is the analogy
between eye and camera; a more recent one would be an extension of
the analogy from the still camera to the TV camera, and so on. In
fact such analogies have been extremely influential: the analogy
between eye and camera has dominated twentieth century psychological
research into vision. Unfortunately, it has also misled it due to a
confusion between structure and function. From a structural point
of view, we can readily map between parts of a camera and parts of
the human eye - both form 2-D images by means of lenses which bring
light to a focus on a surface (film or retina). In the case of the
camera, we all understand the next step - we take the film out of the
camera, develop it, make prints of the frames and look at them. But
these prints are only meaningful when an intelligent agent looks at
them and makes an interpretation. In the case of the eye-camera
analogy, what is the equivalent of processing the film and
interpreting the prints? A much favoured explanation was the notion
of an "inner screen®, situated in the wvisual brain, on to which a
"picture” of a scene was mapped. While this dealt with part of the
problem, the print, it did not address the other part, the
interpretation of the print. If we pursue the analogy, we can see
that the logical conclusion is that there is a second observer inside
the visual brain who looks at the ’picture on the inner screen’.
Presumably, the outcome of his perception is another picture on his
inner screen, which is viewed by a third observer who is inside the
vigsual brain of the second observer who is inside the visual brain of
the first, and so on. In other words, the attempt to explain the
process of vision by means of an analogy between eye and camera leads
to an infinite regress.

While this logical fallacy ought to have disposed of the eye-camera
analogy for once and for all, instead its influence has pervaded 20th
century visual psychology. Since the eye has a two-dimensional light
sensitive surface, psychologists have regarded space perception, i.e.
3-D perception, as paradoxical. This has led to the question "what
additional information and what properties of the two-dimensional
image give rise to three-dimensional experiences?". Until recently,
the experimental psychology of space perception has been dominated by
this problem, the quest for additional pieces of information which,
when added to the flat image at the back of the eye, make 3-D
perception possible. What this information is need not concern us.
It is sufficient to note that the concept of perceiving 3-D space
through the use of supplementary information is a by-product of the
eye-camera analogy. The job of combining the supplementary
information with the two dimensional images received from the eyes to
promote judgments about the relationships of objects in depth is akin



to that of an air-traffic controller. The controller observes a
radar screen that provides a two-dimensional representation of the
alr space under survelllance. He must obtain information about the
third dimension, altitude, from the signal sources such as radio
transmissions from the ajircraft. He has to combine the 2-D
positional information from the radar set with the altitude
information to make judgments about the paths that should be taken by
the aircraft.

Jo interpret, or not to interpret.

It would seem that an adequate theory of vision has to explain the
interpretative processes that give meaning to the information
extracted from the physical world by the eye.

However, not all wvision psychhologists would agree with this
statement., In particular, J.J. Gibson favoured what is often
described as a theory of ‘’direct’ perception. Starting from the
question, How does one obtain constant perceptions in everyday life
on the basls of continually changing sensations?, Gibson argued that
vision was concerned with the recovery of valid properties of the
physical world {called "invariants®) from the ever changing sensory
information, whether due to changes in the intensity of stimulation
or to movement of the observer. Thus, he wrote that the "function
of the brain, when looped with its perceptual organs, is to decode
signals, not to interpret messages, nor to accept images, nor to
organize the sensory input or to process the data, in modern
technology. It 1s to seek and extract information about the
environment from the flowing array of ambient energy." As Gregory
has pointed out, (Gregory, 1981), Gibson's explanation is reminiscent
of one of the earlier theories, advanced prior to the discovery that
light formed images of objects on the retina, which suggested that
objects pgave out ‘husks', or ‘simulacra’. which acted as
intermediates when we see (the same idea can be found in the ’sense-
data’, proposed by the philosophers Broad and Price).

The contrasting position, held by Descartes, Helmoltz, Gregory and
others is that perception is a constructive process, involving
inferential reasoning over sensory information and knowledge of the
world stored in memory. This explanation was motivated by many
observations that perceptions frequently do not correspond to their
physical correlates. Obvious examples include brightness constancy
(the surface of an object appears evenly 1lit, even though the
physical illumination varies across it), size constancy (the
perceived size of an object is not determined by the size of its
retinal image, and shape constancy (similar to size constancy).
Less obvious examples are the many and varied 2-D and 3-D optical
illusions, ambiguous shapes, and so on, made so popular by Gregory,
and used to underpin his argument that the human visual system’'s task
is to evaluate alternative visual hypotheses against the available
sensory information. Some of Gregory's favourite examples are shown
below. The upper illustration includes (a) the Muller-Lyer and (b)
Ponzo illusjons; the lower 3includes (a) Hawk/Goose, (b) Vase/Face
and (c) Wife/Mother-in-Law.
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One of the most dramatic examples of the interpretative capability of
the human visual system is Ames Window. He designed a trapezoidal
window that resembles a rectangular window viewed from an angle.
When viewed from a sufficient distance with one eye only, the
rotating window appears to be oscillating, The direction of
rotation is correctly reported during the 180" rotation for which the
longer side of the window is close to the observer, and incorrectly
reported during the 180° for which the shorter side is closer. When
a rectangular window is rotated with the same viewing conditions, the
direction of rotation is correctly reported throughout the 360

cycle. Why does the motion reverse in the former case, but not in
the latter? Obviously, the shape transformation produced by
rotating the trapezoid differs from the shape transformation produced




when a rectangular window is rotated (or more likely when we walk
past rectangular windows). In theory, the visual system would
explain this difference in two ways, (1) by accepting continuous
rotation and allowing the structure to deform, or (2) by accepting a
rigid structure and varying the rotation. In practice, as we shall
see in due course, the visual system prefers interpretations which
favour rigidity, so the latter interpretation is preferred.

If we go one step further, and place a solid rod through the mullions
of the window, a further paradox is created. While the window
oscillates, the rod turns in one direction only. This is
impossible. In general, the mind refuses to accept that the rod can
pass through the solid mullions of the window. Instead, most people
perceive the rod twisting and bending around the window structure,
even though they are well aware that it is a solid object. In this
case the brain is prepared to abandon the rigidity assumption as
applied to the rod in favour of maintaining the rigidity of the
larger, more complex object, the window.

These two types of theory are at the opposite ends of the dimension

and, in some sense, represent extreme positions. It seems likely
that Gibson adopted his stance through a desire not to fall into the
"inner eye" trap. While it cannot explain many of the phenomena

cited by the proponents of the knowledge-based approach, Gibson's
approach did draw attention to many, previously ignored features of
optical images. Those favouring a knowledge-based approach, on the
other hand, have not been able to explain how knowledge is stored.
how it is invoked, how it is reasoned over, whether the gathering of
information is affected by the internal processing, and a host of
other equally apposite questions.

The role of computational vision.

Workers in the area of computational vision in AI are also trying to
build a theory that explains the phenomenon of human seeing.
However, the type of theory that they favour is called a process
theory. What this means is that the theory should propose effective
procedures for interpreting the visual data captured by the eye, with
the objective of generating some specified perceptual output.

Some functional requirements of such procedures are as follows:

* Geometric modelling. Determine the 3-D configuration of
surfaces and objects in a scene, including the viewer's location

* Photometric modelling. Determine the location and nature of the
illumination sources and the corresponding shadowing and
reflectance effects induced in an image by the scene.

* Scene segmentation. Partition the scene into coherent sub-units
that can be independently analysed and identified.

* Naming and 1labelling. IJdentify objects visible in a scene
either as members of known object classes, or as known
individuals. Determine physical attributes of recognised

objects.




* Relational descriptions and reasoning. Determine the
relationships between objects in a scene. Determine how they
can be re-arranged to achieve some specific purpose.

* Semantic interpretation. Determine the function,

intent, etc. of objects in a scene.

purpose,

The digital computer is the tool favoured by AI research workers for
building a process based theory. To identify its role, we can make
an analogy betwezn building and testing symbolic models on a
computer, and building and testing physical models using a mechanical
construction kit, such as Meccano., Building a mechanical mechanism
is done by selecting appropriate mechanical parts from the kit, e.g.
using an electric motor to drive a mechanical model of a car.
Building a symbolic mechanism is also done by selecting appropriate
symbolic parts, i.e. commands, from the list of symbolic commands
provided by the programming language, putting them together to form a
program, the structure, and testing that program by running it in the
computer. In both cases, the mechanism, physical or symbolic, will
generate an action sequence, or behaviour, which 1is open to
inspection and interpretation by the designer. The extent to which
the mechanism's behaviour satisfies the programmer’s expectations in
some sense tests the adequacy of the underlying design of the
mechanism. If this is close, modest changes to the mechanism may be
sufficient to achieve the expected performance; but if it is wide, a
reconceptualization might be required. This, then, is the
methodology of computational vision.,

0f course, for a digital computer to deal with the visual world in
this way, the signals acquired by its imaging device must be
converted into symbols. The signals-to-symbols paradigm is
jillustrated below (from Fischler & Firschein, 1987) where a series of
inductive steps employing progressively more abstract representations
transform raw sensory information into a meaningful and explicit
description. These steps are partitioned into three broad
categories, depending on the kind of modelling required for analysis
purposes: low-level analysis is based on Jlocal image properties,
intermediate-level analysis uses global properties, and high-level
analysis employs semantic models and relationships.

Low-level Intermediate High-level
analysis level analysis analysis
% . D \
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Signal +- Symbols
The Signals-to-Symbols Paradigm for Computational Vision,
Raw sensed data are transformed into a description of the scene by a series of inductive steps.




Objective of the course.

The purpose of this course is- to use the computational approach to
explain how we come to see a three-dimensional world containing
objects that have stable sizes and shapes. To assist us, we will
make a simple comparison between man and machine, as shown below.
The ultimate goal of computational vision is to achieve a symbolic
interpretation similar to that of man for the same input pattern.
The right hand side deals with the artificial vision, whereas the
left hand side deals with biological vision (in man). Since
relatively little is known about artificial systems, the kinds of
processes employed by the latter system will be used to throw light
upon possible biological analogues.
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The material 1s broken intoc three sections, corresponding to the
three levels of analysis described above. The first level will be
concerned with computational procedures that illuminate the
neurophysiology of vision; the second level will examine some facets
of intermediate level analysis from a computational standpoint, and
the third section will deal with computational aspects of wvisual
recognition.
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LIGHT AS INFORMATION

We will begin by considering how lignt transmits information about the
structure of the environment to the eye of the perceiver. To help us, we
will distinguish between radiant light, that {3 1light emitted from an
energy source such as a sun or star, and ambient light, that is, light
reflected by the surfaces in the environment. Ambient light is much more
complex than radiant light, so we will start by briefly considering radiant
light. Radiation is shown below:

The light rays diverge from the source, the lamp, and if they were 1in an
enpty space they would continue indefinitely. Only a very few rays are
shown, but there are infinitely many rays present. Unless reflected, all
an osserver would see {s a luminous spot at the source.
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* Radiant light contains information in the form of a distribution of
wavelengths. But while coptical instruments can determine whether a partic-
ular mix of frequencies has been produced by an incandescent source, or a
fluorescent source, the human eye cannot interpret the distribution of
wavelengths, nor can it measure their absclute intensities. This is not
the kind of {nformation that an eye can pick up, Instead, the eye is
designed to make sense of ambient (reflected) 1light ' and differences in
light intensities. Reflection is shown below:

If the surfaces are not smooth, tne rays of light are scattered in
varjous directions, depencing on the micro structure of the surface at each
position. For example, the rays reflected by a matte surface, i.e, a rough
surface, zre more scattered than the rays reflected by a peolisned surface,
i.e. a smooth surface. Indeed, as a surface gains in gloss, shine or lus-
tre so the amount of scattering is reduced. The limiting case is a mirror,
when scattering is eliminated.
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When there are a number of surfaces facing each other, the lignt
bounces from surface to surface endlessly. At this stage the environment
is sald to be illuminated. An infinitely dense network of 1light rays |{is
created - in other words there are intersecting rays at every point in the
space enclosed by the surfaces. The converging and diverging rays cannot
be represented in a diagram, but must be Imagined.

Now we will consider a point in a room with facing surfaces, as shown
below. The radiant light is omitted:
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Instead, the lines in the diagram correspond to the edges and corners of
surfaces facing In different directions. They are the boundaries between
bundles of light rays. The reason for these boundaries is that the sur-
faces of the room reflect different amounts and different colours of light
to a convergence polint,

For example, two adjacent surfaces which have the same microstructure
but which are set at different angles of inclination to the light source
will project different intensities. Two adjacent surfaces which have dif-
ferent microstructures or different pigmentation will project different
intensities, even if they are set at the same angle of Inclination. In
both cases there will be a variation in luminance where the two surfaces
meet, This variation is seen as an edge,

So, in summary, ambient light i{s not a random collection of light
intensities, but {s an organized collection of intensities, the organiza-
tion being imposed by

(1) the physical inclinations of the surfaces

{(2) the reflectances of the surfaces, and

{3) the spectral chzracteristics of the surfaces.

Now we introduce an observer, as shown below:
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His eye admits a sample of the total ambient light. Now, for every edge in
this sample there is a corresponding edge on the retina of the eye. 1In the
case of a stationary observer, these edges are represented by variations in
the luminance at different positi?ns across the retina.

If information about structural dispositions i{s conveyed by luminance
patterns, seeing that structure should boil down to detecting the presence
of these luminance variations {n the sample of ambient light at the retina.
For example, an abrupt change in luminance might be interpreted as signal-
ling the edge between the surface of an object and its background. A gra-
dual change in luminance, on the other hand, might represent a convex or
concave edge between two surfaces of a given object.

But unfortunately in the real world the situation is not so simple.
Luminance variations do not necessarily represent edges at all. They can
also represent highlights, shadows, illuminations, gradients across sur-
faces, dirty surfaces, scratcnhes, and so on. In other worcs, the informa=-
tion in the luminance distribution is highly ambiguous. Yet we rarely con-
fuse a shadow edge with a real edge, so the human visual system is able to
cope with this ambiguity. This is a crucial problem which We have to solve
in cue course. ‘
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ARTIFICIAL EYE

Quantization

It is time we turned our attention to artificial eyes. Ve
will consider how an artificial system might build a symbolic
representation of an object in a scene, where the symbols denote
candidate edge prints. After that, we will try to use what we have
learned from building the artificial system to help us understand
what kinds of local computations might be made at the level of the
human eye.

For the time being we will be considering a single block on a
table top. The light reflected from the block is focused on to the
sensitive surface of a phototransducer, a device for converting light
into an electrical signal, where it forms local patches of light and
dark. These varjations in luminance carry the information about the
features of the block in the scene. Recollect that any edge or
contour is specified by this wvariation. For example, an abrupt
change in luminance might indicate a boundary edge between object and
background, whereas a gradual change in luminance might indicate a
convex or concave edge between two of its surfaces.

The first step is to convert scene luminance information into
an array of numbers in the computer's memory. This is done by
moving a small window over the image and measuring the average
luminance level within the window by means of a 1light sensitive
device called a phototransducer. The process of moving the window
over the image is called gcanning. A simple image acquisition
system, using a mechanical scanning device, is shown below:
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The phototransducer is mounted on a moving carriage which
travels across the image from left-to-right, and back again. Each
time it changes direction, it also moves down the image by a small

amount . The output from the phototransducer is a continuous
electrical voltage signal whose size varies according to the
luminance level at its input. This continuous signal has to be

converted into an array of numbers by gampling the signal at regular
time intervals (corresponding to regular spatial intervals over the
image) and then approximating the measured voltage values at the
sampling point: by the nearest numerical values in a pre-defined
range of integers. The sampling points, the 2-D positions in the
image at which the samples are taken, are known as picture elements,
commonly abbreviated as pixels. The process of converting the
signal into numbers is often referred to as guantization.

The output from quantization is an array of numbers, usually

referred to as the grey-level description of the image.

The number of image points, or pixels, making up a computer’s
grey level description, varies according to the capabilities of the
computer (for example, the size of it memory) or the needs of the
user. For example, the use of a dense array of pixels will require
a large memory store and produce a grey level description that picks

up very fine detail. For example, an ordinary domestic TV set

produces an image in pixel form with an array size of 625 x 625
pixels. The individual pixels are so tiny that they cannot be
readily distinguished (unless a large TV screen is viewed close to).
On the other hand, it may be necessary to use large pixels, each of
which represents a large local area of the input image, in which case
a full-tone printout produced to the same scale takes on a block-like
appearance.

The word precision is wused to refer to a grey-level
description’s ability to represent fine detail in an image. But
even if the processing is precise enough to capture fine detail, some
of the grey-level information might be lost or altered in the process
of placing the digitised image in the computer. This 1is the
accuracy dimension of the problem. Such losses may be due to
imperfections in the performance of the transducer, e.g., non-linear
scan; to errors introduced by the process of converting the image
from analog to digital form, or simply to electrical noise in the
analog circuitry. This noise is intrinsic noise, i.e., it is due to
the operation of the mechanism, it is not due to external factors.
The effects of intrinsic noise can never by fully eliminated.
Notice that the most common form of error introduced by intrinsic
noise consists of small isolated regions of the picture that are much
brighter or darker than they should be. To eliminate many of these
problems, a smoothing operation can be used. Basically, smoothing
operations rest on the assumption that the actual scene consists of
areas that are very much larger than the areas represented by a
single point. Accordingly, picture points that differ markedly from
their immediate neighbours are errors that ought to be removed.
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The following procedure describes a simple smoothing operator:

If any point in the picture is brighter than all of its
eight immediate neighbours, its luminance wvalue is
reduced to make it the same as the brightest of its
neighbours; if any point in the picture is dimmer than
any of its eight immediate neighbours, its luminance
value is increased to make it the same as the dimmest of
its neighbours.

Notice that this operator is conservative in the sense that it
removes some of the noise without reducing the amount of information
in the representation. In particular, it eliminates isolated noise
points, but has no effect upon noise that occupies two or more
adjacent pixels,

A simpler, more liberal smoothing operator that would reduce
the significance of larger regions of noise is:

Replace the luminance wvalue of each point by the average
of the 1luminance wvalues of its eight immediate
neighbours.

Unfortunately, the application of this operation to every point
in a picture will have the effect that every edge will be blurred.
Indeed, several successive applications would wash out the entire
picture. Clearly, therefore, smoothing operators are useful, but
must be carefully chosen to try to eliminate whatever kind of
intrinsic noise is present in a digitised image, without =also
removing significant features.
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Selecting edge points

We turn now to consider the next step: identifying pixels which are
hinting at the presence of edges in the grey-level description 1i.e.
candidate edge points.

Suppose we have two adjacent regions, one brignt and one cim:

Bright ~ Dim.

If we make 3 one-dimensional plot of the luminance values fron left-to-
right, e get the fcllowirg grapn (often called a step function):
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We are interested in detecting the discontinuity betveen the light and the
dark regions, The effect of the differences in absoclute level of luminance
can be eliminated oy taking the first derivative of the step function.

Suppose the maximum luminarce value of the function is 10 and the rininum
value is 1. The one dimensional graph beccnes:
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Now, suppose Wwe sanmple the function in one dimencsion, as follows:
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Tre first cerivative is calculated by taking differences,. Starting with
sanples 1 and 2, the value of the function is 10 in both cases, s0 the
gifference {s 0, It is also O for samples 2 and 3. But when we get to
sanples 3 and 84, tne difference is 9, Moving to samples 4 and 5, we get a
difference of 0, and again when we take 5 anc 5.

vie can plov the first derivative in one-~dimension as follows:
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In an image, the values are changing in two-dimensions, nrot one-
dimension, s0 wWe want to take the differences in orthogonal directions, A
suitable operatcr for two-dimensional differencing is the following
(usually referred to as the Robert's cross operator):
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Gx = fa-d{ + fo-c|
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Suppose we have the following fragment from a grey-level description:

Column A B C p E F G
Row 1 1 2 4 5 5 5
2 1 1 1 5 6 5 5

3 1 1 1 4 6 S5 5

y 1 1 1 5 5 6 5

Gx = (1-1) + (1-1)
=0

If, however, we take cells C1, C2, D1, D2, and apply the operator, we zet

Gx = (2-5) + (1-4)
= 6

If we look at the data, we c¢an see that there are two relatively
homogeneous areas: one is to the left of column D, viz. columns A-C, and
the other is to the right of column D, viz, D-G. The discontinuity llies
between C and D. The presence of this discontinuity is suggested by the
high value returned by the cross operator when applied to the cells C1, C2,
D1 and D2. Similar high values would be returned for cells C2, C3, D2, D3;
c3, C4, L3, D4, and so on.

In practice, djagonal differences are calculated between adjacent
pixels across the whole image. The resulting values are stored in a new
array (sometimes called the iffe ia escr ). This new
representation contains the candidate edge points. Obviously, low values
correspond to areas of uniform luminance (e.g. backgrqund. surfaces of
objects), whereas high values are most likely to be associated with changes
in the luminance caused by edges in the original scene.
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THE HUMAN EYE

Structure

In a typical environment, objects are diffusedly {lluminated, that s,
light rays are reflected off objects in all directions. How does the eye
capture them? One answer {s that the human eye captures light rays in
similar fashicn to a camera. Consider the following diagram:
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Light enters the eye through the cornea, a tough protective membrane which
acts like a convex 1lens, bending the light rays togetner, Behind the
cornea is the iris, a coloured annular muscle which opens and ¢loses like a
camera diaphragm. The small round aperture in the middle of the iris is
the pupil. To record a scene in full detail, a camera film must receive a
particular dose of light energy. This is done by setting an exposure time,
and varying the size of the aperture. The choice of exposure time and
aperture size is a trade-off. A long exposure time, wusing a small
aperture, will produce a better defined picture since the amount of
scattered 1light is reduced by the small aperture - but the problem is
keeping the camera steady to prevent blurring due to camera mcvement.
Shortening the time minimises problems of camera movement, but the aperture
must be opened up so the quality drops of{ due to increased 1light scatter
within the camera. In similar fashion, a retinal cell must recelve a
minimum amount of energy before it will fire. So here, teco, there i3 a
trade off between intensity and time, but there 1is one substantial
difference. vihereas tne sensitivity of a film is fixed, the sensitivity of

the retina varies {n a manner that relates to the prevaliling lighting

conditions. This process is known as adaptation, and it is this process
which enables the eye to detect variations in luminance over a wide range
of light levels. In the case of a camera, one has to use films of
differing sensitivity for photographs taken at widely different levels,
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Going back to the pupll, we can see that its role i{s confined to making
minor variations in the sharpness of the image: unlike the camera
diaphragn, it 1s not an essential image forming component.

Light passes through the pupil to the lens. To focus light rays in a
camera, the lens-to-film distance {s altered slightly. In the eye, the
lens focusses light by changing its thickness, and hence 1ts refractive
power, i.e. ability to bend the rays. This 1s achieved by the action of a
muscle/ligament arrangement which alters the curvature of the front face of
tne lens.

But there ia yet another difference between the camera lens and the
lens in the eye. Camera lenses are multi-layer lenses, carefully shaped to
overcome various problems 1like chromatic and  spherical aberration,
Chromatic aberration occurs if a 1lens 1s unable to bring light rays of
differing frequencies to a focus at the same depth plane. Spherical
aberration refers to shape distortions, caused by slight variation in the
curvature of the lens, Unlike the camera lens, the lens in the eye suffers
from both defects, thus the image quality at the retina is less than that
at the film plane in a camera.

Since the eye is a 1living thing, it has to De suppliec witn
nourishment. The spaces htetween cornea and lens, and lens and retina, are
filled with a clear slutineous mass which provides the nourishment,
besides nelping the eye to keep its snape. The energy in tnese fluids is
replenished by a network of blood vessels inside the eye, between the lens
and the retina, With the exception of a small area in the middle of the
eye which is not obstructed by blood vessels, light reaches the eye by
passing through these blood vessels. That we do not see shadow images from
them is due to the fact that light always reaches the retina from precisely
the same direction, down the optical path, so that receptors in the shadow
of obstructlions can selectively adapt their sensitivity. This adaptation
prevents the flixed obstructions being seen provided the shadow images
remain stationary on the retina. In fact, the retinal blood vessel
structures can be seen by dark-adapting the eye, by placing a small torch
in close contact with the shut 1id of the eye, near its sice, and by moving
the torch with regular oscillation., This projects a shadow lmage of the
structure on to non-adapted receptors. So here is another way that the eye
differs from a camera: there are no obstructions between the camera lens
and the film during the picture taking process,

But blood vessels are not the only structures interposed between lens
and the photo-receptive Jlayer of the retina: the retina is actually
"inside out" so light also has to pass through retinal structure before
stimulating these cells. These are shown in the drawing, opposite.

r'l
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Let*'s look at this structure {in a little more detail. First of all, the
retina of the eye has 130 million receptor cells. These extend
approximately 100°¢rom the visual axis. These cells are distributed much
more thickly at the centre of the retina than at the edge, falling from a
censity of 160,000 per square millimetre at the centre tc 1,000 per square
millimetre at the retira's edge. Again, the eye differs from a camera
wnere the film is equally sensitive all over: this variaticn in sensitivity
across the retina accounts for our ability to perceive sharp detail in
front of our eyes but only crude shapes at the side.

The structure is even more complex since there are two kinds of
receptor cells, namely cones and rods. Althougn there are only about 6
million cones, compared with approximately 125 million rods, our normal
day-time colour vision 1is thought to be due to the action of the cones
which are most densely packed in a 1~ sized central region of the retina,
called the fovea centralis which is rod free.

The recepter cells convert light energy into electrical signals in
nerve fibres. Wke will look at the properties of cells in due course. For
the moment, notice that the rods and cones connect with 2 set of retinal
cells called bipolar cells, whnich in turn connect with retinal ganglion
cells whose fibres form the optic nerve which links the eye to the visua’
area of the brain., llotice also that the nerve fibres from the peripheral
parts of the retina sxirt around the foveal area, minimising the amount of
oustructicn. nevertneless, oujects inside the eye in tne fovesl are:z cun
be revealed by using a piece of card with a pinhole in the centre, It is
placed before the eye, looking at a bright field, and oscillatec. By
blocking off most of the lens, only rays from one direction can reach the
retina. 8y moving the card, the direction of these rays is altered, so
shifting the snadows of the objects across the receptors, The internal
structures revealed are different from those seen with a noving light since
the fovea is free of blood vessels,

Because the retina is inside out, the optic nerve has to plerce the
retina to get out of the eye. The place where it leaves is called the
"blind spot". If an image is projected on to that spot, it will not te
perceived, Yet we don't see our blind spots — we don't experience a gap in
our view of the world around us!

So we can see that the eye is a very blunt instrument, compared to a
good quality camera. Yet the remarkable thing Is thzat our view of the
world is not blurred nor incomplete. Indeed, it is remarkably acute. For
example, we c¢an discriminate at least 100,000 different hues: we can see
fine details, subtending visual angles as small as 2-5 seconds of arc (tho!
the distance betveen the cones is about 25 seconds of arc where the packing
density is highest).

To escape from this paraacx, we must stcp thiixing of the eye as an
image forming optical device, and begin thinking of it as a device for
coenverting patterns of light and cdark into a coce, a set of symbels, that
can be manipulated oy internal processing mechanisns.
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Function

When we discussed the structure of the eye, we noted the existence of
several types of cells, namely receptor cells, bipolar cells and ganglion
cells.

Apart from cone cells in the fovea wnich are linked individually to the
visual brain, each ganglion cell {s stimulated by a number of bipolar
cells, and each bipolar cell is stimulated by a number of receptor cells,
The extent of the convergence from receptor to ganglion is indicated by
noting that one million fibres, in the nerve which connects the eye to the
brain, carry information obtained by the action of some 130 million
receptor cells. To use a .computing metaphor, we might think of this
retinal structure as functioning as a "front-end processor", carrying out
local computations on benalf of the main processor, i.e., the visual brain.
Usually, a front-end processor is used to reduce the computational load on
the main processor; in this case, it is probably provided to reduce the
number of separate fibres In the optic nerve since a nerve with 150 million
fivres would make it difficult to move the eye, due to cable drag. What we
are interested in is discovering what kinds of local computations this
front-enc prccessor aiznt te carrying cut -=- zlways bearing in mind the
operations carried out by the artificial system discussed previously. In
other words, can we detect neutral mechanisms for computing grey-level
descriptions, 1identifying candidate edge points, and so on? This is our
task.

We will begin by examining the properties of the retinal cells since
they are tne primitive components of the computational mechanismsa. We will
start with the receptor cells, rods and cones. Neurophysiological evidence
from studies of the retina of tne mud puppy, a fish that lives in the
depths of the silt laden rivers, is nelpful. Because it has large retinal
cells, the technique of single cell micro-electrode recording can be used
to investigate the cells' properties. with this technique, a fine wire
probe 1s placed beside a cell body. A light stimulus of appropriate type
is projected on to the eye, the output from the cell is picked up by the
micro-electrode, amplified and recorded for interpretation,

What the experiments have shown is that the mwmud puppy's receptors
respond to the luminance of the input pattern in just the way required to
create a grev-level description, i.e., the response of the receptor cells
is proportional to the light intensity prevailing. So the voltage signal
producec by the cell is equivalent to the voltage signal produced by an
artificial sensor, at some (x,y) pcsition, before conversion of that
voltag2 into 3 numerical value and placing that value 1in the grey-level
description.

vde saw that tne values in the gzZrey-level cescription are normally
organized as a rectangular array since most artificial sensors scan/ sample
the image in this way. This is equivalent to a set of cells organized as a
2-dimensional linear array, each producing its own voltage signal for
subsecuent conversicn into a discrete value (as in the case of the
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photodiode array sensor referred to previously). In the case of the human
eye, the essential difference is that the receptor cells are organized in
diagonal arrays, similar to the arrangement of the cells in a bee's
honeycomb., This suggests that we must look for an edge element operator
with a somewhat different structure from the simple 2 x 2 operator used in
the artificial system. Note too that whereas the artificial system built
up its grey-level description in a serial fashion by scanning the image
from left-to-right and from top-to-bottom, the eye uses a different
strategy. Biological visual systems have developed a parallel processing
capability. That is, they have chosen to replicate components so that all
parts of an input image, and all types of features, can be dealt with at
the same time. So we can expect to find multiple copies of the edge
element operator in the retinal structure.

Now we must consider one further property of the retinal cells.
Unlike the cells in the artificial system which respond uniformly to 1light
stimulation, i.e., the voltage signal increases as the luminance increases,
individual retinal cells in the levels above the receptors 1i.e.
bipolars/ganglia, do not respond in the same way to a given light
intensity. Some increase their activity when stimulated with light; others
decrease their activity. Cells which increase their activity are called
excitatory cells; those which reduce their activity are known as
inhibitory cells. So we are looking for an edge element operator which is
constructed out of some combination of excitatory and inhibitory cells.

Again we get a clue by considering the neurophysiological evidence.
Recordings from ganglion cells in the eye have shown that each ganglion
cell is stimulated by a group of receptor cells. Known as the ganglion
cell's receptive field, it is roughly circular in form but it has a
central area which differs in sensitivity from the surrounding annulus.
These receptive fields have been classified into different types,
according to their response to light. With a so-called "on-off" cell,
when a spot of light falls in the central area, a response 1is triggered
{called an 'on' response), but if the light overlaps the annulus, the
ganglion cell's response drops off (called an ‘off' response). This
effect 1is called lateral inhibition. The opposite kind of receptive field
is also common, in which the surrounding part of the receptive field
signals the onset of light ('on' signal), with inhibition of the on-signal
when the central area is stimulated. It should be noted that the
relatively homogeneous Iluminance  distributions transmitted from the
surface of large objects will not stimulate either kind of receptive field
since the light will fall on both parts, causing centre and surround
activity to cancel each other. So, at the ganglion level there is
evidence of the existence of a mechanism for detecting edge elements,
located somewhere between the receptor cells and the ganglion-cells.

In the 1light of what we have learned about retinal cells, let's
speculate about the edge element detecting mechanism. Now I am going to
introduce you to a new term, convolution. Essentially convolution refers
to the process of making an estimate of the goodness-of-fit between a
template, which characterizes some kind of feature such as an intensity
gradient, and the grey-level representation. So applying the 2 x 2
operator to the grey scale representation in the artificial system was a
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convolution process. Ncw we are carrying out an analogous process, using a
different form of operator. (The word 'filter' is often used instead of
the word ‘'operator'). '

Below, a mosalc of receptor cells is coupled tc a
convolution array of cells., Each convolution cell extracts from the
receptor mosaic a certain limited type of {nformation according to the
design of the excitatory and inhibitory connections which feed into it. In
any given convolution array, all the cells respond to the same kind of
information, but they 1look at different parts of the input image. As we
see, each convolution cell receives inputs from an approximately c¢ircular
cluster of receptors, The clusters for just four convolution cells are
shown.

8 convolution network for on-centre/off -surround cells

llustration of receplor overlap. this receptor serving both convolution
cells wnose connechons are shown in full: Of course, much more

overiap would be ewident if all conrections were inciuded for whole
array

Aeceptor mosaic

Convolution array

All these celis are coupied of centre-surround cefls

to the receptor mosaic. but for simplicity the
connections for four celis only are shown.

{a} On-centre/ ofi-surround

L)
oW
ﬁa"’ anocente

on-swiround unit

[‘eft] Wiring diagram for an off-centre/on-surround unit

[right] Weighting diagrams for centre-surround units

(from Frisbv, 1979)
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liote that the central receptor in each ¢luster feeds a convolution cell in
the convelution array whose position exactly matches tnzt of the central
receptor. The two sheets of cells are thus neatly lined up. “In fact, each
receptor cell feeds many different convolution cells, but for simpliclity
only one overlap is shown,

) As shown, the central cell in each cluster feeds exclitation to {ts
convolution cell, whereas those in the surround feed inhibition, marked by
+3 and -s respectively, Because the centre-surround connections are
antagonistic in this way, l.e. rcancel ocut thelr respective activities, the
convolution cells are usually called on—-centre/of f-surround units. It is
possible for cells to be wired conversely, with the centre feeding
inhibition and the surround excitation - these are called off-centre /on-
surroungd units.

The basic objective {s to use convolution machinery to <cetect pixels
associated with changes in intensity, i.e., candldate edge elements. This
means that the excitatory and inhibitory influences on a cell should add up
to zero if the receptor cluster is illuminated uniformly. This can be done
by giving each receptor in the cluster a certain 'weighting In 1its
influence, 50 that all the receptors are active to the same extent because
they are stimulated by an area of even illumination. Then the net influence
of all receptors is zero., Suitable weightincs for achieving this with our
simple centre/surrounc clusters are +1 cr -1 or tne centre cells znd  +1/8
or -1/6 for the surround cells, depending on the type of unit in question.
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Below, we see an in

- put image containing a stee lumina
i 5 nlnarn
profile resting on a receptcr mesaic, The dark region sets Sp only wegz
rzﬁzﬁtoraaiFirtty EB units of activity) whereas the light region Iinduces
s g activity (50 wunits), the whole pa oer i
il e 5 pattern of numbers constituting a

High

{a) Luminance profile of input image

oded as aclivities generated in 8 receptor

(b) Grey level description, enc
ry in an input image {shown shaded)

mosaic by a light-dark bounda

(c) Selected receptor cluslers

(0} Weightings for on-cenire/ofl-surround units

{e) Efiective inputs

({fiConvolution array ol
on-centie/oti-surround units

{g) Activity profile across centre of convolulion array

Posilive
Zero

Negalive

(from Frisby, 1979}
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Hov the convolution array locks for pixels at or near the change 1n
luminance, with each convolution cell inspecting one particular region of
the receptor mosaic ancd counting up the excitatory or inhibitory influences
coming from this region. Each receptor's activity is multiplied by the
appropriate weighting for an on-centre/off surround unit, the results of
the multiplication being the effective inputs to the convolution cells,
The values in the convolution cells represent the differences between the
value of the centre cell and the summed differences of the. surrounding
cells, and range from 0 to + or = 18 in this example.

[}
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Finally, a weak change in luminance, convolved with off-centre/on-surround
units is shown below. The procedure is exactly similar to the one which we

looked at in detail.

(a} Lummance prolile of input image

A5 L) L
{d) Weighlings for olf-centre/on-surround units r@gﬁ fg'g@ %g@ r@@@

(e) Effective inputs

(fy Convolution atray of
oft-centre/on-surround uruls

Positiva

Zero

Negative

(from Frisby, 1979)
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Notice that the orientation of the 1luminance changes {n the two
examples are different. In fact, orientation is unimportant for centre-
surround units - they are sensitive to changes in luminance irrespective of
the orientation. Hotice too that it doesn't matter whether of f-centre or

on-centre units perform the convolution, It just means that the boundary
change 1is represented by a negative-tc-positive change going from light-
to-aark when an off-centre cell {s wused, {nstead of the positive-to-
negative change produced by the on-centre unit. The reason for both types
is clear, given our knowledge of nerve cells, i.e., a cell can be active or
inactive, but it cannot be "negatively active",-

Notice that the weak luminance change has produced a weak signal in
the convolution array. It is more 1likely that such a small change
represents a difference in illumination rather than a difference in
reflection, and so it ought to be disregarded. These smzll values are
filtered out by comparing them against a threshold value,

Turning once again to the neurcophysiology, It seems 1likely that the
bipolar cells are responsible for making the centre-surround edge element
measurenents., Below, we See a highly schematic and simplified
wiring diagram of an on-centre &tipolar. It receives excitation from a
central receptor via a synapse. Other receptors swrcunding this central
receptor feed inhibition to the bipolar, but not directly. Instead, they
feed intc horizontal cells which then proceed to inhibit the bipelar. The
Forizontal cells looxk like the iceal mecnanism {or provicing tn2 reguirea
weighting of surround recepter cells.

Notice that instead of being =timulated by a =ingle receptor, a
bipolar is more wusually stimulated by several receptors, This makes the
bipoiar more sensitive, albeit at the price of loss of accuracy because {t
would nct be able to respond to a spot of light being moved around its
central field: it would always judge the spot to be in the same place,
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SEEING LIGHTNESS AND BRIGHTNESS

In the artificial seeing system we were dealing with a situation where
the {lilumination was distributed relatively evenly across the surfaces of
the object in the scene, But that was a simplification: more usually, the
surfaces of objects are not illuminated evenly. More often than not, the
light rays from the source will strike each surface of each object at some
angle from the normal, producing a different illumination gradient in each
case. Yet, on the whole, we perceive each surface as uniformly (i.e.
evenly) 1it. Tnle is a paradox: if the amount of light falling on a
surface decreases with 1ts distance from the sowrc¢e, the surface should
appear qarker with increasing distance. Can we discover a mechanism in the
visual system that delivers a uniform output when supplied with a non-
uniform input? This is our next task.

Let's start by making the problem more concrete, Imagine that you are
standing i{n a darkened room, looking down at a desk top whose surface is
illuminated by a lamp which is sitting at one side. A large black-edged
blotter, holcding a sheet of blotting paper, is lying on the centre of the
desk top, as shown below:

While blot:ing paper set into a
black-bordered wniling-pad

(from Frisby, 197%)
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You will have no difficulty seeing that the edges of the blotter are black
and that the paper 1s white, Yet, because tne lamp is positionea at the
sice cf tne blotter, tne black edge lying directly uncer it reflects more
light to the eye than the far edge of the paper which still appears white;
tnis situation 1is represented schematically in terms of the 1likely
luninance profile across the desk top, as shown below:

Highq  Tavie top — While paper

Table top

Luminance \
Low < e
Left-hand black
edge of blotter Region of while paper
under table famp which has a3 ower
luminance than thal of
leit-hand black edge
of bictter ithe laner
teve: shown by the
broken iing)
Itiurmirat.on facior Rettectance fac:cr
. Table White
High High - surtace / pacer
itiyrination \ Re'irctance LL|__—|_'—
Low
Low [P
[ — s ]
l Tac:e 10p I , Taoie t10p
lack
Bngntly lit  Dimty it 2:(;95 of
by lamp by lamp plolter
L J L B
Brighiness perception Lightness gerception

(from Frisby, 1979)

This profile suggests that the blackness/whiteness of a surface cdoes NOT
depend simply wupon the amount of light entering the eye from a surface,
otherwise the physically black surface under the lamp would appear WHITER
than the Wwhite surface distant from the lamp.

Given that the reflectance of the blzck berder is relatively constant
ane that its appearance (perceived as lightness) is the same despite the
variaticn in illuminztion, this suggests that the human visual system |is
able to factor out the illumination variation (perceived as brightness).

Again, we can represent the luminance profile, and its breakdown into
an 1illumination factor and a reflectance factor, as shcwn above. '

Thne question is how right the visual system do this? One possible
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answer {s that 'it takes advantage of the fact that variations |{in
illumination are relatively gradual, whereas variations In reflectance are
rather abrupt. So the unwanted illumination component can be eliminated as
follows: '

First, detect edges by the convolution process cdescribed previcusly.
The effect of the filtering will be to eliminate gradual luminance
transitions while preserving sudden ones.

Second, build up the required lightness profile by reconstituting
between edges. Thls amounts to 'jolning up' areas between above-threshold

edges, giving these areas lightness values determined by the size of the
luminance differences forming the edges. This process 1s harder to achieve
but is essentially just the opposite of the original centre-surround
convolution. Because of this, It 1is often called deconvolution,
Deconvolution can be performed by arrays of units which facilitate each
other adjacently. Whereas the centre-surround convolutions had as their
key feature the antagonistic¢ influences of excitation and inhibition, the
finsl step In lightness computation uses excitation only, so that activity
can spread out from the edge,

Consider, for example, a 1luminance profile made up of & gradual
illunination change superimposed upon a sudden reflectance cnange; as shown

below:

~ Lightness computation by biologicaf centre - surmound units

Multiplied !ogether /
Receptor activity pr-(R}l\—‘_‘_\ @)
Grey level description (b)

Hluminaticn profile \\ Reflectance profile

Lummnance protile

Note that the
gracuai slope of
the dllununation
component1s 50
divided into a
series of small steps.

On-centre unils with negatives {c)
0900003 C0O00
Biolugical nn-centre unils Diological off-centre units

0900000000000 00 000K

Threshold = +2 Threshold = +2 (e}

0000030000 OOOOOO@ oXeXs) M

\Lateral facititation / .

Whiter-than-grey

Whueness array €190 300000 )(0)e) ()
Brackness array ooooooa@@c (h)

Blacker-than-grey

X
While| «10 P
Zoto=gray- = = == oo b Lightness profile (i)

Blackl ’;g
*

{from Frisby, 1979)
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The objective of lightness computation is to extract the reflectance
profile from this ambiguous input.

The first step is the grey-level description, in the usual form of levels
of aetivity in the receptor mosaic, as shown in (b). Its numbers show that
the {llumination component appears In the form of a set of small steps, of
60/57, 57/54, and 24/21, On the other hand, the reflectance step 1s much
greater, S4/24, ’

Next, the grey-level description is convolved with on-centre units.
Recollect that an on—centre unit is of the form:

For the fragment of grey-level description given, this procuces the output
shown in (c).

But 'biological' centre-surround units cannot signal negative values,
so any negative cell 1is set to zerc, The convolutions for our fragment
(without regatives) are shown in (d). 'The positive nunbers appear as
pcsitive numbers in the on-centre convolution whereas the rnegative numbers
appear as positive numbers in the off-centre convolutions.

The next step is to apply a threshold. In this example, it is set to
+2, leaving just the 1large edge measurements of +10 as the only ones
appearing in each convolution array, as shown in (f).

Cnce the threshold has been appllied, the final step is to build up the
required lightness profile by extending the activity outwards from the
above-threshold edges. This operation is done in two new sets of arrays,
termed the whiteness and blackness arrays, as shown in (g) and {(h). The
whiteness array shows the results of extending out from the edge recordec
by the on-centre units, and the blackness array does likewise for the off-
centre units., Somehow, activity in the whiteness array is not allowed to
gspread In the wrongz direction, across the white-black border, and vice
versa, This might be achieved by coupling together each white-black pair
of cells dealing with the same part of the grey-level description, so that
whichever cell is more active "wins out®™ and inhibits the other one to zero
level, 30 any facilitation passed across the edge within eitner array
would never exceed the value of the inhibitory opponent cell.

The last task is to explain how the spread of activity necessary for
deconvolution 1is achieved within the whiteness and blackness arrays by the
process of lateral facilitaticn. The network of connecticnus for doing this
i5 shown below, The starting state is shown in (a), and the
finisning state in (b).
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Reconstitution by deconvolution

(a) The starting stale

indicates
lacilitation
ofl+ ¥

(b) The finishing state

CRLETRORONCE
CECNCRONONO)
TR CRONORO)

CHONCHONONO,
QOO0

Deconvolution by lateral facilitation
{a} The starting state Connections for just a few cells are shown but all
cells are in fact connected up identically.
(b) The finishing state All connections have Been removed here for
simplicity.

(from Frisby, 1979)

This could be a plackness or whiteness array. Each cell both influences
and is influenced by its neignbours. In the example, each cell excites its
neighbours by 1/6 of its own activity level. So each cell is helping its
neignbour anc being helped out by them. This process geces on and on until
a steacdy state is achieved by the network.

Coneider{above (aJ)the cell, second from the bottom and second fron the
left. It starts from zero, the value assigned arter thresheolding.

So it offers no excitation to its neighbours, But it receives excitation
from two neighbours which started from +10 because they are "on" an edge.
Since +10 x 1/6 = 1.67, the vital facilitation received by this unit is
3.34, Now it can faciljtate its neighbours, and can in turn be facilitated
by them until the whole network arrives at a steady state, as shown in (b).
The mechanism postulated above is made more plausivle since neuro-
physiological evidence suggests that receptors can feed two bipolars
simultaneously. One bipolar of each pair might be an on-centre unit, the
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other an off-centre one. Certalinly about equal numbers of bipolars of each
type are found in the mud puppy's retinal structure. The existence of this
pair of bipolars fits with the notions of the whiteness and blackness
channels,

If the bipolars are the site of the first step in the 1lightness
computation 4{,e, edge detection, where are the sites of the next two
processes, namely thresholding and deconvolution? It hnas been suggested
that the bipolars are well suited to operate in a threshold manner, which
would mean that they respond conly if the edge with which they are dealing
is sufficiently prominent. How their threshold for responding is adjusted,
as it must be to cope with variations in the overall level of illumination,
is not known, but must be set somehow by horizontal cells or amacrine
cells.

The final question is deconvolution. Marr has suggested that the
deconvolution operation 1is carried out at the bipolar-ganglion cell
Junection, and is initiated by the lateral connections provided by amacrine
cells. The general idea is that there are two sets of ganglion cells, one
set carrying the whiter-than-grey lightness iInformation and another set
dealing with the blacker—-than-grey. Each pathway would be fed by bipolars
of matching type, an¢ the close coupling between them might be performed by
yet other types of amacrine cells. Of course this proposal is speculative.
The conventional view is that ganglion cells are edge detecting units, much
z2s degerited above for the bipolars, i.e., they are units wnich help tc
detect contrast cnanges despite variations in general 1luninance, 50 we
must keep our minds open on this issue.
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FEATURE DETECTORS : ARTIFICIAL SYSTEM

So far, we have considered how an artificial eye might process
visual data to help us understand some of the kinds of local
computations which the human visual system might make early on in the
processing (in effect, at retinal level). Now, we will consider the
next step in this processing hierarchy, namely, describing an object
in an image in terms of its edges. As before, we will consider how
an artificial system might find edges in an image as an aid to
understanding how this might be done in the human visual system.

Recollect that we discussed previously a two-dimensional
differencing operator {(Roberts’ Cross operator) which was applied to
the luminance values in the grey level description to yield a new
numerical description which characterises the contrast in the image
(sometimes referred to as a differential description). Suppose a
program equipped with this operator is being applied to the domain
of regular polyhedral objects (our current assumption as it happens}.
This choice of objects means that the edges in the image will be
strajight edges. These straight edges ought, therefore, to be
represented as rowns or columns of high values in the differential
description. Given perfect input data, including perfect conversion
to digital form, all high values would signal the presence of some
significant discontinuity in the physical world. However, since we
know that the acquisition process is not perfect, some of the points
will have high values due to noise in the system. That is why these
high value points are deemed to be candidate edge points. In other
words, although there is a high degree of probability that these
points denote the edges of objects in the scene represented by the
image data, not all of them will be associated with edges. So how
can the system distinguish actual edge points from noise points?
The answer is that it uses information about Jlocal relatjonships
between points.

Given that the edges of objects will be represented by columns
and rows of high values in the differential description, what
criteria should we apply? In the case of straight edges, there are
three criteria:

(1) Similarity : this refers to the similarity of the individual
edge elements, i.e. the candidate points.

(11) Adjacency : this refers to the proximity of the individual
edge elements. At this level in the analysis, the criterion
of adjacency is usually taken as location in neighbouring -
cells.

(1ii) Collinearity : this refers to the spatial relationships of the
individual edge elements. To be collinear, the points must
lie on or closely approximate to a straight line.

There are various ways of applying these criteria in a program.
The one which we will consider is the use of “templates”. A
template incorporates the criteria given above in its structure. If
a program's task 1s to locate edges in the differential
representation, we would wish to equip it with a set of edge
templates. These would take the form of rectangular arrays of
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cells, m pixels by n pixels, where m is a minimum of 3 pixels and n
is a minimum of 3 pixels.

Suppose the task is to detect the presence of high contrast .

vertical edge segments in the differential description. The system
would use a vertical edge template for this task. This is shown
below.

me=3

Suppose that the differential values lie in the range 0 (mno
change) to 15 (max. change). It would make sense to parameterize
the edge template as follows:

5 10 5
5 110 5
5 |10 5

This template will detect vertical boundary edges between background
and surfaces of the object. This is done as follows. The system
compares the template with the differential representation, searching
for places where it might match, using the following match rule:

Given that the high value column in the 3 x 3 template is
assigned the value 10, and the low value columns the value
of 5, add 1 to the value of the match score for each cell
in the differential representation which corresponds
spatially to a high value cell in the template and has a
luminance value of 10 or more, and add 1 to the value of
the match score for each <cell in the differential
representation which corresponds spatially to a low value
cell in the template apnd has a luminance value of 5 or

less. The entire template is said to match at any
position for which the total value of the match is 6 or
more.

This will return evidence of the existence of vertical edge segments
(3 pixels long) in the differential representation. These can be
stored for subsequent processing by recording the co-ordinate values
of their end points and their orientations (90 in this case). To
locate evidence of horizontal and diagonal boundary edge segments,
the same process is repeated again and again, using templates whose
orientation varies from vertical thrgugh ixoltermed:late inclinations to
the horizontal, i.e. in the range 90" to 0 in steps.

So far, we have discussed detecting boundary (i.e. sharp, high
contrast) edges. Suppose, however, that we also want to detect the
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presence of internal edges (where an object’s surfaces intersect).
In the differential representation, these are characterised by lower
contrast (smaller differences) and increased spatial extent (spread
over 2 or more pixels width). Accordingly, a new set of templates
is required. In effect, these are scaled up versions of the
boundary edge detector - say 6 x 6 pixels, with a pair of high value
columns flanked by pairs of low value columns. As before, these
templates are compared with the wvalues in the differential
representation to yield evidence of internal edge segments. These
are recorded in similar fashion to boundary edge segments.

Just as we referred to the high wvalue points in the
differential representation as candidate edge points, so we ought to
regard the edge segments identified by the template matching process
as candidate edge segments. These segments have to be combined to
form longer edge segments corresponding to entire boundary or .
internal edges. While the majority of the short segments will be
conflated to form these longer segments, some will be rejected as
being spurious segments (due to noise in the system).

Recollect that templates incorporate rules for grouping
together candidate points. Now, we need to apply similar grouping
rules to the candidate edge segments to yield, in due course, an edge
description where each edge in the description corresponds to a
physical edge in the scene. The grouping rules are as follows:

If the end point of one segment is adjacent to (e.g.
above, below, to-the-left of, to-the-right of) the end
point of another segment, and

If the orientation of the first is the same as the
orientation of the other, and

If the combined segments (combined points) are collinear
Then link the segments (to form a larger segment).

Junction (corners) are detected as follows:

1f the end points or two (or more) segments are adjacent,
and

1f the orientation of one is different from the other(s)
Then combine the segments (to form a junction).

To apply these rules to the candidate edge segments, numerical values
have to be assigned to the parameters "adjacent" and "orientation".
Also, an error value has to be assigned to the procedure which
determines whether or not two segments are collinear. In practice,
since, for example, there will be small gaps due to noise, these’
rules must be applied more than once. Usually, the parameter values
will be altered between successive applications, for example, to
enable two adjacent edge segments separated by two pixels (which were
not linked first time around) to be joined together to form a longer
edge segment, and so on. Finally, any candidate edge segments which
do not have connections to other edge segments at both ends are
removed (these are ’'dangling' edges, caused by noise).

At first sight, this method is attractive but the major
difficulty in the context of an artificial visual system implemented
on a machine with a single processor is that different templates
andfor different match rules are needed for vertical edges,
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horizontal edges, bright edges, dim edges, sharp edges, fuzzy edges
and edges at arbitrary orientations. In other words, the process of
using templates is computationally costly. Special purpose parallel
computers which can carry out these operations concurrently over the
whole image have been under development for some years. In due
course, they are likely to replace single processor machines, at
least for handling low level processing
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FEATURE DETECTORS : HUMAN SYSTEM

Local Feature detectors

We turn now to look at the evidence for the local computation of edge
descriptions. Much of our knowledge comes from studies with animals, from
which one generalizes (with care) to man.

Apart from lateral inhibition, up until 1959 we knew very 1little
about the coding in the visual system. In that year, Lettvin, Maturana,
McCulloch and Pitts announced that the frog's retina contained four kinds
of ganglion cells, described as:

(1) Ssustained contrast detectors, which indicate static edges of
high brightness gradient.

(11J Moving edge detectors, which signal moving edges of abrupt
brightness change.

[iii] Net dimming detectors, which respond to a sudden reduction
of illumination (approach of a predator, perhaps) and

(iv) Net convexity detectors, which respond when a small bright
spot enters the visual field (insect in view, perhaps).

These results were obtained by micro-electrode recording fram the
ganglion cells in the frog's eye, when the eye was stimulated with an
appropriate pattern of light and dark.

Later research by Hubel and Wiesel, working with cats and monkeys,
has failled to disclose retinal cells with such discriminatory properties
as those found in the frog's retina. This is not surprising because the
frog, unlike higher animals, does not have a visual processing area in its
brain, However, Hubel and Wiesel showed that cells in the monkey's brain
are sensitive to different types of visual features, In fact, they
identified two major classes of braln cell, namely the simple cell and the
complex cell.

Before we consider the properties of different types of simple cells
(we will not consider complex cells since their role is still not
adequately understood), we will examine some Interesting evidence about
the way they are organized in the visual area of the monkey's brain. What
Hubel and Wiesel have shown is that the visual cortex 1s rather like a
bee's honeycamb: it 1is divided into tiny segments, each extending from
the surface of the cortex (the grey matter] vertically down into the white
matter, deep within the hemisphere, Each segment represents a processing
sub-unit, called a hypercolumn by Hubel and Wiesel. Each hypercolumn’'s
total area is approximately 0.5 - 1 mm square at the cortical surface, and
about 3 - 4mm thick [approximately the full thickness of the cortex); it
contains tens of thousands of cells, perhaps up to a quarter of a million.
The job of all the cells in a particular hypercolumn is to inspect jointly
a particular region of the retina, a region called the hyperfield, While
hyperfields overlap to some degree, essentlally each hypercolumn 1is
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concerned with just one region of the input image, Thus the hypercolumns
all "chatter" simultaneously about the features they are "seeing" in their
own restricted domains, and it is the job of later processing mechanisms
to sort out fram this feature description what objects are present in a
scene,

While distributed evenly over the cortex the size of the hypercolumns
concerned with the central retina differs from the size of those dealing
with the periphery. Hypercolumns handling peripheral areas of the retina
have large hyperfields and hence can only carry out a crude feature
analysis. Central hypercolumns, on the other hand, have smaller
hyperfields, so they can engage in much finer analysis. But this is what
we would expect, given our knowledge of the retinal mappings fram
receptors to ganglion cells, Note that because central hypercolumns have
smaller fields, more are needed to cover a given area of the retinal
surface. This fact indicates that the spatial mapping from retina to
cortex will be significantly distorted, with the periphery of the visual
field compressed relative to the centre.

When a micro-electrode is driven down through a hypercolumn, besides
the fact that they all have their receptive fields in the same general
region of the retina, all cells share a very Iimportant property,
irrespective of their type: they are all maximally excited by stimulil
with the same crientation,

The simple cell's distinguishing characteristic is that its receptive
field can be divided into excitatory and inhibitory sub-regions, using
stationary stimulation. So if a spot of 1light is flashed on certain
regions of the simple cell's receptive field, the -cell becomes excited and
emits a burst of impulses. Equally, if flashed on other regions of the
simple cell's receptive field, the cell becomes inhibited and stops
emitting pulses.

What are the shapes of these regions? This question can be answered
by exploring the effects of flashing small spots of light all over the
cell's field, noting each time the effect of the flash on the cell, By
recording excitation and inhibition with plus-signs and minus-signs on a
paper representing the region of the retina covered by the receptive
field, typical field maps of simple cells can be obtained. Some are shown
below. By careful examination, we can group them into different
types called edge detectors, slit detectors and line detectors.
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Consider first the receptive field of the so-called edge detecting
simple cell. Note that each field is divided into two sub-regions, one
excitatory and one inhibitory. The boundary between these sub-regions has
an orientation which defines the orientation tuning of the cell in
question. Notice that all edge detectors are vertically tuned, i.e. they
respond maximally to vertical edges. Indeed, all the field maps shown are
vertically tuned. This is because all the field maps come from cells
within a single hypercolumn. Remember that c¢ells within any one
hypercolumn share the same orientation tuning, with different hypercolumns
differing in the orientation to which they are tuned.

The term "slit" (which describes a stimulation of a white line on a
dark surround) is a little odd, but refers to the stimulation arrangement
used by Hubel and Wiesel - shining light through a slit. The term "line"
has become a customary one for a dark line on a 1light surround, an
unfortunate usage because all the stimuli shown are line stimuli of a sort,
and not just those termed "line". Sometimes, however, the slit and 1line
stimuli are called light and dark 'bars' respectively.

Now we can undertstand why these cells have so often been dubbed
feature detectors. That is, it has been commonly assumed that because each
cell has as optimzl stimulus one or other line features, =ach cell must b=
a signalling device for saying whether this feature is present on the patch
of the retina inspected by the cclumn of cells as a whole.

But what happens if a non-vertical stimulus falls on a vertically
oriented receptive field? The answer is that the response diminishes by
the amount the stimulus diverges from the vertical. This 1s 1llustrated
next, for a left-right light-dark edge.
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The effect of stimulus orientation, for many more edge stimuli than shown
in the diagram, {3 1illustrated 1In the graph. We can see why the edge
detector exhibits this vertical tuning effect. As the stimulus edge 1is
rotated, darkness falls on some of the excitatory zone, and at tne same
time light falls on the inhibitory zone. By the time the edge |is
horizontal, the cell receives equal amounts of excitation and inhibiticn,
so {ts firing rate i{s recduced to the spontaneous flring level.

It is best to think of the excitatory and inhibitory zones of each
cell's field as carrylng equal weight overall. In other words, under
conditions of even illuminaticn, there will be an 'equal balance between
them.

Notice that the column of cells are sub-divided . Tnus, some cells
have "narrow-width slit" optimal stimuli, others "medium width slit", and
so on., The cells we have seen are just a sample of the population in the
column, and many more types of field exist covering a wide range of slit-
widths, line-widths and widths-of-flanks on either side of an edge. Just
why 80 many different widths are needed will be taken up again later.

¥’z have been concentrating on a single vertically tuned column of
cells, But each hypercolumn contains many columns, all similarly tuned but
eacn dealing with a slightly different area of the hyperfleld, as shown
belcus
. A slab of vertically tuned columns within a hypercolumn There are
many cells in each column. Only a few are shown, as dots. Just three

cells in each column are enlarged 10 show their receptive field types
{from top down. edge, slit and line fields).
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In other words, each vertically tuned column {s "centred" on a different
spot in the hyperfield so there is a slab of columns covering the whole
width of the hyperfield i.e. the columns are slabs like, being positioned
side by side, But the receptive flields of neighbouring columns within the
slab will overlap to give continuous coverage across the fleld. Notice
that the vertically tuned slab has its columns inspecting points spread out
horizontally across the hyperfield, i.e. points are at a right angle to
orientation of cells. ’

Turning now to deal with other orientations, it seems that there are
columns for orientations all around the clock, with the tuning of each
column differing by about 10 degrees from 1its nearest "orientation
neighbour",

We are now In a position to speculate about the organization of an
entire hypercolumn. A model is shown below. In reality, there are
many more orientations than this shows - parhaps 18-20 in all to get right
around the clock. Remember, too, that there are many different cell types
within each column, of which only a few are shown.

cne
Onentation slabs
—— (each slab
composed of cells

Right eye with the same

To other
cerebral
hemispnere

Type uf cell
{all same
onentaton)

N Posifion ac.0ss
hypertield

Note that positions
across hyperlield are
along directions at
nght angles to
receplve lield
onenlation.

One extra feature 1s the fact that a hypercolumn really has two halves
- a left one and a right one. Although shown as separate, some cells in
the cortex are binocularly driven, That 1is, they respond actively to

(from Frisby, 1979)
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optimal stimull in either eye, Others are preferentially driven fram
just one eye, So the division into two parts is an oversimplification,.
None-the-less, the monocular dominance of certain regions of the
hypercolumn has been well confirmed by the work of Hubel and Wiesel,

Of course, the hypercolumn structure we have been discussing 1is
hypothetical, but 1t does fit a great deal of neurophysiological data.
We will stick with it for the present.

So much for the structure of the hypercolumn and its components,
The next question s now does each hypercolumn examine its own patch of
retina (it's 11'ypert'ie1d]. and arrive at a feature description of the images
falling on this patch?

As we saw above, each simple cell seems to signal a particular
orientation., Hubel and Wiesel postulated that these cells form the bottom
layers of a hierarchy of cells [so far undiscover'ed) which respond to
progressively more and more abstract geometric features. For example, the
cells at the next level up might respond to simple geometric patterns such
as angles, and so on up to the top of the hierarchy which might respond to
stimuli such as particular items of food, particular individuals, and so
on. This feature hierarchy theory 1is often referred to as the
"grandmother cell" theory. Persuasive as this might seem to be, we
cannot accept Hubel and Wiesel's explanation. Consider a simple cell
whose optimal stimulus is a vertical edge: it will respond most strongly
when stimulated by a high-contrast black-white edge, as shown below:

Sumuius  Resting  Stmulus lashed on  Resiing
discharge  dunng this period  discharge

L 1G] 1] |
Optimal stimulus {very brisk response)

* *e "t s 1
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T YT YY
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If the contrast 1s reduced by making the black zone a dark grey, and
the white zone a light grey, the cell will respond less vigorously. What
happens if we stimulate this cell with a high-contrast black-white edge
which 1s rotated a few degrees ( +10) fram the optimal vertical
orientation? The cell will respond as vigorously to this rotated stimulus
as it did to the lower contrast vertically oriented stimulus. So if
different stimulus conditions cause a cell to produce the same response,
how can it know which condition is occurring? Indeed, if activity in the
cell were to be taken simply and directly as the neural representation of
a vertical edge, we would be susceptible to some very awkward illusions,
We would confuse faint vertical edges with high-contrast just-off vertical
ones, a quite unsatisfactory state of affairs which doesn't arise. A
similar problem arises in the case of cell type. Once again, more 1is
needed than simply equating edge detector responses with step-like
illumination profiles, slit detector responses with light lines on a dark
background, line detector responses with dark lines ona light background,
and so on.

An image of a vertical edge focussed on a part of the retina which
forms the hyperfield of a particular hypercolumn is shown below. As
we have seen, the edge feature is represented as a grey level
description at the retinal level. Fibres connect the retinal ganglion
cells to two cells in the vertically tuned slab of the hypercolumn.
For simplicity, only one row of cells in the slab is shown. In
practice, fibres would link ganglion cells to the other cells in the
hypercolumn.
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An activity profile is shown above each row of cells, This activity
profile represents the contrast across the edge. The greatest response
is given by the edge cell in the third row, But notice that both the
line cell (in the top row) and the slit cell (in the second row) also
respond to the presence of the step edge. Clearly, therefore, just
because a linear slit cell is active does not mean that there is a line-
like or slit-like structure in the hyperfield. In other words, not only
1s the orientation of the feature doubtful, but 1ts nature is as well.

In similar fashion, a 1line (bar) in the hyperfield not only
stimulates line detectors, it also activates slit detectors and edge
detectors,
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Global feature detectors

In the feature detection approach considered in the 1last section,
simple cells were considered as signalling the presence of particular
geometrical features, at particular positions within the pattern of 1light
falling on the retina, The implication is that the combining of local
geometric feature information to yield descriptions of global objects must
take, place at a higher level, through some kind of grouping of simple
cells output.

However, thercz is a quite different explanation of the role of the
simple cell, namely, that it carries information about global properties,
not local properties, and in particular, that these global properties are
spatial frequencies.

What are spatial frequencies? We will answer this question by
analogy with sounds, that is temporal patterns of air pressure produced by
some kind of instrument. For example, when the sound fram a tuning fork
is amplified and the signal is displayed on an oscilloscope, the pattern
produced is a sine wave, as shown below:

VAV

This 1s the simplest form of sound wave, sometimes called a pue tone,
N.B. Warning! The pattern shown above is a graph which takes the form of
a transverse wave whereas the sound wave is a longitudinal wave, with
particles vibrating in the same direction as that in which the wave is
travelling.

Continuing with the analogy, if an oboe, a French horn and a violin
play the same note you have no difficulty in identifying the different
instruments, Studing the wave forms on a 'scope enables us to see why
the notes can have the same frequency yet sound different. The shapes

of the waves are not the same, as shown below:
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The difference in wave form is responsible for the characteristic sound
quality of each instrument. Mathematicians have shown that any shape of
wave can be split up into a sine wave at some fundamental frequency and a
number of other sine waves at multiples of this frequency which differ in
amplitude (harmonics or overtones). This is Fourier Theory.

By adding together the fundamental and one or more higher harmonics,
a completely different wave form is obtained, For example, If we add the
first and third harmonic, we get the composite wave form shown below:

Fundament al /\/—\- f

3rd Harmonic _/ \_/ NSNS N 3f

Resultant \4\ J"[\”\ j+3f

But patterns of light intensity can be described mathematically in
the same way as temporal patterns. So, when we turn to consider light
instead of sound, we find that the square wave form which represents an
edge can be described as the summation of several sine waves of varying
ampl itude and frequency. For example, a sharp edge can be constructed
by adding together more and more sine waves, as shown below:
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A+B+C

A

A+B

1 L ] i 1

Spatial pusition

Just as detecting a particular quality of sound involves detecting
the different frequencies of which it is composed, detecting the presence
of an edge would involve detecting the different frequencies of which (it

is composed.
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We can control the frequency of light used to stimulate the retina by
using a device called a grating shown below:

This is a sinuscidal grating, so its brightness varies sinuscidally
across the pattern, This means that the stripes are blurred. A grating
1s described in terms of frequency , expressed as cycles per degree of
visual angle; contrast , expressed as the ratio of maximum to minimum
intensity in the pattern, and phase , expressed in degrees, of the pattern
relative to a fixed point.

The usual technique is to expose an area of retina to a diffuse fileld
of 1light, alternating at regular intervals with a sinusoidal grating of
the same average light intensity, and to record responses fran cells at
time of onset or offset of the grating. In this way, the experimenter has
precise control over the spatial frequency of the 1light stimulating the
eye: he designs a grating which has the desired characteristices, In
practice, the large scale components in the grating are represented by low
frequencies, while the fine details are represented by high frequencies,

The point of all this is that physiologists have established that
retinal ganglion cells with concentric fields will respond selectively to
different spatial frequencies. Also, the smaller a cell's receptive
field, the higher the maximum spatial frequency to which it will respond.
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At the cortical level, simple cells are tuned to spatial frequency ({.e,
each responds to a particular range of frequenciesﬁ with each hypercol umn
containing cells with a wide range of optimal frequencies.

The response of a cell to a grating is measured by its contrast
sensitivity, the reciprocal of the threshold contrast required to obtain a
response fram a cell. Thus, in the cat's retina, optimum spatial
frequencies range fram 0.3 to 3 cycles/degree, reflecting its greater
visual acuity.

These responses are consistent with the responses to edge, bar and
slit stimuli. For example, a cell with a vertical bar as its optimum
stimulus will give its maximum response to a vertical grating with
wavelength twice the width of the bar, provided the grating is lined up
with the boundaries of the excitatory and inhibitory regions,

The unresolved question is why are simple cells selective for spatial
frequency? Are these cells detecting global properties in the patterns
of light at the retina? Bluntly, the fact that cortical cells respond to
spatial frequencies does not prove that the visual system decomposes its
input into sinusoidal coanponents any more than the fact that cells are
selective for orientation of edges proves that it analyses its input into
local geometric features. Indeed, the physiological evidence suggests
that cells are not specific in their responses but respond over a broad
range of frequencies and have fields of 1limited size. They are also
sensitive to phase, that 1is, where the peaks and troughs fall in the
receptive field. So, we have the same problem as with the ambiguity of
the responses of simple cells to features of varying contrast which are
set at a range of orientations.

The most pramising explanation why each hypercolumn contains cells
with different spatial frequenciy tuning 1s that multiple spatial
frequency tuning is an important characteristic of a system designed to
detect edges. It is to this that we turn next.
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BUILDING THE PRIMAL SKETCH

Recently, Marr has argued that the properties of single cells in the
visual system can only be understood in the context of a camputational
theory of vision, He attempted to build such a theory, to explain how
the pattern of 1light at the retina is tranformed into a symbolic
description of the enviroment. The first stage in this transformation
process is the construction of a data structure, known as the
raw primal sketch. Briefly, the raw primal sketch makes explicit
information about the edges and textures of surfaces in an image. The
thecry specifies how edges can be detected in natural images, and in doing
so provides a single explanation for the neurophysiological phenomena
which served as the basis for the feature detector and spatial frequency
detector theories,

In an earlier section, we-examined a simple algorithm for computing
differences in 1light intensity in each region of an image. It made use
of a 2x2 mask, and could detect abrupt changes of intensity in an image.
It could not , however, handle gradual changes, and it was also
susceptible to the effects of noise in the image data. To extract edge
information from natural images where the changes in intensity are often
very much less abrupt, a much larger mask is required. However, as mask
size increases, information about the location of abrupt changes is lost,
Hence ,the conclusion that edge detection cannot be done using a mask of
uniform size. Rather, the location of intensity changes at differing
scales has to be carried out by a number of parallel operations, each
using an appropriate mask size.

Marr's approach, therefore, is to take the image and transform it
into a number of independent representations, In each, there is a
different upper limit on the steepness of the gradient present within it.
The way in which the steepness of the gradient within a representation is
controlled is by bluring the image: the more bluwred 1t is, the
shallower the steepest gradient that can be present.

Previously, we discussed the use of smoothing to reduce the effect
of noise, by replacing each value in the grey level description with an
average of the values of 1its eight neighbours, Marr's approach 1is
analagous. The essential differences are that he defines areas that are
circular rather than rectangular, and that vary in size. Within these
circular areas, pixels closer to the centre contribute more to the average
through a numerical weighting process in which the values of plxels near
the centre cell are multiplied by a higher numerical value than the values
of cells nears {ts periphery. The choice of the values for these welghts
is not arbitrary: instead, it 1s done in accordance with the decision
that the optimal smoothing function is a Gaussian function (i.e. a bell-
shaped atatistical distribution]. The degree of blurring achieved is
determined by the width of the Gaussian distribution, measured in terms of
its standard deviation, In practice, Marr filters each image, using two
or more Gaussian distributions. In this way, the array of light
intensity values making up the grey level representation is replaced by a
set of arrays, each containing Gaussian weighted average intensity values,

Below, . the image (a) has been smoothed using Gaussian distributions
with standard deviations of 8 and 4 plxels respectively, giving the more
and less blurred images, (b) and (c].
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The next step 1is to locate changes In the differently blurred
representations of the image. Again, in Section 4 we encountered Roberts
cross operator which detected gradients in the image by calculating simple
differences 1in orthogonal directions (i.e. the first derivative),
However, for reasons of coamputational efficiency, Marr favours the use of
the second derivative which is a measure of rate of change. Previously,
we saw that the first derivative of a step function like change in
intensity was a positive peak. Taking the second derivative instead
produces a pair of peaks, one of which is positive going and the other
negative going. The transition fram one to the other is known as the

zero-crossing :
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Marr favours the use of an operator called the Laplacian operator to
obtain measurements of the second derivative since the values that it
produces are orientation independent. Thus the Laplacian can be applied
once only to each of the arrays yielded by the use of the Gaussian filters
to produce a new set of arrays containing values of the Laplacian. r
the filter is a wide one, the Laplacian values will represent large scale
changes in intensity in the image, while the output of a narrow one will
also represent small scale changes. To detect gradients in the image,
the next step is to locate the =zero crossings in each representation,
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This is 1llustrated below, which shows the effects of using filters
of three different widths.
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Clearly, not all zero crossings correspond to positions of edges and L
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surfaces of objects in the image. So how i3 the edge information
extracted? Marr argues that the edges of natural surfaces will be
represented at various scales, This means that they will give rise to
zero crossings in the output from measurements made at a range of scales,
This translates to a procedure for detecting an edge segment, by looking
for the presence of zero crossings in a set of Independent measurements
over a contiguous range of sizes of the receptive field. So, if zero
crossings are found in two or more contiguous representations, and Iif
their position and orientation is the same in each, this set of zero
crosaings is taken as sufficient evidence for the presence of an edge
segment, By means of somewhat similar, but more complex procedure, the
presence of bar segments can also be detected. An example of the use of
these procedures is given below:
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(a) and (b} show the zero crossings obtained fram the image shown
above, using masks with standard deviations of 9 and 18 pixels.
Because each zero crossing in [b] has a corresponding element in [a , then
(b) can be taken as representing the precise location of edges in the
combined description. (c), (d) and (e) show symbolic representations of
the descriptions attached to the edge segments, with [c) representin
blobs (i.e. closed loops of edge segments), (d) local orientations and (e?
the bars, These diagrams show only the spatial information contained in
the desceriptors. Typlcal examples of the full descriptors are:

(BLOB (POSITION 146 21)
ORIENTATION 105)
CONTRAST 76)

LENGTH 16)
WIDTH 6))

(EDGE (POSITION 104 23)
ORIENTATION 120)
CONTRAST -25)
LENGTH 25)

WIDTH 4)

(BAR (POSITION 118 134)
ORIENTATION 120)
CONTRAST -~25)
LENGTH 25)

WIDTH 4))

These descriptors are marked in the figure by arrous.

The set of descriptars derived fram the image i3 stored in a
database, called the raw primal sketch, But before we look at procedures
for interpreting its contents, we want to understand the Implications of
Marr's theory for the neuwrophysiological evidence,

According to Marr, cells with concentric fields do not signal the
presence of an edge. Instead, their function is to make measurements on
the pattern of light and dark in their flelds, as a basis for 1locating
zero crossings., In practice, finding a zero crossing would involve
locating activity in adjacent on and off centre cells. Finding a =zero
crossing segment would involve locating a set of adjacent pairs of
active cells, But Marr argues that this 1s exactly what some simple
cortical cells do,

Now, we can understand why cortical cells respond to different
spatial frequencies, These are a direct result of the process of
smoothing the image with a Gaussian function, wusing different satandard
deviations,

Finally, how cortical cells combine to produce the raw primal sketch
is not known at present.

As stated above, the descriptors derived fram an image are stored in
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example,

Within it, for

the data structure, called the primal sketch.

"1

LJ
(g

—

The task is to

Unfortunately, the task is difficult

straight line would be represented as a termination, then several segments
having the same orientations, then another termination.

extract these kinds of features.

example,

For

due to the large number of items within the raw sketch.

consider the metal rod shown below:
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The contents of its raw primal sketch are shown below:

1

B 1

L

1 1 1

L

Since the rod introduces a considerable amount of extrinsic noise,
the data-base 1s large. However, much of the noise can be filtered out
by applying a very simple rule, namely that a short segment's assertion is
eliminated fram the data-base if (a) it crosses a longer segment, and [b]
its contrast 1s less than that of the longer one. The effect of applying
this rule to the data-base of assertions is represented graphically
below:
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We know where to look to find the edge between the side of the rod
and its end. It stands out quite clearly, making the task appear to be
quite easy. How does the program handle it? The answer 1s that it
applies a grouping technique called curvilinear aggregation which is a
three-stage process, The first stage of grouping combines two elements
in the primal sketch only if they match in almost all respects, are very
close to one another, and if there are no other candidates. The
information that is used by the process to determine whether or not two
items should be grouped include orientation, contrast, type [edge. bar ,
etc.], fuzziness, distance between nearest parts of the two items and
orientation of items relative to orientation of a 1line Jjoining their
nearest parts.

The second stage of grouping makes use of the extra information given
by the first, For example, sane segments are now quite long (more than
20 image elements). Two such elements may be combined, even if the value
of some of their parameters differ, provided there are no other near
candidates. Also, new orientation information may be avallable as a
result of the first grouping, to be used as an important parameter in
second stage grouping.

When the first two stages of curvilinear aggregation are applied to

the primal sketch of the rod they produce the larger elements shown below:
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The third stage of grouping is rejecting unlikely possibilities, A
node is set up for each of the ends of the segments delivered by the
preceding processes, With each note is associated a l1ist of nodes that
could possibly match it. Each possible match is evaluated independently
against the criteria, and possibilities that are graded relatively poorly
on several counts, and well on none, are rejected. Nodes at which
ambiguities exist are marked, this information being sent to the next
level of processing. The results of applying this third stage to the
primal sketch of the rod are shown below where the elliptical form of
the contour is shown.

0 50 " w0
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Up to this point in the analysis, the system has not used any
description of the form's overall shape. The fact that it has been able
to recover the contour information is evidence in favour of Marr's claim
that a richer description will enable a system to extract form information
from 2-D pictures of objects which have not been specially treated to
reduce extrinsic noise. This is a very considerable achievement if
validated by results from a wide range of scenes of different kinds.
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THE SEGMENTATION PROBLEM

The next task is to find what structures are present within the mass
of feature information provided by all hypercolumns together, so that these
structures can be recognized by comparing them with descriptions stored in
memory.

The problem of flnding structures within a feature description is the
problem of deciding which features belong together and which do not. This
is the segmentation problem. ’

For many years, psychologists have been interested in the problem of
how the human visual system groups the incoming visual data to represent
the objects in the visual field. A group of German psychologists, known as
the Gestalt psychologists, were particularly interested in the problem, and
they enumerated a number of laws of organization. We have already encoun-
tered three of their laws, namely similarity, proximity and continuity,
when discussing Marr's methods for extracting global features from the pri-
mal sketch representation, i.e. for generating descriptions of objects in a
scene,

Now suppose that the scene contains a jumble of  ©olocks of different
sizes and shapes, as shown below.
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Assuming perfect Input data, the artificial system would extract a
line representation of the edges of the objects, in terms of a list of
{x,y) end points and associated line orientations:

e.g. (2,3) (2,11) 2710°
= - - - - ete

Of course we can tell how the regions combine to form 3-D objects, and how
many objects there are in the pile. The question is how does the visual
system do it? We will begin by looking at some of the characteristics of
2-D drawings of planar solids. Taking the cube shown below as exam-
ple, notice that its tnree faces meet at a trihedral vertex.
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In a 2-D arawing of a cube, the three edges forming such a vertex are
represented by the junction of lines, forming either a FORK junction: J7 or
an ARROW junction: J2 J# J6 or an ELL junction : J1 J3 J5, as shown above,.
Notice that the number of visible faces at each vertex determines what the
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Junction will look like:

3 visible faces produces a FORK junction in the picture.
2 visible faces produces an ARROW junction in the plcture.
1 visitle face produces an ELL junction in the picture,

So far, we have been going from 3-D to 2-D. But notice that If we are
given a 2-D representation of a collection of planar solids, we can decide
which regions belong to which solids using rules. For example, the FORK
rule 1links together all three regions surrounding a FORK junction, and an
ARAROW rule links together two of the regions contributing to the junction.
For example, to segment the 2-D line drawing of the arch shown below

into its component parts, links are planted between regions wherever an
ARROW or FORK occurs, On the basis of these links, the regions can be col-
lected together into three groups, namely (R1 R2 R3) (R4 K5) (K6 R7), where
each group represents one of the bodies making up the arch,
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Notice that the other type of junction most prevalent in the arch
scene i3 the T-junction, As you can see, at a single T-junction no rule
can be made that the three separate regions are to be joined as parts of
the same body. However, when T-junctions can be grouped together in pairs,
this can provide powerful evidence of the interposition of one object in

front of another one. For example, if you place your thumb on the edge of

the table in front of you, you will occlude its edge and create two T-
Junctions, where the edge of the table meets and leaves the edge of your
thumb. In this case, the stems of the T-junctions are in line 1.e. they
are collinear, so the reglons on either side of the stems of the T's can be
linked.

But the following example suggests that the task is more complicated
than 1t has appeared so far. Instead of segmenting Reglons K1 te R8 into
two bodies (R1,R2,R3,R4,R5) and (R6,R7,R8), all reygions are connected
together by multiple links.
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It was this task that Guzman tackled in implementing a program called SEE,
We will examine SEE in some detail since it was the first of a series of
programs, each of which built on the ideas and experiences with the previ-
ous one, gradually reducing the need for ad hoc rules by providing a better
theoretical justification of the underlylng processes.

In SEE, Guzman assumed as starting point the existence of a perfect
line drawing of a polyhedral scene, A typical example is the scene called
BRIDGE, shown below. This {s input to the program in the form of
unordered 1ists of object regions, background regions and vertices. Notice

that the program does not have to separate objects from background: this
information is provided by Guzman.
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To parse the scene into bodies, SEE follows a two part strategy.
First, it collects evidence for linking regions. Then, second, it evalu-
ates this evidence and groups regions te form objects.

We will begin by considering the first part strategy, namely collect-
ing evidence, It was Guzman who noticed that, as we discussed above, the
shape of a junction is a pretty reliable indicator of its three-dimensional
significance. In practice, Guzman classified junctions into four basic
Types: '

. Vertices where two lines meet, e.g. L

Vertices where three lines meet, e.g. ARROW, FORK, T
Vertices wnere four lines meet, e.g. K, X

. Other vertices, e.g. PEAK, MULTI

Fo RK\( ARCow
k . .

MucT)

2 G N -
L]

Examples are shown below:

> TN

With eacn type of vertex there {3 an associated set of 1links which
constitute the evicdence for combining adjacent regions in the scene. These
links are of two types, namely strong and weak links. Trre strong links
assoclated with each vertex are as follows:
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Ls, Ks, MULTIs and single Ts have no links.

FORK. Links are planted between the three regions, meeting at
a vertex of the FORK type, except:

{a) if one region is the BACKGROUND no links are placed between any
regions surrounding it.

(b) 1if one of the lines is connected to an L, or to the barb of an
arrow, or forms the bar of a T, the regions on either side of
that line are not linked.

ARROW. Links are placed between the regions on either side of its
shaft, except

if the shaft of the ARROW is connected to a background FORK, or
to the stem of a background T, the regions on either side of
each of the barbs are linked.

X. Two cases are distinguished

(a) If the X is formed by the intersection of two lines, no links
are planted.

(b} If the X is formed by four lines, two of which are collinear,
the regions on either side of the collinear lines ars linked.

PEAK. All regions, except the one containing the obtuse angle, are
linked to each other.

T pairs. Facing pairs of Ts with collinear stems are linked, provided
the area between the bars is not BACKGROUND,

3-parallel T. The regions on either side of the stem of the T are
linked in the case of a 3-parallel T.

Weak links, planted in addition to strong links, are associated with

the type of vertex called LEG. LEG is an ARROW where one of the barbs of
the ARROW is connected to an L which has one line parallel to the shaft of
the ARROW (if necessary through a chain of matched Ts).

Examples of the links associated with these junction types are givenon
the next page.
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The strong and weak links associated with the scene BRIDGE are shown below:
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The second step is to combine and group the link evidence to
partition the scene into its constituent bodies. The evidence for the
scene BRIDGE is shown below, in which the regions are depicted by circles.
Strong links are represented by solid arcs, weak links by dotted arcs. All
the links to the background ( :30) have been deleted since the background
cannot be part of any body.
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Now the program attempts to form nuclei, where a nucleus is either a
region or a set of nuclel formed by the following rule: if two nuclei are
connected by two or more links, they are combined to form a larger nucleus.
For example, as shown next, regions :24:25:27:12 and regions :21 and :9 are

put together. @

As a consequence, nucleus :24:25:27:12 has two links with nucleus :21:9, so
they are combined in turn to form a new nucleus :24:25:27:12:21:9, as
shown below:

So the nuclei are allowed to grow and merge until no new nuclei can be
formed. When this is the case, the scene has been partitioned into several
"maximal" nuclei: between any two of these, there are zero or, at most,
one link,
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The program has still to consider the effect of weak links. The rule
is that if a strong link joining two maximal nuclei is reinforced by a weak
link, these nuclei are merged, as shown next,

G

0

For example, in scene BRIDGE, the following weak links exist: :13 to :15,
:14 to :15, :14 to :15, :3 to :17, :7 to :4, :8 to :11, :10 to :4, :5 to
:6, :28 to :29, :18 to :19, :25 to :27, :22 to :26, :23 to :26.

al




e ——

e e, — ey ——— pr— ey ———

82

Notice that nucleus :16 is linked to nucleus :1€/:19 by a single

strong 1link.

jeining a nucleus
sufficient evidence for the nuclei in question to be merged if there is no
This yields the final parsing

other link emanating from the single region.

shown below:

In summary:

link

(BODYT,
(BODY2.
(BODY3,
(BODY4,
(BODYS.
{BODY6.
{BODY7.
(BODYS.

IS
IS
IS
IS
I8
IS
15
IS

:13
:29

&)

:9
126
13
:2)
:15
:18
:28)
11

21
123)
:20)

:13)
:16)

5

127

:6

i. Form nuclei from regions connected by two or more strong links.

iii. Amalgamate nuclei joined by one strong and one weak link.

112

th

:25)

+10

1 7)

This invokes another rule to the effect that a strong link

and another nucleus composed by a single region is

ii. Amalgamate nuclei joined by two or more links until no new nuclei
can be formed.

iv. Amalgamate a nucleus jointed to a single-region nucleus by a strong
(except when the single region is BACKGROUND).
single links between nuclei which remain after parsing, the program
returns the results:

Ignoring the
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How gcod 1s SEE? Since it reguires two plieces of strong evidence to
Join two nuclei, {t 1is conservative, l.e. 1t will almost never jolin two
regions that belong to different bodies. 1Its errors are alrmost always of
the same type: regions that should be joined are left separate. This sug-
gests that more heuristics should >e added to provide additicnal linking
evidence, The problem is that adding a heuristic can cause repercussions:
it may solve the difficult case but in turn cause other cdifficulties.
Rather that continue to derive rules in an ac¢ hoc way, it would be prefer-
able to derive them from an explicit 2D/3D representational theory which
takes into account the overall geometry of polyhedral bodies, This is what
we will consider next.
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EXPLOITING PHYSICAL CONSTRAINTS

When we discussed Guzman's program, we found that {ts rules for 1link-
ing regions depended on the shape of the local junction. In contrast, we
turn now to consider later work by Huffman, Clowes and Waltz who realised
that by devising rules for describing and linking junctions, not only could
they obtain a segmentation of the scene into bodies, but they could also
derive information about the 3-D shape of the bodies.

As we have already noted, SEE made most use of trihedral vertices -
the so~called ARROW and FORK junctions. Now, a trihedral vertex is a point
of intersection of three planes which partition the surrounding space into
eight octants. This 1s shown below:

-

Some of the ways in which these octants can be filled by three surfaces
which meet at a vertex are shown overleaf, where the number of octants
actually occupied yields a type number, For example, type 1 1is 1like
Guzman's ARROW, and type 7 is like his FORK junction.
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Imagine now that you can view the vertex from each unoccuplied octant.
The possible views of this vertex are shown opposite. Labels are asso~
clated with lines in these drawings. Let's see what these labels denote:
1. a '+' marks a convex edge which has both corresponding planes visible.

2. a '"-' marks a concave edge which has both corresponding planes visible.

3. an '<' marks an occluding edge where one plane is hidden, the visible

plane being to the right of the direction in which the arrow is pointing.
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By understanding the three-dimensional nature of a scene, we are able
to apply these labels to the 2-D line drawing, The important question is
can a program use these labels to help it understand the three-dimensional
ature of line drawings? The answer is that it can do so by labelling to
the vertices in a 2-D drawing in accordance with the set of 1labelled 1line
configurations which we obtained by labelling the possible views of the
vertex. The set of twelve possible configurations is shownbelow.

Notice  how this approach limits the number of labellings for the different
configurations. For example, given four labels, there should be 16 ways of
labelling an "L" junction but there are only 6 legal labellings shown.

VAVAVAVAVAY:
AVAV S a4

Huffman was interested in showing that the use of the labelled-line
configurations (which we will refer to as corner models) would enable us to
tell when certain kinds of drawings are impossible. If we 1look at the
drawing given below, it will be rejected as a possible plane—faced
object because there is no set of labels which will consistently label its
2-D line representation.
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Labelling the outer contour is straightforward - the only allowable
labels are arrow-type labels. If we move on now and consider the two ARROW
vertices, we find that arrow labels have been assigned to the lines (barbs)
on either side of the shaft in both cases. Inspection of our list of legal
corner models, given above, shows that there is only one ARROW ver-
tex with arrow labels assigned to its barbs. Selecting this forces a +
label for the shaft which is entered accordingly. If we now consider the L
vertex between the shafts of the two ARROWS, we find that each leg of the L
has been assigned a + label, But inspection of the list of corner models
indicates that this is not-'a legal corner model - there is no L configura-
tion with + labels on each leg so we conclude that the drawing does not

represent a regular plane faced object.

Similar considerations apply when we examine these eight objects:
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In the case of example (a), the labelling of the outer contour forces us to
label the shafts of the ARROW with a + since this is the only legal corner
model which can be applied. This forces + labels on all three lines form-
ing the ARROW in the middle, and inspection of the list of corner models
indicates that it is not a legal labelling. Exactly the same problem crops
up in examples (b) and (f), and in "the case of example (c) we see a
recurrence of the labelling problem encountered in the case of the drawing
of the incomplete cube, seen earlier. Example (d) is a second example of
an illegal L model, whereas example (e) has an 1illegal FORK junction.
Examples of other types of illegal ARROW labellings are shown in examples

(g) and (h).

Huffman only considered single objects, using a hand-worked analysis.
Clowes, working independently on the problem, devised a computer program,
called "OBSCENE", to perform this kind of analysis. Since it was designed
to handle scenes with multiple objects, involving consideration of addi-
tional fork and T-junctions, Clowes' program was equipped with a larger set

of corner models,

Working at M.I.T., David Waltz generalized the Huffman/Clowes ideas in
two fundamental ways to handle scenes like those shown overleaf.
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1. To capture more information about the physical situation, he expanded
the Huffman/Clowes line labels to include boundary edges, convex edges,
concave edges including separable concave edges, crack edges and shadow
edges. After expansion the total number of legal corner models in the
data-base was T17. This stands in marked contrast to the many thousands of
possible corner models that could be generated, given that each edge could
be labelled in 12 possible ways. In other words, the structure of the
scene severely constrains the number of alternatives (i.e, restricts the
search problem). C

Not content with this, Waltz also extended the 1labels to include
information about illumination. The surfaces of objects can be categorized
as Illuminated, Self-Shadowed or Shadow-Projected: This means that a given
edge type can have {llumination information added which describes the
illumination category on elther side of that edge. For example, if a con-
cave edge 1is Illuminated on one side, the other side must alsc be
Illuminated. 1If, however, the edge is convex, if one side is Illuminated,
the other side might be Illuminated, or Shadow Projected or Self-Shadowed,
and so on. In practice, adding the jilluminaticon information increases the
number of legal corner models to 3,256. Since Waltz assumed that each
scene would be made up of blocks on a horizontal table top, any line seg-
ment separating the background (table) from the rest of the scene can only
be labelled in one of seven ways. This fact reduces the number of corner
models that can be used to label junctions on the scene/background boundary
to 245, 1In other words, the scene-background boundary provides additional
constraint.

2. The other improvement introduced by Waltz was a new method of searching
through the candidate corner models. The method converges quickly on the
possible interpretation of a scene. 1In general terms, the method is analo-
gous to building a jig-saw puzzle. Just as one starts by assembling the
edge pieces of a puzzle, the labelling process begins by 1labelling the
scene/background boundary. In turn, this labelling constrains the label-
ling of internal edges due to the rule that in the case of planar objects
an edge cannot change its type along its length.

The search activity actually comprises two stages, namely the use of
selection rules to eliminate as many labels as possible by, for example,

starting with the scene/background boundary, and use of a filtering pro-

cedure, a method of quickly eliminating candidate labellings for internal
edges by applying the rule about edge type consistency. Let's see how the
filtering procedure works by taking a unit cube as example, as shown
overleaf.
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Step 1.

Compare A and B for mutually exclusive junctions. Since there are no out-
going arrows in A, we have no in—-going arrows in’ B.

Eliminate B1 and BG

Step 2.

Compare remains of B, viz. B2 B3 BY B5 with C. Since there are no in-going
arrows in C, eliminate out-goilng arrows in B.

Eliminate B5

Now there are no + labels in B, so
Eliminate C3 and Eliminate A3.

Step 3.
Compare remains of C, viz. C1 and C2, with D. Since there are no + labels

or out-going arrow labels in C, there can be no + labels nor in-going
arrows in D, so
Eliminate D1, D5 and Dé6.

Step 4.

Compare remains of D, viz, D2, D3 and D4, with E. Since there are no +
labels or out-going arrows in D, there can be no + or in—-going arrow labels
in E, so

Eliminate E3.

Step 5.

Compare E1 and E2 with F. Since there are no + nor out—-going arrow labels
in E, there can be no + nor in—-going arrow labels in F, so

Eliminate F1, FS and F6.

Step 6.
Compare remains of F with A. No further elimination, so filtering is com-
plete.

In the case of a complex scene, the system might not be able to label every
edge wuniquely. So it is equipped with special case heuristic rules (rules
of thumb) which try to find a plausible interpretation. For example, one
heuristic eliminates interpretations that involve concave objects in favour
of those that involve convex objects, and another prefers interpretations
which have the smallest number of objects (this heuristic prefers a shadow
interpretation for an ambiguous region to the interpretation of the region
as a plece of an object). Also, special case heuristics deal with the
labelling of non-trihedral vertices, the accidental alignment of edges, and
missing lines in the picture description,

The program reached the stage where it successfully handles scenes
such as those shown opposite. The segments which remain ambiguous
after its operation are marked with stars.
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We are now in a position to understand why Guzman's program works,
You will remember that we noticed thaat it worked best on scenes with convex
trihedral vertices, that is with convex objects. Accordingly, we can elim
inate from the set of Huffman's corner modela all corners with concave
edges, including those for the L that imply a hidden concave edge, leaving
the set shown overleaf. Notice that L, FORK and ARROW junc—
tions now have unique corner interpretations, where the + labels, which
indicate convex edges, also match Guzman's 1links, i.e. we can derive
Guzman's links by planting a link at a convex edge and- no 1link at an
occluding edge.

Also, link suppression rules (no link is placed across a line at a
FORK junction if its other end is a barb of an ARROW, a leg of an L, or the
crossbar of a T) are equivalent to the rule that the opposite ends of a
line must have the same labelling. Indeed, the accumulation of link evi-
dence based on the existence of two 'links between surfaces means in effect
that both ends of an edge must agree that it is convex for it to be so
taken, If only one end says so, l.e., one link, there is a conflict which
must bBe heuristically resclved in Guzman's system,
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KNOWLEDGE DRIVEN SEGMENTATION

We turn now to consider a program written by Roberts which takes a 2-D
description of a scene and interprets it as representing a collection of
3~D bodies. In carrying out its analysis, the program uses three different
kinds of knowledge.

First, the program contains descriptions of three kinds of 3-D bhodies,
namely, a cube, a right-angled wedge and a hexagonal -prism.

/

The assumption is that objects in the scene will be built from these
bodies. In the program, these bodies, or prototypes as Roberts calls thenm,
are represented in three-dimensions.

Second, the program extracts certain configurations of elements from
the 2-D representation of the scene, These configurations are used as cues
or clues in the process of finding o6ut which bodies are present in the
scene. The actual configurations are formed ocut of what Roberts calls
"approved polygons". These are planar regions in the 2-D representations
of the scene whi¢h could correspond to the surfaces of the three proto-
types. Thus a triangle i1s an approved polygon because it could represent a
face of the right-angled wedge; quadrilaterals (a quadrilateral is a plane
bounded by four edges) and hexagons are also approved polygons. In the
domain in which Robert's program works no other configurations are
approved. In fact, what the program prefers as a cue {s a combination of
approved polygons and, ideally, combinations 1iIn the following order of
preference:

(i) Three approved polygons surrounding a point is the most informative
cue combination. For example, overleaf, we see three quadrilaterals
with a common point A. This cue in the 2-D domain points to the cube pro-
totype in the 3-D domain,
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(1i) 1If the program is not able to find three approved polygons surround-
ing a point, it looks for the somewhat weaker cue of two approved polygons
sharing a common line, for example, line AB. ;

(1ii) If the program cannot find any cues of types (i) and (ii), it will
accept the still weaker cue of a single approved polygon with a line coming
from one vertex, for example ABCD, with line BE.

(iv) Finally, if the program is not able to find an approved polygon with
a dangling line, it will look for a single point from which three lines

emerge, for example point B,

What the program does is to use the best 2-D fragment to select a 3-D
prototype. Roberts uses a predetermined order of prototypes (cube-wedge-
hexagonal-prism) over which the program searches for a prototype fragment
to correspond to the 2-D fragment. That is, given a set of 2-D points

N
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forming a particular relationship, it searches the prototypes looking for a
set of points which have a similar relaticnship. Making comparisons on the
basis of similar point arrangement is a kind of topological comparison: it
makes no assumptions about the relative size of body and prototype. A size
match would only occur in special situations where the body was identical
to the standard prototype. Only then would there be an exact match between
the 2-D points projected by that body and the model points with which they
have been paired. Normally there would be a numerical mismatch between 2-D
points and prototype points, suggesting that the prototype will need to be
altered to match the input data. 3

As a third form of knowledge, the program needs to know how to
stretch, rotate and project the 3-D prototypes so that it can make this
kind of match., It does this by solving a series of simultaneous equations,
Although the method of doing this will not be described here, it is
equivalent to two transforming operations on the prototypes. One operation
stretches and rotates the prototype to fit the cue configurations. The
other utilizes knowledge about projective geometry to check that a 2-D pro-
jection of the 3-D prototype could fit on to the appropriate part of the
2-D scene description. In the latter case, three possibilities arise:

(a) A fit means that the program has found the correct
prototype and the correct transformation.

{b) If some of the prototype's points fall outside the
points in the 2-D representation of the scene, this
means it has selected the wrong model,

(e) If all the prototype's points fall inside the points
in the 2-D representation but do not account for all,
this indicates that the scene contains a composite body,
made up of more than one proctotype. The program has to
decompose the composite body into sub-parts that
can be checked out as transformed prototypes.

The best way to understand Roberts' program is to work through an
example of a particular scene, bearing in mind the kinds of knowledge that
the program brings to the task. Consider the scene shown next,
where each line corresponds teo a visible edge in the scene, We begin by
naming the regions R1, R2, etc. Although there are seven regions, only
five are approved polygons, namely R1, R3, R4, R5 and R6 which are four
sided. RT7, which is five-sided, and R2, which is seven-sided, are not
approved polygons.

1

L.d




- 100 -

ks

7

As a first step, the program examines the 2-D description looking for
a point surrounded by three approved polygons, Since there are no
instances of this combination, it looks for two approved polygons which
share a common 1line. There are three instances, namely, R1 and R3 which
share line bd, R4 and R5 which share the line hl, and R5 and R6 which share
the line mn. Suppose it takes the R4/RS combination. The program will
find that a cube and perhaps other prototypes have two "approved polygons
which share a common line. So it picks a line in the cube prototype which
has the approved polygons around it. Next, it picks a polygon from both
the 3-D cube prototype and the 2-D scene description as starting points,
and proceeds to list topologically equivalent point pairs. When finished,
it has a 1list of six three-dimensional points from the prototype and a
corresponding list of six two-dimensional points from the 2-D representa-
tion of the scene., Now its task is to transform the three-dimensional pro-
totype fragment to match the two-dimensional input fragment. Thereafter,
it calculates the overall fit between prototype and 2-D description to
decide if the prototype chosen is the correct one. In the case of R4 and
RS, the transformed cube prototype does not fit the 2-D data sufficiently
well., The same {s true In the case of the R5/R6 combination. However, the
cube ' prototype can be transformed to fit the 2-D data giving rise to the
R1/R3 combination. The existence of the two T-junctions j and g, which can
be Jjoined via ¢, d and f is also used as contributory evidence for the
interposition of one block in front of another one. Once the choice of
prototype has been confirmed by the goodness of the fit, the program uses
the prototype to supply information about the position of unseen 1lines in
the scene, and enters them into its final description of the scene.

The program still has to account for the body in the foreground of the
scene. Since the R4/R5 and RS5/R6 combinations were unsatisfactory cues, it
looks for the next kind of cue, namely an approved polygon with one dan-
gling 1line. Notice that there are two, R4 with line kg, and R6 with line
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pq. The latter combination invokes a cube prototype, but this time the
prototype can be rotated, stretched and transformed to fit the input data.
Once again the program uses this prototype to supply information about the
position of wunseen 1lines iIn the scene, and enters them intoc the final
description which is represented below:

By a similar process, the other combination R4 (now with line kr) also
invokes the cube model which is successfully transformed to match the input
data, leaving only the body shown below “(h, 1, m,n, t, 8) to be
identified. Again, the two approved polygons which share a line invoke the
wedge model which fits the input data when rotated, stretched and
transformed.
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Before moving on, a few wordas of comparison between Guzman's and

Robert's program might be useful.

1. Guzman's program segmented the scene called 'BRIDGE', into 8

separate bodies, namely:

Body 1 : (R24 R9 R21 R27 R12 R25)
Body 2 : (R22 R26 R23)

Body 3 : (R17 R3 R20)

Body 4 : (R1 R2)

Body 5 : (R13 R14 R15)

Body 6 : (R19 R18 R16)

Body 7 : (R29 R28)

Body 8 : (R8 R11 R5 R6 R4 R10

RT)

The question is how would Roberts' program cope with this scene? We might
expect it to arrive at the following conclusions:

(R24 R9 R21 R27 R12 R25) is instance

(R22 R23 R26) is instance
(R17 R3 R20) is instance
(R1 R2) is instance
(R3 R1Y4 R15) is instance

(R16 R18 R19) is instance of cube (or
(R28 R29) is instance of cube (or

of cube cf. Body
of cube cf. Body
of cube cf, Body
of wedge cf. Body
of cube cf. Body
wedge) cf. Body
wedge) cof. Body

1
2
3
y
5
6

7

above
above
above
above
above
above
above

So far, Roberts' program has made the same segmentation of the scene. How-
fers., Guzman's "Body 8" is not an

ever, at this point {ts analysis dif
instance of one of Roberts' prototypes.
decompose it into its primitive parts, as

(R10 R32) is instance of cube
(R33 R34) is instance of cube
(R4 R11) is instance of cube
(R6 R5 R31) 1is instance of cube

Instead, Roberts!'
shown opposite,

cf. Body 8 above
cf. Body 8 above
cf. Body 8 above
cf. Body 8 above

program would
ylelding:
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S0 Roberts' program finds three more bodies than Guzman's program, {.e.
missing edge data does not matter provided the outer boundary is intact.
In contrast, Guzman's program is highly susceptible to missing edge infor-
mation. The reason for this difference i1s that Roberts' prototypes carry
with them Iinformation about 3-D structure whereas Guzman's corner models
are derived from the 2-D appearance of a 3-D scene, and do not carry infor-
mation about 3-D structure.

2. Notice that Roberts' first test, namely finding a point surrounded by
three approved polygons, corresponds to Guzman's FORK heuristic. Notlice
also that hls second test, namely find a 1line flanked by two ‘approved
polygons, i3 Guzman's ARROW rule. Finally, notice also Roberts' use of T-
Joints to provide evidence of interposition of one body in front of another
one.,

3. Although we discussed Guzman's program before dealing with Roberts!
program, in fact Roberts' program was written about 4 years before Guzman's
program. Although it doesn't identify objects, like the arch object dis-
cussed above, it does identify all the primitive bodies. e.g. cubes, wedges
and hexagonal prisms, and can name them if required. Because of this it is
referred to as a recognition program, and is cited by many as an important
example of the theory of seeing which is based on the notion of a stimulus
fragment Invoking a prototype model. But in reality, Roberts' program is
special case segmentation progran because it analyses a scene into its con-

= e pmme—wn pee—— pe————  ———

stituent bodies, 1i{.e., blocks, wedges and prisms., It does not recognize
objects made from these components, such as arches, bridges, tables and so
on.
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TWO EYES

Segmenting natural objects

So far we have confined our discussion to the problem of segmenting
scenes containing regular shapes. What about more complex, natural
objects? Can these be handled using similar techniques?

Suppose we are interested in the problem of analysing a photograph of
part of a plant. Plants are a challenging subject for analysis because
their natural curved surfaces are difficult to describe using the precise
mathematical methods that have proved satisfactory in more geometrical
domains. ‘Below, we see a digitised image of part of one of
McLennan's plants, The actual Intensity values that occur within the
superimposed rectangle are given in Table 1 (see Appendix).

The image was processed by Marr's system in the way described previously.
The contents of the data-base are drawn out below. The question is
can Marr's grouping methods separate the leaves to achieve a satisfactory
segmentation of the scene? Apparently they cannot handle this task.
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The primal sketch does not contain enough information to separate the
two leaves due to the lack of contrast across the edges of the leaf, as
shown by the image values in Table 1. So the aggregation techniques
deliver the form shown below: :
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To segment this form into the two components shown below, the system
has to be given additional edge information. The need to provide this
extra knowledge represents a defeat for Marr's view, and suggests that
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building richer descriptions is not the solution to the problem.
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But before we concede victory to the view that the analysis is con-
trolled by high level knowledge, let's consider the assumptions on which it
rests, The basic assumption is that the visual system is able to extract
some ‘distinctive features which suggest plants as context. But what are
these distinctive features which act as cues? In the case of plants, some
typical cues might be the simple shapes, PEAK and BAR, where PEAK suggests
a leaf tip and BAR suggest a stem. Similarly, NOTCHES formed between BARS
suggest branching in stems, ’

Although no one has implemented a leaf recognising program, it might
include models of plants comprising characteristic plant parts and rela-
tionships between them. For example, a PLANT has such parts as STEM, LEAF,
NODE, ROOT-NODE, MAIN-STEM; and the characteristic relations include facts
about plant structure, for example every leaf {s-supported-by a unique
stem. The plant parts might be models themselves, for example the leaf has
parts, TIP, VEINS, BASE, MARGINS, and these have relations 1like symmetry
relative to the MID-VEIN. Given the existence of these plant models, and
we beg the question how they were acquired, computing suitable cues for
invoking them would not be a difficult task. However, Invoking a model is
only part of the process: the choice of model has to be verified. In the
case of Roberts' program, this was achleved by stretching, rotating and
transposing the prototype to fit the image data, and to provide missing
edge information. To provide the missing edge information to segment the
plant specimen shown above, the leaf recogniser would need to be
able to stretch, rotate, twist and transform its prototype to match the
input data, an extremely difficult matching problem.

Besides the difficulty in making the match between prototype and
specimen, an obvious counter argument is that such a program would need to
have the kind of specialized knowledge about plants which only a botanist
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has. Yet people can recognize part of plants without this kind of detailed
knowledge, so0 it should not be necessary to bring so much knowledge to bear
to partition such a scene,

But human beings have two eyes, not one. The extra information avail-

able from a comparison of the descriptions generated by two eyes might
solve the problem. We will turn our attention to this next.

Seeing depth

Up till now, we have been discussing visual processing in the context
of a single eye. But we have two eyes which work together to provide addi-
tional information about the properties of bodies in a scene.

Whenever we look at a body, our eyes pivot and alter their focus so
that their images are projected clearly on to both foves. This pivoting of
the eyes is known as convergence, and the amount that the eyes have to be
converged is signalled %o the brain to provide Iinformation about how far
away the body is from the viewer. For example, the diagram below shows
how the eves pivot inwards for viewing near bodies, and outwards for viewing

distant bcdies.

B

o
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A simple experiment shows that the convergence angle is used directly
to signal distance. What happens if a pair of prisms of
suitable angle are introduced to bend the light entering the eyes, so that
they have to change their convergence to bring the images on to the centres
of the foveas? If the prisms are placed to increase the angle of conver-

gence, as shown in (ajl, bodies will appear far and small, whereas if
placed to decrease the angle of convergence, as shown in (b}, hodies

will appear near and large.
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So the difference in convergence can provide information about the relative
position of bodies in the third (depth) dimension, to enable a scene to be
segmented.

We can see that the convergence mechanism is analogous to a range-
finder. But there is a serious limitation to range-finders: they can only
are brought into correspondence in the two eyes by the convergence mechan-
ism. When many objects are present in a scene, a different strategy is
required.

Because the eyes are separated (by about 2 1/2"), each retina receives
a somewhat different view of a scene, This can be appreciated quite
readily by fixating a near body, with first the right eye closed and then
the left eye closed. It will appear to shift sideways in relation to more
distant bodies, and to rotate, when each eye receives its view. The slight
difference between the images 1is known as 'disparity', and this is the
basis for stereoscopic vision.

We can experiment with this, using a device called a stereoscope which
was Invented by Wheatstone in 1833. It presents any two pictures
separately to the two eyes, Normally these pictures are stereo pairs, made
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with a pair of cameras separated by the distance between the eyes, to give
the disparity which the brain uses to give stereo vision,

Clearly the ability to fuse images on corresponding polnts of the two
retinae (as in convergence) is a remarkable property of the visual system.
Fusion fram non-corresponding points (as in stereo vision] is even more
extraordinary. Do we have any explanation about how fusion is achieved?

One rather obvious explanation is based on the notion that the
binocular fusion system might work by matching up distinctive features in
the two separate stereo images, 'interpreting' the disparities as depth
information. But while it is true that the degree of similarity between
the two parts of a stereogram is extremely important in achieving fusion,
Julesz has shown that stereoscopic perception can occur in the absence of
patterns or contow information.

In an important series of experiments, Julesz demonstrated that
disparity of elements alone is a sufficient stimulus for the depth
perception of dot patterns. He used pairs of computer-generated dot
patterns, each containing about 10,000 elements, When identical copies
were presented, one to each eye, they appeared quite flat i.e. two-
dimensional. However, when a square array of elements in the centre of
the right-hand member of the pair was displaced sideways by a distance of
about four elements, this produced retinal disparity and the displaced
section was seen lying a plane in front of or behind the remainder of the
pattern depending on whether the lateral shift of the displaced section
took place in the direction of the nose or ear of the observer,

Due to the dot pattern experiments we can be sure that any percelved
3-D structure (such as the central square of the stereogran] must occur at
or after the point of fusion of the information from the two eyes, and no
earlier, In turn this suggests that the binocular fusion system compares
the fine-grain structures of the two monocular patterns, picking out those
points of the two that are similar and fusing them, but discarding (or'
ignoring) mis-matches, Understanding how it does this 1s the
stereoscopic matching problem

According to Marr and Poggio, stereo matching should take place
between elements which are reliably related to surface markings and
discontinuities, Clearly, for reasons given earlier, simple intensity
changes are poor candidates, Raw primal sketch canponents might be
better: in fact, Marr and Pogglo use =zero-crossings for matching
purposes, For them, physical considerations impose three constraints on
matching’

(1) a pair of candidate edge elements to be matched must
be physically similar if they have originated from the
same place on an object's surface (the compatibility
constraint).

(1) any item in one image should match only one item in
the other image [the uni queness constraint}),

I
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(111) disparity should vary smoothly almost everywhere in an
image (the continuity constraint),

Marr and Pogglio have proposed an algorithm for solving the
stereoscopic matching problem, It has five main steps,

1. Left and right images are filtered, at a range of scales
(Just. as if starting out to build a raw primal sket.eh].

2. Zero crossings are localized within these representations.

3. At coarse scale, matching takes place between pairs of zero
crossings of the same type in the two images,

y, Once matches have taken place at coarse scale, the output
‘ is used to control a vergence system which changes the
positions of the elements in the representations of left
and right images to bring them into correspondence, In
this way, the matching process gradually moves from dealing
with large disparities at low resolution to dealing with
small disparities at high resoluticn,

B When a correspondence is achieved, the final step is to store
the {nformation in a buffer store, called the 2 1/2D-sketch.
The reasons why it is called 2 1/2D instead of 3D is as follows.
We begin the explanation by recollecting that zero crossings in
the convolutions are caused by sharp changes in colour or
reflect ance of the swurface, scratches on the surface, sharp
changes in the shape of the surface, and so on. So, at
best the stereo algorithm returns disparity values along
some set of contours in the image. This means that depth
surface orientation can only be explicity determined along
such contours, To reconstruct a full 3-D description of
the surfaces at all points in the image, the method would
need to be extended. This is a cu'rent research problem,

So what 1s the value of stereoscopic vision? Julesz has suggested
that the main reason for i1ts emergence was to break the camouflage of a
motionless prey [it‘ it can do this, what effect would a binocular
representation have on our leaf problem?). Whether or not this is true,
binocular vision has enabled man to develop skills with his hands for
which the ability to make very precise judgments of depth, in particular
close judgment, is obviously very important. Before concluding this
discussion of stereo vision, we should note that stereo is only one of
many ways in which we see depth, and it only functions for canparatively
near objects (up to about 20'), after which the differences between the
images become so small that they become effectively identical.

Paychologists have discovered two additional souces of distance
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information, namely static and dynamic cues. The former are mainly
simple consequences of the geometry of the retinal image, and include
relative size, perspective and interposition whereas the latter are the
consequences of observer movement, and include motion parallax (where the
image of a near object moves a greater distance across the retina than the
image of a far object).
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RECOGNISING 3-D OBJECTS

So far, we have considered visual processing as a hierarchical
sequence of tasks, starting from the extraction of feature information from
an image, followed by partitioning the data to yleld evidence of the
existence of separate bodies. Now, we have reached the top level in the
hierarchy, namely recognising objects in a scene by matching properties of
these bodies with descriptions {(models) of objects stored in the computer's
memory.

The first question i{is what form might these models take? Given that
the shape of an object depends upon the viewing position (or in the case of
a fixed viewing position, the shape of an object depends upon its orienta-
tion), it might be thought that the computer will need to record all pos—
sible object shapes in its model, Recognition would be achieved when the
shape of the unknown body, or bodies, in the scene corresponds closely with
one of the model shapes. The difficulty is that any recognition system
equipped with many object models would have to store many thousands of
views in its models. Besides burdening its memory, searching for the shape
that matched the unknown body would be tedious, time-consuming and prone to
error.

How might the models be made more compact? The answer is to try to
build models which represent the invariant features of an object, i.e.
features which do not change with viewing position. Consider a rectangular
block viewed in two positions, as shown below:
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The edge information changes from one view to the other. What does not
change 1is the shape of the faces and their relationships. Consider the
vertex A, where the three faces intersect. In both views, point A is sur-
rounded by three faces of the same type, namely three quadrilaterals (a
quadrilateral is a plane bounded by four edges). So if the model of the
block represents the block as three quadrilaterals bounding a point, any
body in a segmented scene with these particular features will be seen as a
. block because the description derived by the low level processes will match
with the model description. Of course, the situation is more complex: the
2-D appearance of a block will be affected by the presence of other bodies.
If, instead of an isolated block, the object is an arch, as shown
below, the two supporting blocks will be characterised differently. Now,
we have two quadrilaterals sharing a common edge. So the model of a  block
must also contain this description, so that the body fragments in the arch
scene will match the block model.
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In scenes with multiple objects, a block may be occluded by another
block, as shown next. So this means that the block model must
respond to an even smaller picture fragment, namely a single quadrilateral
with a dangling line.
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Notice that the evidence that an object is a block becomes progres—
sively weaker, going from three quadrilaterals, to two quadrilaterals to
one quadrilateral, If there are models of other kinds of blocks in the
system, e.,g. rectangular wedge, hexagonal prism, then the weaker body
descriptions will also match these models (a rectangular wedge would be
modelled as two quadrilaterals and a triangular face; a hexagonal prism as
six quadrilaterals and a hexagonal face). In that case, the system would
try to match the body description to the most likely model first of all,

Suppose the system Is presented with the view of an arch. Suppose,
tco, that the system has identified bodies A, B and C as rectangular
blocks., This is but part of the story since the system does not know that
there 'is an arch in the scene, Just as it needs models so that it can
recognise bodies, it needs other models to enable it to recognise objects
made out of these bodies, These models will be more complex than the
models used so far. ’

So, how might an arch be represented? A convenient way of represent-
ing objects, parts and relationships 1is to use a directed graph, where
bodies are represented by nodes and relationships are characterised by arcs
linking nodes. Let's apply this technique to the arch structure. The
graph is shown overleaf.
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.

The top node is ARCH, which is decomposed into three nodes, A,B,C, each of
which 1s (i) a-part-of ARCH, (ii1) a-kind-of BLOCK, (iii) a-kind-of OBJECT.
To distinguish an ARCH from other structures which are similar to, but not

examples of, an ARCH, as below, we have to add additional informa-
tion.
/
B C
A R Cc
e

For example, block A must-be-supported by blocks B and C; block B must-
not—-abut block D, and so on. Note that this description does not refer to
any numeric properties of the image of an object, such as the shape of the
blocks. Since the object may appear in a scene viewed from any perspec-
tive, as below, numeric details would not be very useful aids to

recognition.

The abstract description captures the essential features that should be
invariant in any image of the object.
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Given that the recognition system is equipped with relational descrip-
tions as models of objects, the object recognition task can be seen as
involving two steps:

a) build up a relational description of the unknown body, in terms of its
components, their characteristics and their relationships;

b) compare this relational description with the set of stored relational
descriptions until a good match is found.

We will duck the problem of how the system builds the relational
description of the unknown object. Instead, we will focus on the second
task, comparing the unknown description with the model description.

An object description is a graph structure, made out of nodes and
relationships. A model description is a graph structure made out of nodes
and relationships. So the problem is to determine when two graphs match,
f.e. when they 'are isomorphiec. But again this is an over-simplification
since in the majority of cases the unknown object description will differ
in certain respects from its model due to imperfect edge evidence, missing
parts, extra parts, distortion due to the viewing perspective, and so on.
In other words, the description of the unknown object will be weaker than
it would be under ideal conditions. To restrict search time, and minimise
the likelihood of an incorrect match, it {s important for the system to
restrict the number of candidate models used for any recognition 1instance.
So rather than match an unknown description with each and every model, it
is preferable to use an indexing method. Each model is equipped with an
index of key features, such as the maln components and their connectivity
relationships. Given an index computed from an object in the image, a list
of models with the same index is immediately avallable. Indeed several
indices may be computed for a single model. Once the smallest set of can-
didates has been found, the actual comparison of descriptions can take
place .

Matching an object description with a model description produces a
list of similarities, and differences where they exist, For example, if
the object description contains all the essential components and relation-
ships stored in the model of an ARCH, the system will see the object as an
example of an ARCH. If, however, a relationship is present that the ARCH
model forbids e.g. contact between STANDING blocks, this difference will be
noted and the match will be rejected. Similarly, if some essential model
features are missing, the match will also be rejected unless the object is
occluded. Under these circumstances, the absence of essential properties
is tolerated.

Once the appropriate model has been selected, if it is equipped with
appropriate numerical data, the program could discover, for example, if the
object in the scene is a toy arch or life sized.
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INFORMATION THROUGH MCVEMENT

So far we have considered static scenes and stationary observers. But
more frequently bodies move, or the observer moves, or both, and the pat-
tern of light at the eye distorts in a systematic continuous way.

We begin by recollecting that when we discussed receptive filelds we
noted in passing that they were sensitive to motion in particular direc-
tions. Although carried out on animals, the results of the experiments
have 'been generalized to human viaion, giving support to the concept of a
visual information channel that is preferentially responsive to sideways
motion, We must distinguish between two different kinds of sideways
motion, real and apparent motion. Real motion is continuous displacement
of a body from one location in space to another location at a particular
velocity. If the observer's eye is stationary, a luminance discontinuity
in the retinal projection will be displaced across adjacent receptors at
the same angular velocity as those objects in motion. Apparent motion
refers to circumstances in which motion is perceived when there is no con-
tinuous physical movement in the real world. For example, if two nearby
stationary 1lights are alternately flashed, the observer will report seeing
a single light rapidly moving back and forth. In this case, since there is
no stimulus motion, the intervening receptors are not stimulated., Despite
this, we perceive the light during its flight across the space between the
two sources. This phenomenon is known as "phi", and is of course the basis
for motion pictures.

Consider a situation where light falls on a set of receptors at one
instant, and at a nearby set in the next instant, and so forth, succes-
sively stimulating adjacent retinal elements, How does the visual system
recover Information about the body? Once again we are confronting the
correspondence problem which we encountered when dealing with stereo
vision, In this case, the correspondences are between similar features
projected on to a single retina at different positions in successive time
periods. If the visual system is able to identify corresponding points in
successive time periods, it can specify the structure of the body and it
can compute its velocity from the positional change information,

The question is how might the visual system solve the correspondence
problem? In answering, we will consider a visual effect that was conceived
by Johansson. He presented patterns of dots on a screen, similar to those
shown overleaf (the links have been added to show relationships).
Although the dots appear to be ambiguous, naive subjects can tell in a
fraction of a second that they are seeing the movements of human figures,
Not only are they able to distinguish between walking and Jjogging move=
ments, but small anomalies like the simulation of a limp are also per-
ceived.

M
Ll



e

122

A ,/
//\\
7R
| \
| \
I Y
¢

Johansson hypothesised the existence of a low level processing mechan-
ism which extracts invariant relationships between the elements, presumably
corresponding to those invariant relationships which we extract when we
view people.

Besides discovering the visual effect, Johansson has also established
a new grouping principle to add to those which we have discussed previ-
ously. We will call it the constant-distance-apart rule. To 1{llustrate
it, let us consider some simple configurations of dots, 4s shown here:
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In {a) the stimulus consists of two bright dots In motion 1in parallel
tracks and with the same constant velocity. They are seen as being rigidly
connected and in motion along an approximately frontoparallel plane, Often
the dots are reported as end points of an otherwise Invisible stick or rod.
In {(b) the only difference from (&) is the direction of motion. Now the
dots are converging. They are atill seen as rigidly connected, forming a
rod, and this rod is seen moving in a straight track which goes obliquely
away from the observer at a specific angle to the frontal plane, l.e. it is
seen as moving in 3-D compared to the 2-D motion seen in the first "situa-
tion. In (a) and (b), the direction of the rod's perceived motion is at
right angles to the motion of the dots on the plane. This is a consequence
of the arrangement of the dots. Altering thelr relative positions, as
shown in (¢), does not influence the perceived direction of motion. Now an
oblique rod is perceived moving in 3-D.

When a third (non-collinear} dot i{s introduced, a surface is perceived
instead of a 1line. Given the dot arrangement shown in (2) overleaf, the
observer always sees 'a rigid triangle moving obliquely backward in space.
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In most cases, the surface is seen as having a frontoparallel direc-
tion {n space. As in the previous examples, the pocint of convergence
determines the perceived direction relative to the observer, For example,
concurrent motion towards a point in the centre of the triangle results in
a perceived motion of the triangle In a radial direction, as shown in (bl

How does the constant-distance-apart rule help us to Iinterpret pat-
terns of dots as human figures? Let us consider a simple case, namely
motion of dots in 2-D without oceclusion. Given a collection of dots which
represent a structure, one possible algorithm would be as follows:

1. In frame 1, link together all the dots into a network 1, where the
nodes depict dots and the arcs depict connectivity relationships,
ineluding length,

2, In frame 2, link together all the dots Into a new network 2.

3. Compare networks 1 and 2, and remove the connectivity relation-
ships between dots which have changed their relative positions from
frame 1 to frame 2, i.e., have changed their length,.

4. Compute velocity of movement, using positional changes of Invari-
ant features from frame 1 to frame 2.

Notice that the new description produced by comparing network 1 and
network 2 i{s a structural deacription of the body in the scene. By apply-
ing the constant velocity assumption, it would be possible to compute posi-
tions of the dots in successive time frames.

Essentially the above strategy was used in a program written by Clock-
sin, Having generated structural descriptions, the program alsoc recognised
these descriptions as instances of human activities like walking or falling
by comparing the derived descriptions with stored idealised descriptions of
these activities. In carrying ocut this analysis, Clocksin's system had to
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cope with some missing and extra body parts caused by some minor self-
occlusions by body parts, e.g. hand obscuring light at waist,

Recovering structure in this way 1is analogous to depth percepticn
through stereopsis, with successive frames substituting for adjacent images
and displacement values playing the role ¢f binocular disparity of ele-
ment.s.

How well does Clocksin's explanation confront the psychological data?
While it handles single figures moving sideways on a plane, it is far from
obvious how to generalize this approach to handle more complex problems.
For example, take a more complex case where there is motion of two human
flgures on a plane. If they are dancing together, the system will generate
a 3single network  to represent both figures, The question 1s how will it
segment the network into two sub—-networks. Can it do so without 1invoking
high-level knowledge about dancing?

To answer this question, we turn to work by Ullman at M.I.T. which

abandons the planarity assumption, For example, if a transparent beach
ball with tiny light bulbs mounted in randomly chosen positions on its sur-
face 1is set spinning in a dark room, the correct spherical layout of the
lights is seen immediately. When the spinning stops, so does the percep-
tion of the spherical array. The question is how does one see the correct
3-dimensional structure when very many 3-D structures might have produced
the moving 2-D retinal projection? The answer is that the interpretation
process must incorporate some internal constraints that rule out most of
the possible 3-D interpretations, In favour of a unique solution. These
constraints can be thought of as implicit assumptions about the physical
world which, when satisfied, imply the correct solution. The constralint
that Ullman proposes is called the rigidity assumption i.e. any set of ele-
ments undergoing a two-dimensional transformation which has a unique
interpretation as a rigid body moving in space should be Iinterpreted as
such a body in motion., Notice that Ullman's rigidity assumption is similar
to Johansson's observation that rigidity has a special role, as expressed
in his "constant—-distance-apart" rule.So, under the assumptions
1) that the correspondence problem has been solved, and
2) that the objects are rigid bodies,
Ullman has derived what he calls the structure-from-motion theorem. It
states that three separate views of four non—-coplanar points on a'rigid
object uniquely define the 3-D structure and motion of the object. The
implementation of this theorem involves the following steps

1. The image is divided into sets of four points

2. Each set is tested to see if it has a consistent rigid-
" body interpretation in the three views. In many cases, after
this first form there will be at least one consistent set for
each object in the image.

3. Each remaining point is tested to see if it belongs to
" one of the rigid body sets.

Ullman illustrates this through a more complex situation, one which
involves two sets of points arranged in two non-planar configurations, It
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comprises a projection of two co—axial cylinders on a display screen. Each
cylinder 1is defined by 100 randomly chosen points lying on its surface.
The common axis of the two cylinders is vertical.
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Each eye's view appears as a near-random collection of dots. However,
when the changing perception is viewed, the elements in motion'across the
screen are perceived as two rotating cylinders whose shape and angle of
rotation are easily determined. Is there a connection between Ullman's
work and Johansson's work? In Johansson's experiments, the correct 3-D
structures are seen even when the snapshots do not contain four co-planar
points. At best, in Johansson's snapshots only pairs of points are rigidly
connected, such as the ankle and the knee or the knee and the hip. Rigid
quadruplets of points just do not exist, This suggests that Ullman's
method cannot be used to segment a netwoérk of dots, representing a couple
dancing. A solution to this problem is still outstanding, as is a solution
to the  interpretation of dot patterns, representing figures which recede
and approach. The latter might be handled if the constant-distance-apart
rule is 1interpreted in terms of proportions of overall height of object
rather than in absolute terms.

Perception of causality

We turn now to consider another example of a program that interprets a
series of discrete images of objects that move in relation to one another.
It was developed by Sylvia Weir. She was interested in the phenomenon of
causality, first investigated by a Belgian psychologist called Michotte.
What Michotte did was to show human subjects visual displays of 2-D
coloured shapes such as squares, circles and triangles, which moved in
relation to one another at different speeds. He asked his subjects to
describe what they saw, and they reported impressions of objects, for exam
ple, billiard balls, chasing one another, pushing one another, passing by
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one another, and fleeing from one another. Although Michotte ¢laimed that
different subjects interpreted a given kinetic event in the same way, sub-
sequent Investigators have found that people are less consistent than
Michotte claimed.

Whereas Michotte argues that there 1s no question of an interpretation
being superimposed on the impression of movement, rejecting the effect of
past experience and an acquired knowledge of mechanisms, Weir suggests a
knowledge-based explanation. Briefly, her view 1is that information
extracted from a particular kinetiec pattern invokes one of a set of memory
models which describe actions like pushing, chasing and fleeing. Her evi-
dence takes the form of a computer program which interprets a representa-
tive selection of the kinetic situations used by Michotte, and In a way
which is consistent with Michotte's results, and those of subsequent inves-
tigators.

The program operates as follows. A kinetic pattern typical of the
kind used by Michotte is discretely sampled to yield successive pictures
representing successive instants in time, like the sequence of statiec pic-
tures making up a cine-film. Conceptually, the input is shown below:
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In practice, the initial grouping problem is avoided, and the program is
given descriptions of the pictures rather than the pictures themselves.
Obviously to compute motion, its first task 1s to detect changes which
occur from frame to frame. It does this by entering into its data-base
symbollc descriptions of the positions of elements in each rrame. A sym
bolic description takes the following form

[at R1 R screen [frame 1] [colour black] [shape square] [position] [name]

Next, it matches the symbolic descriptions representing elements in pairs
of successive frames to yield information about change of position, Making
matches at this level involves handling the correspondence problem referred
to above. That is, the program's task is to pair the descriptions of the
same object from successive frames although that object has changed 1its
position by an appreciable amount during the time interval between frames.
To illustrate this process, let us see what the program makes of the change
between frames 1 and 2. Comparison of the descriptions reveals that
regions R2 and RY4 have identical descriptions, which constitutes good evi-
dence for pairing them. However, R1 and R3 have different descriptions on
account of their differing positions, so they cannot be paired in a

straightforward way. Inspection reveals that their colour is the same and
differs from the colours of both R2 and R4, In the absence of any competi-
tors, the most sensible pairing is deemed to be R1 with R3 and R2 with R4.
So the program constructs a new description of the form

[A moves] [frames 2] [direction to~the-right]) [speed 2] [from 1] [to 3]
{B stationary] [frames 2] [direction 0] {speed 0] [from 6] [to 6]

The successful pairing relies on the fact that few objects move in the
environment {.e. there are no competitors to complicate the issue.

What the program tries to do now is to generate a symbolic description
of the relationship between objects in the scene, such as the fact that a
moving object A is approaching a stationary object B. Let us suppose that
the experimental instruction [fixate midscreen] was input as part of the
first frame's description., This instruction establishes the middie of the
screen as the reference point for A's movement, and this is reinforced by
the presence of object B as a target sitting at this reference point.
Under these circumstances, adding the description [A moves] to the data-
base results in a new description [A approaches B] [frames 2] [cue A moves])
being generated.

When this description appears in the data-base, it activates a pro-
cedure called a demon. A demon's job is to look ocut for a particular set
of circumstances. In this case, the demon is an impact demon which will be
on the look out for A reaching B.

Meanwhile, having computed A's speed, the program introduces the
assumption that objects move at constant velocity to enable it to predict
its positions in successive frames. On this assumption, the expected next
position of A 1s R5. Notice that besides simplifying the correspondence
problem, this assumption also enables the program to detect changes in the
speed of an object. In this case, however, the object is in the expected
position, so its movement will not be perceived as a change. In fact there
is a "no change" situation until Frame n-1 gives way to Frame n.
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To understand what happens when Frame n 1s reached, we need to
consider the program's knowledge about real actions, such as pushing,
carrying along, launching. Descriptions of these actions, expressed in a
network representation, are stored in the program's memory. For example,
as shown below, the description for pushing includes such components as (X

ey

approaches Y), (X collides with Y} (Y withdraws from X}.

agent of X
PUSHING
patient of Y
CAUSE
inanimate
event of result of
X tof
agent o : v qen% Y
COLLIDES WITH # WITHDRAWS-FROM
precedes
Y patient of patient of X
Aﬁmue
inanimate part of EVENT-SEQUENCE part of
X agent of
APPROACH of IMPACT ©®
precedes
Y patient of a Constraint: if preimpact speed of X < twice
post-impact speed, try triggering schema
inanimate b Constraint: if duration of contact >0-2 s,

Key:

i

then nonczusal

is 1o be read as: the node A can be viewed as
node B and all the nodes which
hang from it

isto be read as: B (is the) C(of) A

is to be read as: A has the property B

The four instances of X and of Y denote the same individual: this notation was used 1o simplify the diagram
by svoiding identity links between participants
Pushing schema.
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(X ipproaches Y} 1s also a component of the carry along description, shown
next.

agent of X

CARRIESALONG

' patient of Y

RESPONSIBLEFOR
nimate event of ] result of
f
X agent o + ) ag:n% Y
COLLIDESWITH #1 MOVE TOGETHER °
precedes
Y patient of patient of X
animate
EVENT SEQUENCE
part of Q pate of a Constraint: speed slow, camryalong
e agent of speed rapid. abduction
b Constraint: if duration of contact
APPROACH > IMPACT b >0-2 3, then noncausal
precedes
Y patient of

Carryv.along schema.

Both these descriptions were invoked when the lower level description (A
approaches B) was entered in the data-base, and both predict that an
impact will occur. This accounts for the fact that an impact demon was
triggered to look cut for A reaching B. When this happens, signalled by
the appearance of the description (A next to B) in the data-base, the
program infers that the expected collison has occurred and enters into the
data-base the description (A collides with B). This description invokes
another demon which has two tasks:
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(i) it modifies the region-pairing process. The constant-
veloclity assumption ls abandoned in favour of an absolute
pairing between R9 (in Frame n) and R11 (in Frame n+1)
with no sense of surprise. By pairing R11 (in Frame n+1)
with R13 (in Frame n+2) and R12 (in Frame n+1) with R14
(in Frame n+2) the program establishes that B has
started moving. This movement away from the midscreen
refer'cnce point produces the description [B withdraws
from MIDSCREEN]

(ii) it sets up a search for the consequences of the impact
predicted by the stored description(s) invoked. As a
result, when B starts moving, this movement will be
interpreted as a consequence predicted by a stored
description provided its time constraints are obeyed.
Notice that when more than one stored description is
a candidate, the time constraint information may be
the critical factor in distinguishing which one should
be rejected.

The program incorporates a number of subtleties which can account for
much of the variety In behaviour displayed by subjects undertaking the
psychological experiments, For example, being instructed to look at dif-
ferent places on the screen influences a person's perception of the kinetic
event, Above we considered the sltuation in which the centre of the screen
was the reference point. Suppose, instead, the reference point is the side
of the screen. The program doesn't expect anything tc happen at the cen-
tre. Instead, the screen jitself is the reference frame, and adding
[A moves] to the data-base description generates the description

[A movesacross screen] instead of [A approaches B]

This new description does not activate the impact demon so when Frame n is
reached there 1is no reason why the region-pairing process should be
altered. According to the rules invoked at Frame 2, R9 is expected to move
to the right but R10 iz expected to stay still. Consequently, at frame n+1
region R12 is paired with R9, and R11 with R10. But iIn the following
frames, odd-numbered regions are paired together as before, as are even
numbered regions. In other words, the picture sequence is interpreted as
one object passing over another stationary object. The change in colour at
Frame n+1 is noticed, but is treated as less significant than the fact that
the movement is the expected one, Analogously, Michotte's subjects saw the
passing effect under similar experimental conditlons, Some also saw a
amall retreat of the stationary object as the moving object passes over it.
This phenomenon is neatly explained by the pairing of R10 with R11 instead
of with R12, as previously pointed out.

Just how good a computational metaphor is Weir's program? We have
already seen that its interpretations of kinetic events are similar to the
interpretations made by human subjects. But while the interpretations may
be similar, are they produced in the same way? Just how well does the
mechanism in Weir's program confront the psychological data? There are a
number of weaknesses.
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While the discrete sampling notion seems to be useful because It
enables a system to judge change of speed by comparing actual changes of
position with changes predicted by some built in rule, 1like the constant
velocity rule, it introduces the correspondence problem. Matching the same
elements in successive frames in a scene of any degree of complexity 1s a
difficult task. At what level should the match be attempted? This ques-
tion raises the kind of problems investigated by Lamontagne who was unable
to solve the problem of whether to group feature points into a higher level
unit before computing motion of that unit, or whether to compute the motion
of individual feature points before grouping them 1Into higher level
unit(s)., 1In the latter case, the correspondence problem is particularly
difficult due to the large number of elements to be individually matched
from frame-to-frame,

If we abandon discrete sampling and inferred movement information in
favour of real movement information, can we avold the need to invoke
knowledge to account for the perception of causality? Put this way, the
answer 1s likely to be "no, we do need knowledge about different kinds of
motion so that we can communicate what we see to others", However, 1If we
ask whether or not we need knowledge to see objects in motion, the answer
might well be "no, we don't need knowledge to see something move", Unless
Wwe accept this latter statement, we have to face up to the logical problen
of accounting for the acquisition of the knowledge used to mediate percep-
tion by a system whose operation depends on its existence,

Of course, the constructionists i.e. those who believe that seelng 1is
model driven, might argue that the phenomenon of apparent movement, that is
our abllity to see an object in motion when the eye 1s stimulated with a
succession of static pictures, indicates that the human visual system is
able to infer the experience of motion. No-one would deny this: what 1is
at issue is whether the visual system was deliberately designed to infer
motion from static images shown in c¢lose temporal succession, or whether
the phenomenon of apparent movement is a side-effect of a system designed
to compute real motion. Of course, there could be a biological reason for
having a system capable of analysing both kinds of motion. A predator
stalking its victim over rough ground, through forest terrain’ and so on
would provide Iintermittent Information of 1its presence to its intended
prey. Being able to take advantage of fragmenting information would be of
considerable benefit.

What we may conclude, therefore, is that the low-level mechanism for
identifying the elements in the Michotte displays and for computing their
motion are implausible when the psychological evidence is confronted. How-
ever, notice the crucial distinction that arises between the ability to see
bodies in motion and the ability to talk about these bodies as objects
engaged in scme particular form of activity. Although we might wish to
discard the lower level mechanisms used by Weir, some notlion like schema or
model invocation is needed to account for the variability in the behaviour
of Michotte's subjects. Clearly a physicist would have a richer set of
kinetic analogies to draw upon to communicate his perceptions compared with
a non-physicist, leading to a variety of interpretations of the same pat-
tern of kinetic stimulation. However,it 1is quite another matter to be
asked to concede that a physicist's perception of forma, shapes and move-
ment patterns is entirely different from that of a non-physicist.
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CONCLUSION.

We started from the position that seeing is so easy that it
seems as if there is no problem to be explained. Through our
efforts at exploring the design of artificial seeing systems, whether
or not they operate in ways which are similar to the ways in which
the human visual system operates, we have gained some insight into
just how complex the underlying processes are. In the first
lecture, we noted that the theory of seeing which is most popular in
psychology and in artificial intelligence is the constructivist
theory. To recap, its starting point is the compression of the 3-D
visual world on to a flat 2-D pattern on the retina. Thus, there is
never sufficient information contained in a retinal pattern to
determine which 3-D scene accounted for that particular retinal
pattern. But since our space perception of scenes is both valid and
reliable, according to this theory we have to infer (Helmholtz's
term) the third dimension. It is argued that we do this with the
aid of additional information (called cues) contained in the retinal
pattern, in combination with stored knowledge in memory which has
been invoked to assist with the interpretation of the input data.
According to this theory, therefore, seeing is a knowledge based
process. The key issues are concerned with building rigorous
explanations of the way in which knowledge is stored, invoked and
used: no attention is paid to the issue of accounting for the
acquisition and organising of this stored knowledge.

Unfortunately, one way in which the theory is inadequate is
that it cannot explain how we can perceive bodies in a scene without
invoking stored models. In the absence of a mental model, we might
not be able to name an object; we might not know its function, but
at least we ought to be able to acknowledge its presence. From
studies of patients with severe brain injuries which render them
blind, there is evidence that such people can actually see without
knowing it. The patients in question undoubtably have injuries in
the visual area of their brains; they never see a flashing light
projected on the part of the retina associated with the brain damage;
in fact they deny ever seeing anything there at all. But if a light
is briefly flashed and if they are asked to guess its position by
pointing to it, they can do so with remarkable accuracy. They can
even guess whether a 1line flashed within the *blind" area is
horizontal or vertical, even though they claim seeing no line at all,
and find the whole exercise rather foolish, This phenomenon is
known as "blindsight", and it is thought that this kind of perception
is mediated by more primitive parts of the brain which were thought
previously only to control eye movements.

We also noted the alternative explanation of seeing, advanced
by the psychologist J.J. Gibson, to the effect that the succession of
retinal images contains all the information needed to construct a 3-D
representation of the visual world. Gibson's view is that this
would be obvious to theorists if they did not think of the retinal
image as a compressed or squashed two-dimensional picture, but rather

as a source of organised optical information. His theoretical
analysis suggests that the information content of the retinal image
is rarely if ever incomplete. Therefore, the perceiver does not

need to infer the third dimension, nor rely on past knowledge of what
the scene might contain. All he has to do is to extract relevant
information from an image to construct a 3-D representation of a



scene. 0f course, it is difficult to reconcile Gibson’'s view with
our own experiences, In particular, there is the problem of
accounting for many of the practical phenomena which produce varying
visual interpretations, such as the illusions, ambiguous shapes that
we saw during the first lecture, or Michotte's kinetic patterns, and
80 on

We will conclude by asking whether there is any way in which
these opposing points of view can be reconciled. The weakness of
the constructivist theory is the inadequacy of the low-level
information gathering mechanism, whereas the weakness of the theory
of ‘direct perception’ is the lack of high-level interpretative
mechanisms. Putting the two together would solve many of the
problems thrown up by the separate explanations, and would enable us
to hypothesise two different kinds of seeing, namely exploratory
geeing and predicted seeing. The distinction between these two
kinds of seeing is that exploratory seeing would be data driven for
the purpose of building up memory models of objects and events,
predicted seeing would be model driven in a goal context.
Obviously, exploratory seeing would be a time-consuming process due
to the large amount of information being handled by a system which is

inherently slow (the nervous system). In contrast, predicted seeing .

would be a selective, hence fast, process, more in tune with a
rapidly changing visual world.

We have already looked at some examples of predicted seeing in the
form of the programs written by Roberts and Weir. We have also
considered a simple example of exploratory seeing, in the form of the
program written by Winston which builds models of objects from
examples. The challenge for the future is to combine these
approaches within a single computational model.

B

[*S

o

p— e [ ] p=—=m
L

S

=

e



APPENDIX

136



—_—— ——— ——




APPENDIX

TabLe 1

(The top table shows the intensity values for a small section of the i image PLANT
lower table gives the values of edge-mask convolutions over the same region. Only residual decay from
the edge above this region is measurable. No general-purpose edge-finder could discern the edge of the
ncarer leal in this part of the image.)
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