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INTRODUCTION

"Howvision possible?"

Although the question has been addressed by philosophers and
scientists for more than two thousand years, we cannot answer it with
any degree of confidence. While the vast body of research work

carried out by psychologists and physiologists has provided an
enormous amount of information about both the human vision system's
performance (by means of psychophysical experiments) and some of its
neurophysiological structures, we still lack adequate explanations of
how it functions. Some attempts have been made to provide
functional explanations in the form of analogies with the
technological devices of the day. An early example is the analogy

between eye and camera; a more recent one would be an extension of

the analogy from the still camera to the TV camera, and 80 on. In
fact such analogies have been extremely influential: the analogy

between eye and camera has dominated twentieth century psychological
research into vision. Unfortunately, it has also misled it due to a
confusion between structure and function. From a structural point

of view, we can readily map between parts of a camera and parts of
the human eye - both form 2-D images by means of lenses which bring
light to a focus on a surface (film or retina). In the case of the

camera, we all understand the next step - we take the film out of the
camera, develop it, make prints of the frames and look at them. But
these prints are only meaningful when an intelligent agent looks at
them and makes an interpretation. In the case of the eye-camera
analogy, what is the equivalent of processing the film and
interpreting the prints? A much favoured explanation was the notion
of an "inner screen", situated in the visual brain, on to which a

"picture" of a scene was mapped. While this dealt with part of the
problem, the print, it did not address the other part, the

interpretation of the print. If we pursue the analogy, we can see
that the logical conclusion is that there is a second observer inside
the visual brain who looks at the ‘picture on the inner screen’.
Presumably, the outcome of his perception is another picture on his
inner screen, which is viewed by a third observer who is inside the
visual brain of the second observer who is inside the visual brain of
the first, and so on. In other words, the attempt to explain the

process of vision by means of an analogy between eye and camera leads
to an infinite regress.

While this logical fallacy ought to have disposed of the eye-camera
analogy for once and for all, instead its influence has pervaded 20th
century visual psychology. Since the eye has a two-dimensional light
sensitive surface, psychologists have regarded space perception, i.e.
3-D perception, as paradoxical. This has led to the question "what
additional information and what properties of the two-dimensional
image give rise to three-dimensional experiences?". Until recently,

the experimental psychology of space perception has been dominated by
this problem, the quest for additional pieces of information which,
when added to the flat image at the back of the eye, make 3-D

perception possible. What this information is need not concern us.

It is sufficient to note that the concept of perceiving 3-D space
through the use of supplementary information is a by-product of the
eye-camera analogy. The job of combining the supplementary
information with the two dimensional images received from the eyes to
Promote judgments about the relationships of objects in depth is akin



to that of an air-traffic controller. The controller observes a
radar screen that provides a two-dimensional representation of the

air space under surveillance. He must obtain information about the
third dimension, altitude, from the signal sources such as radio

transmissions from the aircraft. He has to combine the 2-D
positional information from the radar set with the altitude
information to make judgments about the paths that should be taken by
the aircraft.

To interpret, or not to interpret.

It would seem that an adequate theory of vision has to explain the
interpretative processes that give meaning to the information
extracted from the physical world by the eye.

However, not all vision psychhologists would agree with this
statement. In particular, J.J. Gibson favoured what is often

described as a theory of ‘direct’ perception. Starting from the
question, How does one obtain constant perceptions in everyday life

on the basis of continually changing sensations?, Gibson argued that
vision was concerned with the recovery of valid properties of the
physical world (called "invariants") from the ever changing sensory
information, whether due to changes in the intensity of stimulation
or to movement of the observer. Thus, he wrote that the "function

of the brain, when looped with its perceptual organs, is to decode
signals, not to interpret messages, nor to accept images, nor to
organize the sensory input or to process the data, in modern
technology. It is to seek and extract information about the
environment from the flowing array of ambient energy." As Gregory
has pointed out, (Gregory, 1981), Gibson’s explanation is reminiscent
of one of the earlier theories, advanced prior to the discovery that

light formed images of objects on the retina, which suggested that
objects gave out ‘husks’, or *simulacra’. which acted as

intermediates when we see (the same idea can be found in the ’sense-

data’, proposed by the philosophers Broad and Price).

The contrasting position, held by Descartes, Helmoltz, Gregory and
others is that perception is a constructive process, involving
inferential reasoning over sensory information and knowledge of the
world stored in memory. This explanation was motivated by many
observations that perceptions frequently do not correspond to their
physical correlates. Obvious examples include brightness constancy
(the surface of an object appears evenly lit, even though the
physical illumination varies across it), size constancy (the
perceived size of an object is not determined by the size of its
retinal image, and shape constancy (similar to size constancy).
Less obvious examples are the many and varied 2-D and 3-D optical
illusions, ambiguous shapes, and so on, made so popular by Gregory,
and used to underpin his argument that the human visual system's task
is to evaluate alternative visual hypotheses against the available
sensory information. Some of Gregory’s favourite examples are shown
below. The upper illustration includes (a) the Muller-Lyer and (b)
Ponzo illusions; the lower includes (a) Hawk/Goose, (b) Vase/Face
and (c) Wife/Mother-in-Law.
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One of the most dramatic examples cf the interpretative capability of
the human visual system is Ames Window. He designed a trapezoidal
window that resembles a rectangular window viewed from an angle.
When viewed from a sufficient distance with one eye only, the
rotating window appears to be oscillating. The direction of
rotation is correctly reported during the 180° rotation for which the
longer side of the window is close to the observer, and incorrectly
reported during the 180° for which the shorter side is closer. When
& rectangular window is rotated with the same viewing conditions, the
direction of rotation is correctly reported throughout the 360
cycle. Why does the motion reverse in the former case, but not in
the latter? Obviously, the shape transformation produced by
rotating the trapezoid differs from the shape transformation produced



when a rectangular window is rotated (or more likely when we walk
past rectangular windows). In theory, the visual system would

explain this difference in two ways, (1) by accepting continuous
rotation and allowing the structure to deform, or (2) by accepting a
rigid structure and varying the rotation. In practice, as we shall
see in due course, the visual system prefers interpretations which
favour rigidity, so the latter interpretation is preferred.

If we go one step further, and place a solid rod through the mullions
of the window, a further paradox is created. While the window

oscillates, the rod turns in one direction only. This is

impossible. In general, the mind refuses to accept that the rod can
pass through the solid mullions of the window. Instead, most people
perceive the rod twisting and bending around the window structure,
even though they are well aware that it is a solid object. In this
case the brain is prepared to abandon the rigidity assumption as
applied to the rod in favour of maintaining the rigidity of the

larger, more complex object, the window.

These two types of theory are at the opposite ends of the dimension
and, in some sense, represent extreme positions. It seems likely
that Gibson adopted his stance through a desire not to fall into the
"inner eye" trap. While it cannot explain many of the phenomena
cited by the proponents of the knowledge-based approach, Gibson’s
approach did draw attention to many, previously ignored features of
optical images. Those favouring a knowledge-based approach, on the
other hand, have not been able to explain how knowledge is stored.
how it is invoked, how it is reasoned over, whether the gathering of
information is affected by the internal processing, and a host of
other equally apposite questions.

The role of computational vision.

Workers in the area of computational vision in AI are also trying to
build a theory that explains the phenomenon of human seeing.
However, the type of theory that they favour is called a process
theory. What this means is that the theory should propose effective
procedures for interpreting the visual data captured by the eye, with
the objective of generating some specified perceptual output.

Some functional requirements of such procedures are as follows:

* Geometric modelling. Determine the 3-D configuration of
surfaces and objects in a scene, including the viewer’s location

* Photometric modelling. Determine the location and nature of the
illumination sources and the corresponding shadowing and
reflectance effects induced in an image by the scene.

* Scene segmentation. Partition the scene into coherent sub-units

that can be independently analysed and identified.

* Naming and labelling. Identify objects visible in a scene
either as members of known object classes, or as known
individuals. Determine physical attributes of recognised
objects.
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* Relational descriptions and reasoning. Determine’ the
relationships between objects in a scene. Determine how they

can be re-arranged to achieve some specific purpose.

* Semantic interpretation. Determine the function, purpose,

intent, etc. of objects in a scene.

The digital computer is the tool favoured by AI research workers for
building a process based theory. To identify its role, we can make
an analogy betwesn building and testing symbolic models on a
computer, and building and testing physical models using a mechanical
construction kit, such as Meccano., Building a mechanical mechanism
is done by selecting appropriate mechanical parts from the kit, e.g.
using an electric motor to drive a mechanical model of a car.
Building a symbolic mechanism is also done by selecting appropriate
symbolic parts, i.e. commands, from the list of symbolic commands
provided by the programming language, putting them together to form a
program, the structure, and testing that program by running it in the

computer. In both cases, the mechanism, physical or symbolic, will
generate an action sequence, or behaviour, which is open to
inspection and interpretation by the designer. The extent to which
the mechanism's behaviour satisfies the programmer's expectations in
some sense tests the adequacy of the underlying design of the
mechanism. If this is close, modest changes to the mechanism may be

sufficient to achieve the expected performance; but if it is wide, a
reconceptualization might be required. This, then, is the
methodology of computational vision.,

Of course, for a digital computer to deal with the visual world in
this way, the signals acquired by its imaging device must be
converted into symbols. The signals-to-symbols paradigm is
illustrated below (from Fischler & Firschein, 1987) where a series of

inductive steps employing progressively more abstract representations
transform raw sensory information into a meaningful and explicit
description. These steps are partitioned into three broad
categories, depending on the kind of modelling required for analysis
purposes: low-level analysis is based on local image properties,
intermediate-level analysis uses global properties, and high-level
analysis employs semantic models and relationships.

 

Intermediate High-level
level analysis analysis

 

 Signal Symbols

 

TheSignals-to-Symbols Paradigm for Computational Vision,   Raw sensed data are transformed into a description of the scene by a series ofinductive steps.
 



Objective of the course.

The purpose of this course is: to use the computational approach to
explain how we come to see a three-dimensional world containing
objects that have stable sizes and shapes. To assist us, we will
make a simple comparison between man and machine, as shown below.
The ultimate goal of computational vision is to achieve a symbolic
interpretation similar to that of man for the same input pattern.
The right hand side deals with the artificial vision, whereas the

left hand side deals with biological vision (in man). Since

relatively little is known about artificial systems, the kinds of
processes employed by the latter system will be used to throw light
upon possible biological analogues.
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The material is broken into three sections, corresponding to the
three levels of analysis described above. The first level will be
concerned with computational procedures that illuminate’ the
neurophysiology of vision; the second level will examine some facets

of intermediate level analysis from a computational standpoint, and
the third section will deal with computational aspects of visual
recognition.

 



 

 

LIGHT AS INFORMATION

We will begin by considering how light transmits information about the

structure of the environment to the eye of the perceiver. To help us, we

will distinguish between radiant light, that {3 light emitted from an

energy source such as a sun or star, and ambient light, that is, light
reflected by the surfaces in the environment. Ambient light is much more

complex than radiant light, so we will start by briefly considering radiant

lignt. Radiation is shown beow:

 

 

  

  

 

 
 

The light rays diverge from the source, the lamp, and if they were in an

empty space they would continue indefinitely. Only a very few rays are

shown, but there are infinitely many rays present. Unless reflected, all
an observer would see 1s a luminous spot at the source.
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* Radiant light contains information in the form of a distribution of

wavelengths. But while optical instruments can determine whether a partic-

ular mix of frequencies has been produced by an incandescent source, or a

fluorescent source, the human eye cannot interpret the distribution of

wavelengths, nor can it measure their absolute intensities. This is not

the kind of information that an eye can pick up. Instead, the eye is

designed to make sense of ambient (reflected) light’ and differences in

light intensities. Reflection is shown below:

 

 

  
 

If the surfaces are not smooth, tne rays of light are scattered in

various directions, depending on the micro structure of tne surface at each

position. For example, the rays reflected by a matte surface, i.e. a rougn

surface, ere more scattered than the rays reflected by a polished surface,

i.e. a smooth surface. Indeed, as a surface gains in gloss, shine or lus-

tre so the amount of Scattering is reduced. The limiting case is a mirror,

when scattering is eliminated.
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When there are a number of surfaces facing each other, the light
bounces from surface to surface endlessly. At this stage the environment
is sald to be illuminated. An infinitely dense network of light rays is
ereated - in other words there are intersecting rays at every point in the
space enclosed by the surfaces. The converging and diverging rays cannot

be represented in a diagram, but must be imagined.

Now we will consider a point in a room with facing surfaces, as shown
below. The radiant light is omitted:

 PCS

~,

X,
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Instead, the lines in the diagram correspond to the edges and corners of

surfaces facing in different directions. They are the boundaries between
bundles of light rays. The reason for these boundaries is that the sur-
faces of the room reflect different amounts and different colours of light

to a convergence point.

For example, two adjacent surfaces which have the same microstructure
but which are set at different angles of inclination to the light source

will project different intensities. Two adjacent surfaces which have dif-

ferent microstructures or different pigmentation will project different

intensities, even if they are set at the same angle of inclination. In

both cases there will be a variation in luminance where the two surfaces

meet. This variation is seen as an edge.

So, in summary, ambient light is not a random collection of light

intensities, but is an organized collection of intensities, the organiza-

tion being imposed by

(1) the physical inclinations of the surfaces

(2) the reflectances of the surfaces, and

(3) tne spectral characteristics of the surfaces.w

Now we introduce an observer, as shown below:
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His eye admits a sample of the total ambient lignt. Now, for every edge in
this sample there is a corresponding edge on the retina of the eye. In the

case of a stationary observer, these edges are represented dy variations in

the luminance at different positions across the retina.

If information about structural dispositions {is conveyed by luminance
patterns, seeing that structure should boil down to detecting the presence

of these luminance variations in the sample of ambient light at the retina.
For example, an abrupt change in luminance might be interpreted as signal-

ling the edge between the surface of an object and its background. A gra-

dual change in luminance, on the other hand, might represent a convex or

concave edge between two surfaces of a given object.

But unfortunately in the real world the situation is not so simple.
Luminance variations do not necessarily represent edges at all. They can

also represent highlights, shadows, illuminations, gradients across sur-

faces, dirty surfaces, scratcnes, and so on. In other wores, the informa-

tion in the luminance distribution is highly ambiguous. Yet we rarely con-

fuse a shadow edge with a real edge, so the human visual system is able to

cope with this ambiguity. This is a crucial problem whicn we nave to solve

in cue course. .
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ARTIFICIAL EYE

Quantization

It is time we turned our attention to artificial eyes. We
will consider how an artificial system might build a symbolic
representation of an object in a scene, where the symbols denote
candidate edge prints. After that, we will try to use what we have
learned from building the artificial system to help us understand
what kinds of local computations might be made at the level of the

human eye.

For the time being we will be considering a single block on a
table top. The light reflected from the block is focused on to the
sensitive surface of a phototransducer, a device for converting light
into an electrical signal, where it forms local patches of light and

dark. These variations in luminance carry the information about the
features of the block in the scene. Recollect that any edge or
contour is specified by this variation. For example, an abrupt
change in luminance might indicate a boundary edge between object and
background, whereas a gradual change in luminance might indicate a

convex or concave edge between two of its surfaces.

The first step is to convert scene luminance information into
an array of numbers in the computer’s memory. This is done by

moving a small window over the image and measuring the average
luminance level within the window by means of a light sensitive
device called a phototransducer. The process of moving the window
over the image is called scanning. A simple image acquisition

system, using a mechanical scanning device, is shown below:
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The phototransducer is mounted on a moving carriage which
travels across the image from left-to-right, and back again. Each
time it changes direction, it also moves down the image by a small
amount. The output from the phototransducer is a continuous
electrical voltage signal whose size varies according to the
luminance level at its input. This continuous signal has to be
converted into an array of numbers by sampling the signal at regular
time intervals (corresponding to regular spatial intervals over the
image) and then approximating the measured voltage values at the
sampling points by the nearest numerical values in a pre-defined
range of integers. The sampling points, the 2-D positions in the
image at which the samples are taken, are known as elements,

commonly abbreviated as pixels. The process of converting the

signal into numbers is often referred to as quantization.

The output from quantization is an array of numbers, usually
referred to as the grey-level description of the image.

The number of image points, or pixels, making up a computer’s
grey level description, varies according to the capabilities of the
computer (for example, the size of it memory) or the needs of the
user, For example, the use of a dense array of pixels will require
a large memory store and produce a grey level description that picks

up very fine detail. For example, an ordinary domestic TV set"

produces an image in pixel form with an array size of 625 x 625
pixels. The individual pixels are so tiny that they cannot be
readily distinguished (unless a large TV screen is viewed close to).
On the other hand, it may be necessary to use large pixels, each of
which represents a large local area of the input image, in which case
a full-tone printout produced to the same scale takes on a block-like
appearance.

The word precision is used to refer to a_ grey-level
description’s ability to represent fine detail in an image. But
even if the processing is precise enough to capture fine detail, some
of the grey-level information might be lost or altered in the process
of placing the digitised image in the computer. This is the
accuracy dimension of the problem. Such losses may be due to

imperfections in the performance of the transducer, e.g., non-linear

scan; to errors introduced by the process of converting the image
from analog to digital form, or simply to electrical noise in the
analog circuitry. This noise is intrinsic noise, i.e., it is due to

the operation of the mechanism, it is not due to external factors.

The effects of intrinsic noise can never by fully eliminated.
Notice that the most common form of error introduced by intrinsic
noise consists of small isolated regions of the picture that are much
brighter or darker than they should be. To eliminate many of these
problems, a smoothing operation can be used. Basically, smoothing

operations rest on the assumption that the actual scene consists of
areas that are very much larger than the areas represented by a
single point. Accordingly, picture points that differ markedly from
their immediate neighbours are errors that ought to be removed.
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The following procedure describes a simple smoothing operator:

If any point in the picture is brighter than all of its
eight immediate neighbours, its luminance value is
reduced to make it the same as the brightest of its
neighbours; if any point in the picture is dimmer than
any of its eight immediate neighbours, its luminance
value is increased to make it the same as the dimmest of
its neighbours.

Notice that this operator is conservative in the sense that it
removes some of the noise without reducing the amount of information
in the representation. In particular, it eliminates isolated noise
points, but has no effect upon noise that occupies two or more

adjacent pixels.

A simpler, more liberal smoothing operator that would reduce
the significance of larger regions of noise is:

Replace the luminance value of each point by the average
of the luminance values of its eight immediate
neighbours.

Unfortunately, the application of this operation to every point
in a picture will have the effect that every edge will be blurred.
Indeed, several successive applications would wash out the entire
picture. Clearly, therefore, smoothing operators are useful, but
must be carefully chosen to try to eliminate whatever kind of

intrinsic noise is present in a digitised image, without also

removing significant features.
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Selecting edge points

We turn now to consider the next step: identifying pixels which are

hinting at the presence of edges in the grey-level description i.e.

candidate edge points.

Suppose we have two adjacent regions, one bright and one dim:

 

Bright . Dim,

    

If we meke a one-dimensional plot of the luminance values fron left-to-

right, «e get the following srapn (often called a step function):

May,
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We are interested in detecting the discontinuity between tne light and the

dark regions. The effect of the differences in absolute level of luminance
ean be eliminated oy taking tne first derivative of the step function.

Min,
 

Suppose the maximum luminance value of the function is 10 an the mininoum

value is 1. The one dimensional graph beccmes:
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Now, suppose we sample the function in one dimension, as follows:

1s 7 Somyle persts
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Tre first cerivative is calculated by taking differences. Starting with

samples 1 and 2, the value of the function is 10 in both cases, so the

aifference is 0. It is also 0 for samples 2 and 3. But when we get to

samples 3 and 4, tne difference is 9. Moving to samples 4 and 5, we get a

difference of 0, and again when we take 5 anc 6,

we can plot the first derivative in one-dimension as follows:
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In an image, the values are changing in two-dimensions, not one-

dimension, so we want to take the differences in orthogonal directions. A

suitable operatcr for two-dimensional differencing is the following

(usually referred to as the Robert's cross operator):
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Suppose we have the following fragment from a grey-level description:

Column A B C D E F G

Row 1 1 1 2 4 5 5 5

2 1 1 1 5 6 5 5

3 1 1 1 48 6 5 §

4 1 1 1 565 5 6 5

 

 

    
Gx = (1-1) + (1-1)

= 0

If, however, we take cells Ci, C2, D1, D2, and apply the operator, we get

 

 

    
Gx = (2-5) + (1-4)

= 6

If we look at the data, we can see that there are two relatively

homogeneous areas: one is to the left of column D, viz. columns A-C, and

the other is to the right of column D, viz. D-G. The discontinuity lies

between C and D. The presence of this discontinuity is suggested by the

high value returned by the cross operator when applied to the cells C1, C2,

D1 and D2. Similar high values would be returned for cells C2, C3, D2, D3;

C3, C4, D3, D4, and so on.

In practice, diagonal differences are calculated between adjacent

pixels across the whole image. The resulting values are stored in a new

array (sometimes called the iffe ia escr ). This new

representation contains the candidate edge points. Obviously, low values

correspond to areas of uniform luminance (e.g. background, surfaces of

objects), whereas high values are most likely to be associated with changes

in the luminance caused by edges in the original scene.
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THE HUMAN EYE

Structure

In a typical environment, objects are diffusedly illuminated, that is,

light rays are reflected off objects in all directions. How does the eye

capture them? One answer {s that the human eye captures light rays in

similar fashion to a camera. Consider the following diagram:

CONJUNCTIVA .

 

  
SUSPENSORY
UGAMENT    

   

   

CORNEA. |
“

CIUARY

MUSCLE
. ‘

SCLERA CHOROID RETINA:

 

Lignt enters the eye through the cornea, a tough protective membrane which

acts like a convex lens, bending the light rays togetner. Behind the

cornea is the tris, a coloured annular muscle which opens and closes like a

camera diaphragm. The small round aperture in the middle of the tris is

the pupil. To record a scene in full detail, a camera film must receive a

particular dose of light energy. This is done by setting an exposure time,

and varying the size of the aperture. Tne choice of exposure time and

aperture size is a trade-off. A long exposure time, using a small

aperture, will produce a better defined picture since the amount of

scattered light is reduced by the small aperture - but the problem is

keeping the camera steady to prevent blurring due to camera mcvenent.

Shortening the time minimises problems of camera movement, but the aperture

must be opened up So the quality drops off due to increased light scatter

within the camera. In similar fashion, a retinal cell must receive a

minimum amount of energy before it will fire. So here, too, there is a

trade off between intensity and time, but there is one substantial

difference. i‘ihereas tne sensitivity of a film is fixed, the sensitivity of

the retina varies in a manner that relates to the prevailing lighting

conditions. This process is known as adaptation, and it is this process

which enables the eye to detect variations in luminance over a wide range

of light levels. In the case of a camera, one has to use films of

ciffering sensitivity for photographs taken at widely different levels.  
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Going back tothe pupil, we can see that its role is confined to making

minor variations in the sharpness of the image: unlike the camera

diaphragm, it is not an essential {mage forming component.

Light passes through the pupil to the lens. To focus light rays in a

camera, the lens-to-film distance is altered slightly. In the eye, the

lens focusses light by changing its thickness, and hence its refractive
power, i.e. ability to bend the rays. This is achieved by the action of a

muscle/ligament arrangement which alters the curvature of the front face of

tne lens.

But there is yet another difference between the camera lens and the
lens in tne eye. Camera lenses are multi-layer lenses, carefully shaped to

overcome various problems like chromatic and spherical aberration,

Chromatic aberration occurs if a lens is unable to bring light rays of

differing frequencies to a focus at the same depth plane. Spherical

aberration refers to shape distortions, caused by slight variation in the

curvature of the lens. Unlike the camera lens, the lens in the eye suffers
from botn defects, thus the ftmage quality at the retina is less than that

at the film plane in a camera.

Since the eye is a living thing, it has to %e suppliec witn

nourishment. The spaces between cornea and lens, and lens and retina, are
filled with a clear glutineous mass whicn provides the nourishment,

besides nelping the eye to keep its snape. The energy in tnese fluids is

replenished by a network of blood vessels inside the eye, between tne lens

and the retina. With the exception of a small area in the middle of the

eye which is not obstructed by blood vessels, light reaches the eye by

passing through these blood vessels. That we do not see shadow images from
them is due to the fact that light always reaches the retina from precisely

the same direction, down the optical path, so that receptors in the shadow
of obstructions can selectively adapt their sensitivity. This adaptation

prevents the fixed obstructions being seen provided the shadow images

remain stationary on the retina. In fact, the retinal blood vessel

structures can be seen by dark-adapting the eye, by placing a small torch

in close contact with the shut lid of the eye, near its side, and by moving

the torch with regular oscillation. This projects a shadow Image of the

structure on to non-adapted receptors. So here is another way that the eye
differs from a camera: there are no obstructions between the camera lens
and the film during the picture taking process.

But blood vessels are not the only structures interposed between lens
and the photo-receptive layer of the retina: the retina is actually

"inside out" so light also has to pass through retinal structure before

stimulating these cells. These are shown in the drawing, opposite.
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Let's look at tnis structure in a little more detail. First of all, the

retina of the eye has 136 million receptor cells. These extend

approximately 100°from the visual axis. Tnese cells are distributed much

more thickly at the centre of the retina than at the edge, falling from a

density of 160,000 per square millimetre at the centre tc 1,000 per square

millimetre at the retina's edge. Again, the eye differs from a camera

wnere the film is equally sensitive all over: this variation in sensitivity

across the retina accounts for our ability to perceive sharp detail in

front of our eyes but only crude shapes at the side.

The structure is even more complex since there are two kinds of

receptor cells, namely cones and rods. Althougn there are only about 6

million cones, compared with approximately 125 million rods, our normal

day-time colour vision is tnought to be due to the action of the cones

which are most densely packed in a 1~ sized central region of the retina,

called the fovea centralis which is rod free.

The recepter cells convert light energy into electrical signals in

nerve fibres. Wwe will look at the properties of cells in due course. For

the moment, notice that the rods and cones connect with a set of retinal

cells called bipolar cells, wnich in turn connect with retinal ganglion

cells whose fibres form the optic nerve which links the eye to tne visua'

area of the brain. totice also that the nerve fibres from the peripneral

parts of the retina sxirt around the foveal area, minimising the amount of

Oustructicn. nevertheless, oujects insice the eye in tne foveal ares cun

be revealed by using a piece of card with a pinhole in the centre. It is
placed before the eye, looking at a bright field, and oscillatec. By

blocking off most of the lens, only rays from one direction can reach the

retina. By moving the card, the direction of these rays is altered, so

snifting the snadows of the objects across the receptors. The internal

structures revealed are different from those seen with a moving light since

the fovea is free of blood vessels.

Because the retina is inside out, the optic nerve has to pierce the

retina to get out of the eye. The place where it leaves is called the

“blind spot", If an image is projected on to that spot, it will not te

perceived. Yet we don't see our blind spots - we don't experience a gap in

our view of the world around us!

So we can see that the eye is a very blunt instrument, compared to a

good quality camera. Yet the remarkable thing is that our view of the

world is not blurred nor incomplete. Indeed, it is remarkably acute. For

example, we can discriminate at least 100,000 different hues: we can see

fine details, subtending visual angles as small as 2-5 seconds of are (thot

the distance betveen the cones {s about 25 seconds of are where the packing

density is highest).

To escape from this paraacx, we must stco thii.king of the eye as an

image forming optical device, and begin thinking of it as a device for

converting patterns of light and dark into a coce, a set of symbols, that

can be manipulated oy internal processing mecnanisnms.
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Function

When we discussed the structure of the eye, we noted the existence of

several types of cells, namely receptor cells, bipolar cells and ganglion

cells.

Apart from cone cells in the fovea wnich are linked individually to the
visual brain, each ganglion cell is stimulated by a numoer of bipolar
cells, and each bipolar cell is stimulated by a number of receptor cells.

The extent of the convergence from receptor to ganglion is indicated by
noting that one million fibres, in the nerve which connects the eye to the

brain, carry information obtained by the action of some 130 million
receptor cells. To use a computing. metaphor, we might think of this
retinal structure as functioning as a "front-end processor", carrying out

local computations on benalf of the main processor, i.e., the visual brain.
Usually, a front-end processor is used to reduce the computational load on

the main processor; in this case, it is probably provided to reduce the

number of separate fibres in tne optic nerve since a nerve with 150 million
fibres would make it difficult to move the eye, due to cable drag. what we

are interested in is discovering what kinds of local computations this

frontcenc prccessor miznt te carrying cut -- always bearing in mind the

operations carried out by the artificial system discussed previously. In

other words, can we detect neutral mechanisms for computing grey-level
descriptions, identifying candidate edge points, anc so on? This is our

task.

we will begin by examining the properties of the retinal cells since

they are tne primitive components of the computational mechanisms. Wwe will
start with the receptor cells, rods and cones. Neurophysiological evidence

from studies of the retina of tne mud puppy, a fisn that lives in the

depths of the silt laden rivers, is nelpful. Because it has large retinal

cells, the technique of single cell micro-electrode recording can be used

to investigate the cells' properties. with this technique, a fine wire

probe is placed beside a cell body. A light stimulus of appropriate type
is projected on to the eye, the output from the cell is picked up by the
micro-electrode, amplified and recorded for interpretation.

nat the experiments have shown is that the mud puppy's receptors

respond to the luminance of the input pattern in just the way required to

create a grey-level description, i.e., the response of the receptor cells

is proportional to the light intensity prevailing. So the voltage signal

prodcucec by the cell is equivalent to the voltage signal produced by an

artificial sensor, at some (x,y) pesition, before conversion of that

voltage into a numerical value and placing that value in the grey-level

description.

de saw that the values in the grey-level description are normally

organized as a rectangular array since most artificial sensors scan/ sample

the image in this way. This is equivalent to a set of cells organized as a

2-dimensional linear array, each producing its own voltage signal for

subsecuent conversicn into a discrete value (as in the case of the  
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photodiode array sensor referred to previously). In the case of the human
eye, the essential difference is that the receptor cells are organized in

diagonal arrays, similar to the arrangement of the cells in a bee's

honeycomb. This suggests that we must look for an edge element operator

with a somewhat different structure from the simple 2 x 2 operator used in
the artificial system. Note too that whereas the artificial system built

up its grey-level description in a serial fashion by scanning the image

from left-to-right and from top-to-bottom, the eye uses a different

strategy. Biological visual systems have developed a parallel processing

capability. That is, they have chosen to replicate components so that all

parts of an input image, and all types of features, can be dealt with at
the same time. So we can expect to find multiple copies of the edge
element operator in the retinal structure.

Now we must consider one further property of the retinal cells.

Unlike the cells in the artificial system which respond uniformly to light

stimulation, i.e., the voltage signal increases as the luminance increases,

individual retinal cells in the levels above the receptors i.e.

bipolars/ganglia, do not respond in the same way to a given light
intensity. Some increase their activity when stimulated with light; others

decrease their activity. Cells which increase their activity are called
excitatory cells; those which reduce their activity are known as

inhibitory cells. So we are looking for an edge element operator which is
constructed out of some combination of excitatory and inhibitory cells.

Again we get a clue by considering the neurophysiological evidence.

Recordings from ganglion cells in the eye have shown that each ganglion
cell is stimulated by a group of receptor cells. Known as the ganglion
cell's receptive field, it is roughly circular in form but it has a

central area which differs in sensitivity from the surrounding annulus.
These receptive fields have been classified into different types,

according to their response to light. With a so-called "on-off" cell,
when a_ spot of light falls in the central area, a response is triggered

(called an '‘on' response), but if the light overlaps the annulus, the
ganglion cell's response drops off (called an '‘off' response). This
effect is called lateral inhibition. The opposite kind of receptive field

is also common, in which the surrounding part of the receptive field

signals the onset of light ('on' signal), with inhibition of the on-signal
when the central area is stimulated. It should be noted that the
relatively homogeneous luminance distributions transmitted from the
surface of large objects will not stimulate either kind of receptive field

since the light will fall on both parts, causing centre and surround

activity to cancel each other. So, at the ganglion level there is

evidence of the existence of a mechanism for detecting edge elements,

located somewhere between the receptor cells and the ganglion-cells.

In the light of what we have learned about retinal cells, let's

speculate about the edge element detecting mechanism. Now I am going to
introduce you to a new term, convolution. Essentially convolution refers

to the process of making an estimate of the goodness-of-fit between a
template, which characterizes some kind of feature such as an intensity

gradient, and the grey-level representation. So applying the 2 x 2

operator to the grey scale representation in the artificial system was a  
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convolution process. cw we are carrying out an analogous process, using a

different form of operator. (The word ‘filter’ is often used instead of

the word ‘operator').

Below, a mosaic of receptor cells is coupled te a

convolution array of cells. Each convolution cell extracts from the

receptor mosaic a certain limited type of information according to the
design of the excitatory and inhibitory connections which feed into it. In

any given convolution array, all the cells respond to the same kind of
information, but they look at different parts of the input image. As we
see, each convolution cell receives inputs from an approximately circular

cluster of receptors. The ciusters for just four convolution cells are
shown.

4 convolution network for on-centre/off-surround cells

Illustration of receptor overlap. this receptor serving both convolution
cells wnose connections are snuwn in full. Of course; much more ‘
Overiap would be ewdent if alt connections were inciuded for whole
array

Receptor mosaic

     
 

Convolution array
All these celis are coupied of centre-surround cells

to the receptor mosaic. but for simplicity the
connectionsfor four cells only are shown.

(a} On-centre/off-surround

 

  
 

ah Wining d:agram for

™

  an of-cenire
on-syrround unit

{eft} Wiring diagram for an off-centre/on-surround unit

{right] Weighting diagramsfor centre-surroundunits

(from Frisby, 1979)
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Note that the central receptor in each cluster feeds a convoiution cell in

tne convolution array whose position exactly matches tnat of the central

receptor. The two sheets of cells are thus neatly lined up. “Tn facet, each

receptor cell feeds many different convolution cells, but for simplicity

only one overlap is shown.

 

. As shown, the central cell in each cluster feeds excitation to its

convolution cell, whereas those in the surround feed inhibition, marked by

+s and -s respectively. Because the centre-surround connections are

antagonistic in this way, i.e. cancel out their respective activities, the

convolution cells are usually called on-centre/off-surround units. It is

possible for cells to be wired conversely, with the centre feeding

inhibition and the surround excitation - these are called off-centre /on-

surround units.

The basic objective 1s to use convolution machinery to cetect pixels

associated with changes in intensity, i.e., candidate edge elements. This

means that the excitatory and inhibitory influences on a cel) should add up

to zero if the receptor cluster is illuminated uniformly. This can be done

by giving each receptor in the cluster a certain weighting in its

influence, so that all the receptors are active to the same extent because
they are stimulated by an area of even illumination. Tnen the net influence
of all receptors is zero, Suitable weigntines for achieving this with our

simple centre/surrounc clusters are +1 cr -1 for the centre cells ena +1/6

or -1/6 for the surround cells, depending on the type of unit in question.
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Below, we see an input image containing a steep luminance

profile resting on a receptcr mcsaic. The dark region sets up only weak
receptor activity (5 units of activity) whereas the light region induces
strong activity (50 units), the whole pattern of numoers constituting a
grey-level description.

High

      
  

(a) Luminance profile of input image

‘pti tivities generated in a receptor
ib} Grey level description, encoded as acl nod 60.

oie by a light-dark boundary in an input image (shown shad gaheon C ~

(c) Selected receptor clusters

{0} Weightings for on-centre/oft-surround units

{e) Effective inputs

(f}Convotution array ot

on-centie/off-surround units

(9) Activity profile across centre of convolution array

Positive

Zero

Negative

(from Frisby, 1979)
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Now the convolution array looks for pixels at or near the change in

luminance, with each convolution cell inspecting one particular region of

the receptor mosaic anc counting up the excitatory or inhibitory influences

coming from this region. Each receptor's activity is multiplied by the

appropriate weighting for an on-centre/off surround unit, the results of

the multiplication being the effective inputs to the convolution cells.
The values in the convolution cells represent the differences between the
value of the centre cell and the summed differences of the. surrounding
cells, and range from 0 to + or ~ 18 in this example.

7
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Finally, a weak change in luminance, convolved with off-centre/on-surround

units is shown below. The procedure is exactly similar to the one which we

looked at in detail.

(a} Luminance profile of input image

   
Cy

{d) Weightings for off-centre/on-surround units eee  
(e) Effective inputs

(t) Convolution array of
off-centre/on-surround units

Positive 2

Zero

Negative

(from Frisby, 1979)
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Notice that the orientation of the luminance changes in the two

examples are different. In fact, orientation is unimportant for centre-
surround units - they are sensitive to cnanges in luminance irrespective of
the orientation. Hotice too that it doesn't matter whether off-centre or
‘on-centre units perform the convolution, It just means that the boundary

change is represented by a negative-te-positive change going from light-

to-aark when an off-centre cell is used, instead of the positive-to-

negative change produced by the on-centre unit. The reason for both types

is clear, given our knowledge of nerve cells, i.e., a cell can be active or

inactive, but it cannot be "negatively active", -

Notice that the weak luminance change has produced a weak signal in

the convolution array. It is more likely that sucn a small change

represents a difference in illumination rather than a difference in
reflection, and so it ought to be disregarded. Tnese small values are

filtered out by comparing them against a threshold value.

Turning once again to the neurophysiology, it seems likely that the

bipolar cells are responsible for making the centre-surround edge element

measurements. Below, we see a hignly schematic and simplified

wiring diagram of an on-centre tipolar. It receives excitation from a

central receptor via a synapse. Other receptors surrcunding this central

receptor feed inhibition to the bipolar, but net directly. Instead, they

feed inte horizontal cells which then proceed to inhibit tne bipclar. The

horizontal cells loox like the iceal mconanism fer providing tre required

weignting of surround receptor cells.

 

Notice that instead of being stimulated by a single receptor, a

bipolar is more usually stimulated by several receptors. This makes the

bipolar more sensitive, albeit at the price of loss of accuracy because it

would net be able to respond to a spot of light being moved around its

central field: it would always judge the spot to be in the same place.
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SEEING LIGHTNESS AND BRIGHTNESS

In the artificial seeing system we were dealing with a situation where

the illumination was distributed relatively evenly across the surfaces of

the object in the scene. But that was a simplification: more usually, the

surfaces of objects are not illuminated evenly. More often than not, the

light rays from the source will strike each surface of each object at some

angle from the normal, producing a different illumination gradient in each

case. Yet, on the whole, we perceive each surface as uniformly (i.e.

evenly) lit. Tnis is a paradox: if the amount of light falling on a
surface decreases with its distance from the source, the surface should
appear darker with increasing distance. Can we discover a mechanism tn the

visual system that delivers a uniform output when supplied with a non-
uniform input? This is our next task.

Let's start by making the problem more concrete. Imagine that you are

standing in a darkened room, looking down at a desk top whose surface is
fliuminated by a lamp which is sitting at one side. A large black-edged

blotter, holding a sheet of blotting paper, is lying on the centre of the

desk top, as shown below:

    
White dDiotting paper set into a

black-bordered wriling-pad

   
 
 

  

 

 

 

       

  

    
   

(from Frisby, 1979)
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You will have no difficulty seeing that the edges of the blotter are black

and that the paper is white. Yet, because the lamp is positionea at the

sice cf tne blotter, tne black edge lying directly uncer it reflects more
light to the eye than the far edge of the paper which still appears white;
tnis situation is represented schematically in terms of the likely

luminance profile across the desk top, as shown below:

High Tabie top

-f
_—— White paper

\ Table top

WTA
Low 4

ogaStoner Region of while paper

Gngerrablelamp which has a lower
juminance than thatof
left-hand black edge
Of blotter ithe tatier
teve: shown by the

   

 

Luminance  

  

broken ine)

Iturminat.on factor Retectancetacicr

Table white
High High surtace / pacer

itiyminationee Re“rctancedr

Low
Low Ls

—Saeoe
| Tacie top | ’ Taoie top

Brgntly lit Dumty at oes of
by lamp bylamp dlotier
uw ——___———t
Brigniness perception Lightness ferception

(from Frisby, 1979)

This profile suggests that the blackness/whiteness of a surface does NOT

depend simply upon the amount of light entering the eye from a surface,

otherwise the physically black surface under the lamp would appear WHITER

than the white surface distant from the lamp.

Given that the reflectance of the black berder is relatively constant

ana that its appearance (perceived as lightness) is the same despite the

variation in illumination, this suggests that the human visual system is

able to factor out the illumination variation (perceived as brightness).

Again, we can represent the luminance profile, and its breakdown into
an illumination factor and a reflectance factor, as shown above.

Tne question is how might the visual system do this? One possible

SS)

Sy 



=

33

answer is that °‘it takes advantage of the fact that variations in

{llumination are relatively gradual, whereas variations in reflectance are
rather abrupt. So the unwanted illumination component can be eliminated as
follows: .

First, detect edges by the convolution process cescribed previously.

The effect of the filtering will be to eliminate gradual luminance

transitions while preserving sudden ones.

 

Second, build up the required lightness profile by reconstituting

between edges. This amounts to 'joining up' areas between above-threshold

edges, giving these areas lightness values determined by the size of the

luminance differences forming the edges. This process is harder to achieve

but is essentially just the opposite of the original centre-surround

convolution. Because of this, it is often called deconvolution.

Deconvolution can be performed by arrays of units which facilitate each

otner adjacently. Whereas the centre-surround convolutions had as their

key feature the antagonistic influences of excitation and inhibition, the

final step in lightness computation uses excitation only, so that activity

can spread out from the edge.

Consider, for example, a luminance profile made up of a gradual

illunination change superimposed upon a sudden reflectance cnange; as sown

below:

~ Lightness computation by biological cente-surround units

Huminaticn profileViz Retlactance profile

Multiplied together jf

Receptor activitya (a)
Grey level description (b)

AN

Luminanceprotile

  

  
  

Note that the
gradual slope of
the iumunation.

componentis (6,
Givided into a
Series of small steps.

On-centre units with negatives (c)

ODOIESCAE)
Biolugical on-centre units Biologicaloff-centre units

COS0o po XY) COOOCGQHIOO®

Threshold = +2 naa = 42 (e)

COOCOTCOOO eanodes oXeXa)
\ie facittationf :

Whiter-than-grey

Whiteness array CiQerXiXrEiokioKeXoXo) (9)

Biackness array CXKOKOKOKOKary (h)

+2 Blacker-than-grey

woief 10 ;
Zoro-gwy{- ~~ ---------b--.-- Lightnessprofile (i)

Black]3
«

 

 

(from Frisby, 1979)
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The objective of lightness computation is to extract the reflectance

profile from this ambiguous input.

The first step is the grey-level description, in the usual form of levels

of activity in the receptor mosaic, as shown in (b). Its numbers show that

the illumination component appears in the form of a’set of small steps, of
60/57, 57/54, and 24/21. On the other hand, the reflectance step is much

greater, 54/24, .

Next, the grey-level description is convolved with on-centre units.

Recollect that an on-centre unit is of the form:

 

For the fragment of grey-level description given, this procuces the output

shown in (c),

But 'biological’ centre-surround units cannot signal negative values,

so any negative cell is set to zerc. The convolutions for our fragment

(without negatives) are snown in (d). The positive numbers appear as

pesitive numbers in the on-centre convolution whereas the negative numbers

appear as positive numbers in the off-centre convolutions.

The next step is to apply a threshoid. In this example, it is set to

+2, leaving just the large edge measurements of +10 as the only ones

appearing in each convolution array, as shown in (f).

Once the threshold has been applied, the final step is to build up the

required lightness profile by extending the activity outwards from the

above-threshold edges. This operation is done in two new sets of arrays,
termed the whiteness and blackness arrays, as shown in (g) and (n). The
whiteness array shows the results of extending out from the edge recorded

by the on-centre units, and the blackness array does likewise for the off-

centre units. Somenow, activity in the whiteness array is not allowed to

spread in the wrong direction, across tne white-black border, and vice

versa. This might be achieved by coupling together eacn white-black pair

of ceélls dealing with the same part of the grey-level description, so that
whichever cell is more active "wins out" and inhibits the other one to zero

level. So any facilitation passed across the edge within eitner array

would never exceec the value of the inhibitory opponent cell.

 

The last task is to explain how the spread of activity necessary for

deconvolution is achieved within the whiteness and blackness arrays by the

process of lateral facilitaticn. The network of connecticus for doing this

is shown below. The starting state is shown in (a), and the
finisning state in (od).  
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Reconstitution by deconvolution

{a) The staring state

indicates
facititanon
of+ Ye

 

(b) Thefinishing state

2 CCO00.

CCC ORORO)
COC OOO
©G8OO00

GeO2OO®O
Deconvolutionby lateral facilitation

(a) The starting state Connections forjust a few cells are shownbutall
cells are in fact connected upidentically.
(b) The finishing state Ail connections have Been removedhere for
simplicity.

(from Frisby, 1979)

This could be a blackness or whiteness array. Each cell both influences

and is influenced by its neignbours. In the example, each cell excites its

neighbours by 1/6 of its own activity level. So each cell is helping its

neignbour anc boeing helped out by them. This process gees on and on until

a steady state is achieved by the network.

Consider{above (a)) the cell, second from the bottom and second fron the
left. It starts from zero, the value assigned after thresholding.

So it offers no excitation to its neighbours. But it receives excitation

from two neighbours which started from +10 because they are "on" an edge.

Since +10 x 1/6 = 1.67, the vital facilitation received by this unit is
3.34. Now it can facilitate its neighbours, and can in turn be facilitated

by them until the wnole network arrives at a steady state, as shown in (b).

the mechanism postulated above is made more plausible since neuro-
physiological evidence suggests that receptors can feed two bipolars

simultaneously. One bipolar of each pair might be an on-centre unit, the  
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other an off-centre one. Certainly about equal numbers of bipolars of each

type are found in the mud puppy's retinal structure. The existence of this

pair of bipolars fits with the notions of the whiteness and blackness

channels.

If the bipolars are the site of the first step in the lightness

computation i.e. edge detection, where are the sites of the next two

processes, namely thresholding and deconvolution? It nas been suggested

that the bipolars are well suited to operate in a threshold manner, which

would mean that they respond only if the edge with which they are dealing

is sufficiently prominent. How their threshold for responding is adjusted,

as it must be to cope with variations in the overall level of Lllumination,

is not known, but must be set somehow by horizontal cells or amacrine

cells.

The final question is deconvolution. Marr has suggested that the

deconvolution operation is carried out at the bipolar-ganglion cell

junction, and is initiated by the lateral connections provided by amacrine

cells. The general idea is that there are two sets of ganglion cells, one

set carrying tne whiter-than-grey lightness information and another set

dealing with the blacker-than-grey. Each pathway would be fed by bipolars

of matching type, and the close coupling between them might be performed by

yet other types of amacrine cells. Of course this proposal is speculative.

The conventional view is that ganglion cells are edge detecting units, much

as d¢scricec above for the bipolars, i.e., they are units wnich help tc

detect contrast cnanges despite variations in general luminance. So we

must keep our minds open on this issue.
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FEATURE DETECTORS : ARTIFICIAL SYSTEM

So far, we have considered how an artificial eye might process
visual data to help us understand some of the kinds of local
computations which the human visual system might make early on in the
processing (in effect, at retinal level). Now, we will consider the
next step in this processing hierarchy, namely, describing an object
in an image in terms of its edges. As before, we will consider how
an artificial system might find edges in an image as an aid to
understanding how this might be done in the human visual system.

Recollect that we discussed previously a two-dimensional
differencing operator (Roberts’ Cross operator) which was applied to
the luminance values in the grey level description to yield a new
numerical description which characterises the contrast in the image |

(sometimes referred to as a description). Suppose a
program equipped with this operator is being applied to the domain
of regular polyhedral objects (our current assumption as it happens).
This choice of objects means that the edges in the image will be
Straight edges. These straight edges ought, therefore, to be

represented as rowns or columns of high values in the differential
description. Given perfect input data, including perfect conversion
to digital form, all high values would signal the presence of some
significant discontinuity in the physical world. However, since we
know that the acquisition process is not perfect, some of the points
will have high values due to noise in the system. That is why these
high value points are deemed to be candidate edge points. In other
words, although there is a high degree of probability that these
points denote the edges of objects in the scene represented by the

image data, not all of them will be associated with edges. So how

can the system distinguish actual edge points from noise points?
The answer is that it uses information about relationships

between points.

Given that the edges of objects will be represented by columns
and rows of high values in the differential description, what
criteria should we apply? In the case of straight edges, there are
three criteria:

(i) Similarity : this refers to the similarity of the individual

edge elements, i.e. the candidate points.

(141) Adjacency : this refers to the proximity of the individual
edge elements. At this level in the analysis, the criterion

of adjacency is usually taken as location in neighbouring .
cells.

(411) Collinearity : this refers to the spatial relationships of the
individual edge elements. To be collinear, the points must

lie on or closely approximate to a straight line.

There are various ways of applying these criteria in a program.
The one which we will consider is the use of “templates". A
template incorporates the criteria given above in its structure. If
& program’s task is to locate edges in the differential
representation, we would wish to equip it with a set of edge
templates. These would take the form of rectangular arrays of
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cells, m pixels by n pixels, where m is a minimum of 3 pixels and n
is a minimum of 3 pixels.

Suppose the task is to detect the presence of high contrast .
vertical edge segments in the differential description. The system
would use a vertical edge template for this task. This is shown
below.

m= 3
 

 

 

     
Suppose that the differential values lie in the range 0 (no

change) to 15 (max. change). It would make sense to parameterize
the edge template as follows:

 

 

 

5 10 5

S$ 10 5

5 10 5     
This template will detect vertical boundary edges between background
and surfaces of the object. This is done as follows. The system
compares the template with the differential representation, searching
for places where it might match, using the following match rule:

Given that the high value column in the 3 x 3 template is
assigned the value 10, and the low value columns the value

of 5, add 1 to the value of the match score for each cell
in the differential representation which corresponds
spatially to a high value cell in the template and has a
luminance value of 10 or more, and add 1 to the value of

the match score for each cell in the differential
representation which corresponds spatially to a low value
cell in the template and has a luminance value of 5 or
less. The entire template is said to match at any
position for which the total value of the match is 6 or
more.

This will return evidence of the existence of vertical edge segments
(3 pixels long) in the differential representation. These can be
stored for subsequent processing by recording the co-ordinate values
of their endpoints and their orientations (909 in this case). To

locate evidence of horizontal and diagonal boundary edge segments,
the same process is repeated again and again, using templates whose
orientation varies from vertical through intermediate inclinations to

the horizontal, i.e. in the range 90° to O° in steps.

So far, we have discussed detecting boundary (i.e. sharp, high
contrast) edges. Suppose, however, that we also want to detect the
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presence of internal edges (where an object’s surfaces intersect).
In the differential representation, these are characterised by lower

contrast (smaller differences) and increased spatial extent (spread
over 2 or more pixels width). Accordingly, a new set of templates
is required. In effect, these are scaled up versions of the
boundary edge detector - say 6 x 6 pixels, with a pair of high value
columns flanked by pairs of low value columns. As before, these
templates are compared with the values in the differential
representation to yield evidence of internal edge segments. These
are recorded in similar fashion to boundary edge segments.

Just as we referred to the high value points in the
differential representation as candidate edge points, so we ought to
regard the edge segments identified by the template matching process
as candidate edge segments. These segments have to be combined to
form longer edge segments corresponding to entire boundary or.
internal edges. While the majority of the short segments will be
conflated to form these longer segments, some will be rejected as
being spurious segments (due to noise in the system).

Recollect that templates incorporate rules for grouping
together candidate points. Now, we need to apply similar grouping
rules to the candidate edge segments to yield, in due course, an edge
description where each edge in the description corresponds to a
physical edge in the scene. The grouping rules are as follows:

lf the end point of one segment is adjacent to (e.g.
above, below, to-the-left of, to-the-right of) the end
point of another segment, and

If the orientation of the first is the same as the

orientation of the other, and
if the combined segments (combined points) are collinear
Then link the segments (to form a larger segment).

Junction (corners) are detected as follows:

If the end points or two (or more) segments are adjacent,

and
If the orientation of one is different from the other(s)

Then combine the segments (to form a junction).

To apply these rules to the candidate edge segments, numerical values
have to be assigned to the parameters “adjacent"® and "orientation".
Also, an error value has to be assigned to the procedure which
determines whether or not two segments are collinear. In practice,
since, for example, there will be small gaps due to noise, these’
rules must be applied more than once. Usually, the parameter values
will be altered between successive applications, for example, to
enable two adjacent edge segments separated by two pixels (which were
not linked first time around) to be joined together to form a longer
edge segment, and so on. Finally, any candidate edge segments which
do not have connections to other edge segments at both ends are
removed (these are ‘dangling’ edges, caused by noise).

At first sight, this method is attractive but the major

difficulty in the context of an artificial visual system implemented

on a machine with a single processor is that different templates
and/or different match rules are needed for vertical edges,
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horizontal edges, bright edges, dim edges, sharp edges, fuzzy edges
and edges at arbitrary orientations. In other words, the process of
using templates is computationally costly. Special purpose parallel
computers which can carry out these operations concurrently over the
whole image have been under development for some years. In due
course, they are likely to replace single processor machines, at
least for handling low level processing
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FEATURE DETECTORS : HUMAN SYSTEM
 

Local Feature detectors

We turn now to look at the evidence for the local computation of edge
descriptions. Much of our knowledge comes from studies with animals, from
which one generalizes (with care) to man.

Apart from lateral inhibition, up until 1959 we knew very little

about the coding in the visual systen. In that year, Lettvin, Maturana,

McCulloch and Pitts announced that the frog's retina contained four. kinds
of ganglion cells, described as:

(1) Sustained contrast detectors, which indicate static edges of
high brightness gradient.

(14) Moving edge detectors, which signal moving edges of abrupt

brightness change.

{iii} Net dimming detectors, which respond to a sudden reduction
of illumination [approach of a predator, perhaps) and

(iv) Net convexity detectors, which respond when a small bright

Spot enters the visual field (insect in view, perhaps}.

These results were obtained by micro-electrode recording fran the

ganglion cells in the frog's eye, when the eye was stimulated with an
appropriate pattern of light and dark.

Later research by Hubel and Wiesel, working with cats and monkeys,
has failed to disclose retinal cells with such discriminatory properties
as those found in the frog's retina. This is not surprising because the

frog, unlike higher animals, does not have a visual processing area in its
brain. However, Hubel and Wiesel showed that cells in the monkey's brain

are sensitive to different types of visual features. In fact, they
identified two major classes of brain cell, namely the simple cell and the
complex cell.

Before we consider the properties of different types of simple cells

(we will not consider complex cells since their role is still not
adequately understood), we will examine sane interesting evidence about
the way they are organized in the visual area of the monkey's brain. What
Hubel and Wiesel have shown is that the visual cortex is rather like a
bee's honeycanb: it is divided into tiny segments, each extending from
the surface of the cortex (the grey matter) vertically down into the white
matter, deep within the hemisphere. Each segment represents a processing

sub-unit, called a hypercolumn by Hubel and Wiesel. Each hypercolumn's

total area is approximately 0.5 - 1 mm square at the cortical surface, and

about 3 - 4mm thick (approximately the full thickness of the cortex); it
eontains tens of thousands of cells, perhaps up to a quarter of a million.
The job of all the cells in a particular hypercolumn is to inspect jointly
a particular region of the retina, a region called the hyperfield. While

hyperfields overlap to some degree, essentially each hypercolumn is
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concerned with just one region of the input image. Thus the hypercol umns

all "chatter" simultaneously about the features they are "seeing" in their
own restricted domains, and it is the job of later processing mechanisms
to sort out fran this feature description what objects are present in a

scene,

While distributed evenly over the cortex the size of the hypercolumns
concerned with the central retina differs from the size of those dealing

with the periphery. Hypercolumns handling peripheral areas of the retina

have large hyperfields and hence can only carry out a crude feature

analysis, Central hypercolumns, on the other hand, have smaller
hyperfields, so they can engage in much finer analysis. But this is what
we would expect, given our knowledge of the retinal mappings fran
receptors to ganglion cells. Note that because central hypercolumns have

smaller fields, more are needed to cover a given area of the retinal

surface. This fact indicates that the spatial mapping from retina to

cortex will be significantly distorted, with the periphery of the visual

field compressed relative to the centre.

When a micro-electrode is driven down through a hypercolumn, besides

the fact that they all have their receptive fields in the same general

region of the retina, all cells share a very important property,

irrespective of their type: they are all maximally excited by stimuli

with the same orientation.
 

The simple cell's distinguishing characteristic is that its receptive

field can be divided into excitatory and inhibitory sub-regions, using

Stationary stimulation, So if a spot of light is flashed on certain

regions of the simple cell's receptive field, the cell becomes excited and
emits a burst of impulses. Equally, if flashed on other regions of the

simple cell's receptive field, the cell becomes inhibited and stops

emitting pulses.

What are the shapes of these regions? This question can be answered

by exploring the effects of flashing small spots of light all over the

cell's field, noting each time the effect of the flash on the cell. By

recording excitation and inhibition with plus-signs and minus-signs ona

paper representing the region of the retina covered by the receptive

field, typical field maps of simple cells can be obtained. Some are shown

below. By careful examination, we can group them into different

types called edge detectors, slit detectors and line detectors.
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Consider first the receptive field of the so-called edge detecting

simple cell. Note that each field is divided into two sub-regions, one

excitatory and one inhibitory. The boundary between these sub-regions has

an orientation which defines the orientation tuning of the cell in
question. Notice that all edge detectors are vertically tuned, i.e. they

respond maximally to vertical edges. Indeed, all the field maps shown are

vertically tuned. This is because all the field maps come from cells

within a single hypercolumn. Remember that cells within any one
hypercolumn share the same orientation tuning, with different hypercolumns

differing in the orientation to which they are tuned.

The term “slit" (which describes a stimulation of a white line on a
dark surround) is a little odd, but refers to the stimulation arrangement
used by Hubel and Wiesel - shining light through a slit. The term "line"

has become a customary one for a dark line on a light surround, an

unfortunate usage because all the stimuli shown are line stimuli of a sort,
and not just those termed "line". Sometimes, however, the slit and line

stimuli are called light and dark ‘bars' respectively.

Now we can undertstand why these cells have so often been dubbed

feature detectors. That is, it has been commonly assumed that because each

cell has as optimal stimulus one or other line features, each cell must b=

a signalling device for saying whether this feature is present on the patch

of the retina inspected by the column of cells as a whole.

But what happens if a non-vertical stimulus falls on a vertically
oriented receptive field? The answer is that the response diminishes by
the amount the stimulus diverges from the vertical. This is illustrated

next, for a left-right light-dark edge.
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The effect of stimulus orientation, for many more edge stimuli than shown

in the diagram, is illustrated in the graph. We can see why the edge

detector exhibits this vertical tuning effect. As the stimulus edge is

rotated, darkness falls on some of the excitatory zone, and at the same

time light falls on the inhibitory zone. By the time the edge is

horizontal, the cell receives equal amounts of excitation and inhibition,

so its firing rate is reduced to the spontaneous firing level.

It is best to think of the excitatory and inhibitory zones of each

cell's field as carrying equal weight overall. In other words, under
conditions of even illuminaticn, there will be an ‘equal balance between

them.

Notice that the column of cells are sub-divided . Thus, some cells

have “narrow-width slit" optimal stimuli, others "medium width slit", and

soon. The cells we have seen are just a sample of the population in the
column, and many more types of field exist covering a wide range of slit-

widths, line-widths and widths-of-flanks on either side of an edge. Just

why so many different widths are needed will be taken up again later.

Wa have been concentrating on a single vertically tuned column of

cells. But each hypercolumn contains many columns, all similarly tuned but

eacn dealing with a slightly different area of the hyperfield, as shown

below:

- Astlabof vertically tuned columns within a hypercolumn There are
many cells in each column.Only a few are shown,as dots. Just three
cells in each column are enlarged to show their receptive field types
{from top down,edge,slit and line fields).

Columnsof cells. ail
tuned to vertical
Each columnis centred
on a slightly different
focation, as shown by
tne tow of dots in the
hypertield

   
Relinat image of face 

(from Frisby, 1979)
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In other words, each vertically tuned column is "centred" on a different

spot in the hyperfield so there is a slab of columns covering the whole
width of the hyperfield i.e. the columns are slabs like, being positioned

side by side. But thereceptive fields of neighbouring columns within the

slab will overlap to give continuous coverage across the field. Notice

that the vertically tuned slab has its columns inspecting points spread out

horizontally across the hyperfield, i.e. points are at a right angle to

orientation of cells. :

Turning now to deal with other orientations, {t seems that there are

columns for orientations all around. the clock, with tne tuning of each

column differing by about 10 degrees from its nearest “orientation

neighbour",

We are now in a position to speculate about the organization of an

entire. hypercolumn. -A.model. is shown-below. In-reality, there are

many more orientations than this shows - perhaps 18-20 in all to get right

around the clock. Remember, too, that there are many different cell types

within each column, of which only a few are shown.
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One extra feature is the fact that a hypercolumn really has two halves

- a left one and a right one. Although shown as separate, some cells in

the cortex are binocularly driven. That is, they respond actively to

 

(from Frisby, 1979)
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optimal stimuli in either eye. Others are preferentially driven fran
just one eye, Sothe division into two parts is an oversimplification,
None-the-less, the monocular dominance of certain regions of the
hypercolumn has been well confirmed by the work of Hubel and Wiesel.

Of course, the hypercolumn structure we have been discussing is
hypothetical, but it does fit a great deal of neurophysiological data.
We will stick with it for the present.

So much for the structure of the hypercolumn and its components.

The next question is now does each hypercolumn examine its own patch of

retina (its nyperfield), and arrive at a feature description of the images
falling on this patch?

As we Saw above, each simple cell seems to signal a particular
orientation. Hubel and Wiesel postulated that these cells form the bottan
layers of a hierarchy of cells (so far undiscovered) which respond to

progressively more and more abstract geometric features. For example, the
cells at the next level up might respond to simple geometric patterns such

as angles, and so on up to the top of the hierarchy which might respond to

stimuli such as particular items of food, particular individuals, and so

on. This feature hierarchy theory is often referred to as the
"grandmother cell" theory. Persuasive as this might seem to be, we
cannot accept Hubel and Wiesel's explanation. Consider a simple cell
whose optimal stimulus is a vertical edge: it will respond most strongly

when stimulated by a high-contrast black-white edge, as shown below:
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If the contrast 1s reduced by making the black zone a dark grey, and

the white zone a light grey, the cell will respond less vigorously. What

happens if we stimulate this cell with a high-contrast black-white edge
which is rotated a few degrees (+10) fron the optimal vertical
orientation? The cell will respond as vigorously to this rotated stimulus

as it did to the lower contrast vertically oriented stimulus. So if

different stimulus conditions cause a cell to produce the same response,

how can it know which condition is occurring? Indeed, if activity in the

cell were to be taken simply and directly as the neural representation’ of

a vertical edge, we would be susceptible to same very awkward illusions.
We would confuse faint vertical edges with high-contrast just-off vertical
ones, a quite unsatisfactory state of affairs which doesn't arise. A

similar problem arises in the case of cell type. Once again, more is

needed than simply equating edge detector responses with step-like
illumination profiles, slit detector responses with light lines on a dark
background, line detector responses with dark lines ona light background,
and so on.

An image of a vertical edge focussed on a part of the retina which

forms the hyperfield of a particular hypercolumn is shown below. As
we have seen, the edge feature is represented as a grey level
description at the retinal level. Fibres connect the retinal ganglion
cells to two cells in the vertically tuned slab of the hypercolumn.
For simplicity, only one row of cells in the slab is shown. In
practice, fibres would link ganglion cells to the other cells in the

hypercolumn.
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An activity profile is shown above each row of cells. This activity
profile represents the contrast across the edge. The greatest response

is given by the edge cell in the third row. But notice that both the
line cell (in the top row) and the slit cell (in the second row) also
respond to the presence of the step edge. Clearly, therefore, just

because a linear slit cell is active does not mean that there is a line-
like or slit-like structure in the hyperfield. In other words, not only

is the orientation of the feature doubtful, but its nature is as well.

In similar fashion, a line (bar) in the hyperfield not only
stimulates line detectors, it also activates slit detectors and edge

detectors.
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Global feature detectors

In the feature detection approach considered in the last section,

simple cells were considered as signalling the presence of particular
geometrical features, at particular positions within the pattern of light

falling on the retina. The implication is that the combining of local

geometric feature information to yield descriptions of global objects must

take, place at a higher level, through some kind of grouping of simple

cells output.

However, there is a quite different explanation of the role of the
simple cell, namely, that it carries information about global properties,

not local properties, and in particular, that these global properties are

spatial frequencies.

What are spatial frequencies? We will answer this question by

analogy with sounds, that is temporal patterns of air pressure produced by
some kind of instrument. For example, when the sound fram a tuning fork

is amplified and the signal is displayed on an oscilloscope, the pattern

produced is a sine wave, as shown below: :

ONSNG
This is the simplest form of sound wave, sometimes called a pure tone.

N.B. Warning! The pattern shown above is a graph which takes the form of
a transverse wave whereas the sound wave is a longitudinal wave, with

particles vibrating in the same direction as that in which the wave is
travelling.

Continuing with the analogy, if an oboe, a French horn and a violin

play the same note you have no difficulty in identifying the different

instruments, Studing the wave forms on a ‘scope enables us to see why

the notes can have the same frequency yet sound different. The shapes

of the waves are not the same, as shown below:
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The difference in wave form is responsible for the characteristic sound

quality of each instrument. Mathematicians have shown that any shape of
wave can be split up into a sine wave at same fundamental frequency and a
number of other sine waves at multiples of this frequency which differ in

amplitude (harmonics or overtones). This is Fourier Theory.

By adding together the fundamental and one or more higher harmonics,

a completely different wave form is obtained, For example, if we add the
first and third harmonic, we get the composite wave form shown below:

Fun damentaloN f

3rd Harmonie (/N\_/NARAN 3F

Resultant WyShyfe

But patterns of light intensity can be described mathematically in

the same way as temporal patterns. So, when we turn to consider light
instead of sound, we find that the square wave form which represents an

edge can be described as the summation of several sine waves of varying

amplitude and frequency. For example, a sharp edge can be constructed

by adding together more and more sine waves, as shown below:
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We can control the frequency of light used to stimulate the retina by
using a device called a grating shown below:
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This is a sinusoidal grating, so its brightness varies sinusoidally

across the pattern, This means that the stripes are blurred. A grating
is described in terms of frequency , expressed as cycles per degree of

visual angle; contrast , expressed as the ratio of maximum to minimum

intensity in the pattern, and phase , expressed in degrees, of the pattern

relative to a fixed point.

The usual technique is to expose an area of retina to a diffuse field
of light, alternating at regular intervals with a sinusoidal grating of

the same average light intensity, and to record responses fran cells at

time of onset or offset of the grating. In this way, the experimenter has

precise control over the spatial frequency of the light stimulating the
eye: he designs a grating which has the desired characteristics. In
practice, the large scale components in the grating are represented by low

frequencies, while the fine details are represented by high frequencies,

The point of all this is that physiologists have established that
retinal ganglion cells with concentric fields will respond selectively to
different spatial frequencies. Also, the smaller a cell's receptive
field, the higher the maximum spatial frequency to which it will respond.
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At the cortical level, simple cells are tuned to spatial frequency (i.e.
each responds to a particular range of frequencies), with each hypercol umn

containing cells with a wide range of optimal frequencies,

The response of a cell to a grating is measured by its contrast

sensitivity, the reciprocal of the threshold contrast required to obtain a

response fram a_ cell. Thus, in the cat's retina, optimum spatial

frequencies range fron 0.3 to 3 cycles/degree, reflecting its greater

visual acuity.

These responses are consistent with the responses to edge, bar and
slit stimuli. For example, a cell with a vertical bar as its optimum

stimulus will give its maximum response to a vertical grating with

wavelength twice the width of the bar, provided the grating is lined up

with the boundaries of the excitatory and inhibitory regions.

The unresolved question is why are simple cells selective for spatial

frequency? Are these cells detecting global properties in the patterns

of light at the retina? Bluntly, the fact that cortical cells respond to

Spatial frequencies does not prove that the visual system decomposes its

input into sinusoidal camponents any more than the fact that cells are

selective for orientation of edges proves that it analyses its input into

local geometric features. Indeed, the physiological evidence suggests

that cells are not specific in their responses but respond over a broad

range of frequencies and have fields of limited size. They are also
sensitive to phase, that is, where the peaks and troughs fall in the

receptive field. So, we have the same problem as with the ambiguity of

the responses of simple cells to features of varying contrast which are

set at arange of orientations.

The most pranising explanation why each hypercolumn contains cells
with different spatial frequenciy tuning is that multiple spatial

frequency tuning is an important characteristic of a system designed to
detect edges. It is to this that we turn next.
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BUILDING THE PRIMAL SKETCH

Recently, Marr has argued that the properties of single cells in the
visual system can only be understood in the context of a computational
theory of vision, He attempted to build such a theory, to explain how

the pattern of light at the retina is tranformed into a symbolic

description of the enviroment. The first stage in this transformation

process is the construction of a data structure, known as the

raw primal sketch. Briefly, the raw primal sketch makes explicit

information about the edges and textures of surfaces in an image. The
theory specifies how edges can be detected in natural images, and in doing

so provides a single explanation for the neurophysiological phenomena

which served as the basis for the feature detector and spatial frequency

detector theories,

In-an earlier section, we-examined a simple algorithm for computing
differences in light intensity in each region of an image. It made use

of a 2x2 mask, and could detect abrupt changes of intensity in an image.

It could not , however, handle gradual changes, and it was also

susceptible to the effects of noise in the image data. To extract edge

information fran natural images where the changes in intensity are often

very much less abrupt, a much larger mask is required. However, aS mask

size increases, information about the location of abrupt changes is lost.

Hence ,the conclusion that edge detection cannot be done using a mask of

uniform size. Rather, the location of intensity changes at differing

scales has to be carried out by a number of parallel operations, each

using an appropriate mask size.

Marr's approach, therefore, is to take the image and transform it
into a number of independent representations. In each, there is a
different upper limit on the steepness of the gradient present within it.

The way in which the steepness of the gradient within a representation is
controlled is by blurring the image: the more blurred it is, the

shallower the steepest gradient that can be present.

Previously, we discussed the use of smoothing to reduce the effect
of noise, by replacing each value in the grey level description with an

average of the values of its eight neighbours. Marr's approach is
analagous. The essential differences are that he defines areas that are

eircular rather than rectangular, and that vary in size. Within these

circular areas, pixels closer to the centre contribute more to the average

through a numerical weighting process in which the values of pixels near

the centre cell are multiplied by a higher numerical value than the values
of cells nears its periphery. The choice of the values for these weights

is not arbitrary: instead, it is done in accordance with the decision

that the optimal smoothing function is a Gaussian function (i.e. a beli-
shaped statistical distribution). The degree of blurring achieved is
determined by the width of the Gaussian distribution, measured in terms of

its standard deviation. In practice, Marr filters each image, using two

or more Gaussian distributions, In this way, the array of light

intensity values making up the grey level representation is replaced by a

set of arrays, each containing Gaussian weighted average intensity values.

Below, _ the image (a) has been smoothed using Gaussian distributions
with standard deviations of 8 and 4 pixels respectively, giving the more
and less blurred images, {b) and (ce).
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The next step is to locate changes in the differently blurred

representations of the image. Again, in Section 4 we encountered Roberts

eross operator which detected gradients in the image by calculating simple

differences in orthogonal directions (i.e. the first derivative),
However, for reasons of computational efficiency, Marr favours the use of

the .second derivative which is a measure of rate of change. Previously,
we saw that the first derivative of a step function like change in
intensity was a positive peak. Taking the second derivative instead

produces a pair of peaks, one of which is positive going and the other

negative going. The transition fran one to the other is known as the

zero-crossing ;

t Tate nsify

Distribution

d Fist

Derivatiue

ZERO

d* SRssiA§ Second

“Dar Wotiye   
Marr favours the use of an operator called the Laplacian operator to

obtain measurements of the second derivative since the values that it
produces are orientation independent. Thus the Laplacian can be applied
once only to each of the arrays yielded by the use of the Gaussian filters
to produce anew set of arrays containing values of the Laplacian. If

the filter is a wide one, the Laplacian values will represent large scale

changes in intensity in the image, while the output of a narrow one will

also represent small scale changes. To detect gradients in the image,

the next step is to locate the zero crossings in each representation.
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This is illustrated below, which shows the effects of using filters
of three different widths.
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Clearly, not all zero crossings correspond to positions of edges and Ld
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surfaces of objects in the image. So how is the edge information

extracted? Marr argues that the edges of natural surfaces will be
represented at various scales. This means that they will give rise to
zero crossings in the output from measurements made at a range of scales,

This translates to a procedure for detecting an edge segment, by looking

for the presence of zero crossings in aset of independent measurements

over a contiguous range of sizes of the receptive field. So, if zero

crossings are found in two or more contiguous representations, and if

their position and orientation is the same in each, this set of zero

crossings is taken as sufficient evidence for the presence of an edge
segment, By means of sanewhat similar, but more complex procedure, the

presence of bar segments can also be detected. An example of the use of

these procedures is given below:
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(a) and (b) show the zero crossings obtained fran the image shown
above, using masks with standard deviations of 9 and 18 pixels.
Because each zero crossing in (b) has a corresponding element in (a}, then
(b) can be taken as representing the precise location of edges in the
combined description. (c), (ad) and (e) show symbolic representations of
the descriptions attached to the edge segnents, with (ce) representin
blobs (i.e. closed loops of edge segments), (d) local orientations and (e
the bars, These diagrams show only the spatial information contained in

the descriptors. Typical examples of the full descriptors are:

(BLOB (POSITION 146 21)
ORIENTATION 105)
CONTRAST 76)
LENGTH 16)
WIDTH 6)}

(EDGE (POSITION 104 23)
ORIENTATION 120)
CONTRAST -25)
LENGTH 25)
WIDTH 4)

(BAR (POSITION 118 134)
ORIENTATION 120)
CONTRAST -25)
LENGTH 25)
WIDTH 4) )

These descriptors are marked in the figure by arrows.

The set of descriptars derived fram the image is stored in a
database, called the raw primal sketch. But before we look at procedures

for interpreting its contents, we want to understand the implications of
Marr's theory for the neurophysiological evidence.

According to Marr, cells with concentric fields do not signal the

presence of an edge. Instead, their function is to make measurements on

the pattern of light and dark in their fields, as a basis for locating
zero crossings. In practice, finding a zero crossing would involve

locating activity in adjacent on and off centre cells. Finding a zero

crossing segment would involve locating a set of adjacent pairs of
active cells, But Marr argues that this is exactly what some simple

cortical cells do.

Now, we can understand why cortical cells respond to different

Spatial frequencies. These are a direct result of the process of

smoothing the image with a Gaussian function, using different standard

deviations,

Finally, how cortical cells combine to produce the raw primal sketch

is not known at present.

As stated above, the descriptors derived fran an image are stored in
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the data structure, called the primal sketch. Within it, for example, a
straight line would be represented as a termination, then several segments

having the same orientations, then another termination. The task is to
extract these kinds of features. Unfortunately, the task is difficult
due to the large number of items within the raw sketch. For example,

consider the metal rod shown below:
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The contents of its raw primal sketch are shown below:

 
 

 

Since the rod introduces a considerable amount of extrinsic noise,

the data-base is large. However, much of the noise can be filtered out

by applying a very simple rule, namely that a short segment's assertion is
eliminated fran the data-base if (a) it crosses a longer segment, and (b)
its contrast is less than that of the longer one. The effect of applying

this rule to the data-base of assertions is represented graphically
below:
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We know where to look to find the edge between the side of tne rod

and its end. It stands out quite clearly, making the task appear to be

quite easy. How does the program handle it? The answer is that it
applies a grouping technique called curvilinear aggregation which is a

three-stage process, The first stage of grouping combines two elements

in the primal sketch only if they match in almost all respects, are very
close to one another, and if there are no other candidates. The

information that is used by the process to determine whether or not two
items should be grouped include orientation, contrast, type (edge, bar ,

ete.), fuzziness, distance between nearest parts of the two items and

orientation of items relative to orientation of a line joining their

nearest parts.

The second stage of grouping makes use of the extra information given
by the first. For example, sane segments are now quite long (more than

20 image elements). Two such elements may be combined, even if the value

of some of their parameters differ, provided there are no other near
candidates. Also, new orientation information may be available as a
result of the first grouping, to be used as an important parameter in

second stage grouping.

When the first two stages of curvilinear aggregation are applied to

the primal sketch of the rod they produce the larger elements shown below:
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The, third stage of grouping is rejecting unlikely possibilities, A

node is set up for each of the ends of the segments delivered by the
preceding processes, With each note is associated alist of nodes that
could possibly match it. Each possible match 1s evaluated independently
against the criteria, and possibilities that are graded relatively poorly

on several counts, and well on none, are rejected. Nodes at which

ambiguities exist are marked, this information being sent to the next
level of processing. The results of applying this third stage to the

primal sketch of the rod are shown below where the elliptical form of
the contour is shown.
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Up to this point in the analysis, the system has not used any

description of the form's overall shape. The fact that it has been able
to recover the contour information is evidence in favour of Marr's claim

that a richer description will enable a system to extract form information

from 2-D pictures of objects which have not been specially treated to

reduce extrinsic noise. This is a very considerable achievement if

validated by results from a wide range of scenes of different kinds.
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II. INTERMEDIATE LEVEL ANALYSIS
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THE SEGMENTATION PROBLEM

The next task is to find what structures are present within the mass

of feature information provided by all hypercolumns together, so that these

Structures can be recognized by comparing them with descriptions stored in

memory.

The problem of finding structures within a feature description is the

problem of deciding which features belong together and which do not. This
is the segmentation problem.

For many years, psychologists have been interested in the problem of

how the human visual system groups the incoming visual data to represent
the objects in the visual field. A group of German psychologists, known as

the Gestalt psychologists, were particularly interested in the problem, and
they enumerated a number of laws of organization. We have already encoun-

tered three of their laws, namely similarity, proximity and continuity,

when discussing Marr's metnods for extracting global features from the pri-
mal sketch representation, i.e. for generating descriptions of objects ina

scene.

Now suppose that the scene contains a jumble of o.ocks of different

sizes and shapes, as shown below.

 



- Tle

Assuming perfect Input data, the artificial system would extract a
line representation of the edges of the objects, in terms of a list of

(x,y) end points and associated line orientations:

e.g. (2,3) (2,11) 270°
Sons -- - ete

Of course we can tell how the regions combine to form 3-D objects, and how

many objects there are in the pile. The question is how does the visual

system do it? We will begin by looking at some of the characteristics of

2-D drawings of planar solids. Taking the cube shown below as exam-

ple, notice that its tnree faces meet at a trihedral vertex.
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In a 2-D drawing of a cube, the three edges forming such a vertex are

represented by the junction of lines, forming either a FORK junction: J7 or
an ARROW junction: J2 J4 J6 or an ELL junction : J1 J3 J5, as shown above,

Notice that the number of visible faces at each vertex determines what the
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junetion will look like:

3 visible faces produces a FORK junction in the picture.

2 visible faces produces an ARROW junction in the picture.

1 visible face produces an ELL junction in the picture,

So far, we have been going from 3-D to 2-D. But notice that if we are

given a 2-D representation of a collection of planar solids, we can decide

which regions belong to which solids using rules. For example, the FORK
rule links together all three regions surrounding a FORK junction, and an

ARROW rule links together two of the regions contributing to the junction.
For example, to segment the 2-D line drawing of the arch shown below

into its component parts, links are planted between regions wherever an

ARROW or-FORK.occurs. On. the. basis of theselinks, the regions can be col-

lected together into three groups, namely (R1 R2 R3) (R4 R5) (R6 27), where
each group represents one of the bodies making up the arch.

 

R

 

 

5 ere
Ra j

Rs Re ey
Ra.

or or     
 



~73 -

Notice that the other type of junction most prevalent in the arch

scene is the T-junction. As you can see, at a single T-junction no rule

can be made that the three separate regions are to be joined as parts of

the same body. However, when T-junctions can be grouped together in pairs,

this can provide powerful evidence of the interposition of one object in

front of another one. For example, if you place your thumb on the edge of

the table in front of you, you will occlude its edge and create two T-

junctions, where the edge of the table meets and leaves the edge of your

thumb. In this case, the stems of the T-junctions are in line i.e. they

are collinear, so the regions on either side of the stems of the T's can be

linked.

But the following example suggests that the task is more complicated

than it has appeared so far. Instead of segmenting Regions Ri to R8& into

two bodies (R1,R2,R3,R4,R5) and (R6,R7,R8), all regions are connected
together by multiple links.
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It was this task that Guzman tackled in implementing a program called SEE.

We will examine SEE in some detail since it was the first of a series of
programs, each of which built on the ideas and experiences with the previ-
ous one, gradually reducing the need for ad hoc rules by providing a better

theoretical justification of the underlying processes.

In SEE, Guzman assumed as starting point the existence of a perfect

line drawing of a polyhedral scene. A typical example is the scene called
BRIDGE, shown below. This its input to the program in the form of

unordered lists of object regions, background regions and vertices. Wotice

that the program does not have to separate objects from background: this

information is provided by Guzman.

Are
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To parse the scene into bodies, SEE follows a two part strategy.

First, it collects evidence for linking regions. Then, second, it evalu-

ates this evidence and groups regions to form objects.

We will begin by considering the first part strategy, namely collect-

ing evidence. It was Guzman who noticed that, as we discussed above, the
shape of a junction is a pretty reliable indicator of its three-dimensional

significance. In practice, Guzman classified junctions into four basic

types:

1. Vertices where two lines meet, e.g. L

2. Vertices where three lines meet, e.g. ARROW, FORK, T
3. Vertices wnere four lines meet, e.g. K, X

4, Other vertices, €.g. PEAK, MULTI

Y RReow

K‘ ,

Muct)

Examples are snown below:

a
n

With eacn type of vertex there is an assoctated set of links which
constitute tne evicence for combining adjacent regions in the scene. These

links are of two types, namely strong and weak Links, The strong links

associated with each vertex are as follows:
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Ls, Ks, MULTIs and single Ts have no links.

FORK. Links are planted between the three regions, meeting at

a vertex of the FORK type, except:

(a) if one region is the BACKGROUND no links are placed between any
regions surrounding it.

(o) if one of the lines is connected to an L, or to the barb of an

arrow, or forms the bar of a T, the regions on either side of

that line are not linked.

ARROW. Links are placed between the regions on either side of its

shaft, except

if the shaft of the ARROW is connected to a background FORK, or
to the stem of a background T, the regions on either side of

each of the barbs are linked.

X. Two cases are distinguished

(a) If the X is formed by the intersection of two lines, no links

are planted.

(b) If the X is formed by four lines, two of which are collinear,

the regions on either side of the collinear lines are linked.

PEAK. All regions, except the one containing the obtuse angle, are

linked to each other.

T pairs. Facing pairs of Ts with collinear stems are linked, provided
the area between the bars is not BACKGROUND.

3-parallel T. The regions on either side of the stem of the T are

linked in the case of a 3-parallel T.

Weak links, planted in addition to strong links, are associated with

the type of vertex called LEG. LEG is an ARROW where one of the barbs of
the ARROW is connected to an L which has one line parallel to the shaft of
the ARROW {if necessary through a chain of matched Ts).

Examples of the links associated with these junction types are givenon
the next page.
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The second step is to combine and group the link evidence to

partition the scene into its constituent bodies. The evidence for the

scene BRIDGE is shown below, in which the regions are depicted by circles.
Strong links are represented by solid arcs, weak links by dotted arcs. All
the links to the background ( :30) have been deleted since the background

cannot be part of any body.
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Now the program attempts to form nuclei, where a nucleus is either a
region or a set of nuclei formed by the following rule: if two nuclei are
connected by two or more links, they are combined to form a larger nucleus.
For example, as shown next, regions :24:25:27:12 and regions :21 and :9 are

put together.

 

As a consequence, nucleus :24:25:27:12 has two links with nucleus :21:9, so
they are combined in turn to form a new nucleus :24:25:27:12:21:9, as
shown below:

 

So the nuclei are allowed to grow and merge until no new nuclei can be
formed. When this is the case, the scene has been partitioned into several
"maximal" nuclei: between any two of these, there are zero or, at most,
one link,
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The program has still to consider the effect of weak links. The rule
is that if a strong link joining two maximal nuclei is reinforced by a weak

link, these nuclei are merged, as shown next.

G4

(6)

For example, in scene BRIDGE, the following weak links exist: :13 to :15,
214 to 3:15, :14 to :15, :3 to :17, :7 to :4, :8 to :11, :10 to :4, :5 to

:6, 3:28 to :29, :18 to :19, 3:25 to :27, :22 to :26, :23 to :26.
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Notice that nucleus :16 is linked to nucleus :1€/:19 by a single

strong link. This invokes another rule to the effect that a strong link
joining a nucleus and another nucleus composed by a single region is

sufficient evidence for the nuclei in question to be merged if there is no
other link emanating from the single region. This yields the final parsing
shown below:

a)

In summary:

i. Form nuclei from regions connected by two or more strong links.

di. Amalgamate nuciei joined by two or more links until no new nuclei

can be formed.

iii. Amalgamate nuclei joined by one strong and one weak link.

iv. Amalgamate a nucleus jointed to a single-region nucleus by a strong
link (except when the single region is BACKGROUND). Ignoring the
single links between nuclei which remain after parsing, the program

returns the results:

(BODY1. IS :26 3:9 221 327 «#312 «:25)
(BODY2. IS :22 :26 :23)

(BODY3. IS 3:17 3:3 220)

(BODY4, IS 3:1 32)

(BODYS. IS 214 3:15 3:13)
(BODY6. IS :19 :18 :16)

(BODY7. IS :29 :28)
(BoDY8. IS :8 21100:5 26 3:4 3:10 3:7)
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How gcod is SEE? Since it requires two pieces of strong evidence to

join two nuclei, it is conservative, i.e. it will almost never join two

regions that belong to different bodies. Its errors are almost always of

the same type: regions that should be joined are left separate. This sug-

gests that more heuristics snould de added to provide additicnal linking

evidence. The problem is that adding a heuristic can cause repercussions:

it may solve the difficult case but in turn cause other cifficulties.

Rather that continue to derive rules in an ac hoe way, it would be prefer-

able to derive them from an explicit 2D/3D representational theory which

takes into account the overall geometry of polyhedral bodies. This is what

we will consider next.
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EXPLOITING PHYSICAL CONSTRAINTS
 

When we discussed Guzman's program, we found that its rules for link-

ing regions depended on the shape of the local junction. In contrast, we

turn now to consider later work by Huffman, Clowes and Waltz who realised
that by devising rules for describing and linking junctions, not only could

they obtain a segmentation of the scene into bodies, but they could also
derive information about the 3-D shape of the bodies.

As we have already noted, SEE made most use of trihedral vertices -

the so-called ARROW and FORK junctions. Now, a trihedral vertex is a point
of intersection of three planes which partition the surrounding space into

eight octants. This is shown below:

 

 

 
Some of the ways in which these octants can be filled by three surfaces

which meet at a vertex are shown overleaf, where the number of octants

actually occupied yields a type number. For example, type 1 is like

Guzman's ARROW, and type 7 is like his FORK junction.
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Imagine now that you can view the vertex from each unoccupied octant.
The possible views of this vertex are shown opposite. Labels are asso-
elated with lines in these drawings. Let's see what these labels denote:

1, a '+' marks a convex edge which has both corresponding planes visible.

2. a '-' marks a concave edge which has both corresponding planes visible.

3. an '<' marks an occluding edge where one plane is hidden, the visible

Plane being to the right of the direction in which the arrow is pointing.  
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By understanding the three-dimensional nature of a scene, we are able
to apply these labels to the 2-D line drawing. The important question is

can a program use these labels to help it understand the three~dimensional

ature of line drawings? The answer is that it can do so by labelling to

the vertices in a 2-D drawing in accordance with the set of labelled line

configurations which we obtained by labelling the possible views of the

vertex. The set of twelve possible configurations is shown below. |

Notice’ how this approach limits the number of labellings for the different

configurations. For example, given four labels, there should be 16 ways of

labelling an "L" junction but there are only 6 legal labellings shown.

YO
YE

Huffman was interested in showing that the use of the labelled-line

configurations (which we will refer to as corner models) would enable us to

tell when certain kinds of drawings are impossible. If we look at the

drawing given below, it will be rejected as a possible plane-faced

object because there is no set of labels which will consistently label its

2-D line representation.  
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Labelling the outer contour is straightforward - the only allowable

labels are arrow-type labels. If we move on now and consider the two ARROW

vertices, we find that arrow labels have been assigned to the lines (barbs)

on either side of the shaft in both cases. Inspection of our list of legal

corner models, given above, shows that there is only one ARROW ver-

tex with arrow labels assigned to its barbs. Selecting this forces a +

label for the shaft which is entered accordingly. If we now consider the L
vertex between the shafts of the two ARROWS, we find that each leg of the L
has been assigned a + label. But inspection of the list of corner models

indicates that this is not’a legal corner model - there is no L configura-

tion with + labels on each leg so we conclude that the drawing does not

represent a regular plane faced object.

Similar considerations apply when we examine these eight objects:

re
y

(a) , (b)
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In the case of example (a), the labelling of the outer contour forces us to

label the shafts of the ARROW with a + since this is the only legal corner
model which can be applied. This forces + labels on all three lines form-
ing the ARROW in the middle, and inspection of the list of corner models

indicates that it is not a legal labelling. Exactly the same problem crops

up in examples (b) and (f), and in ‘the case of example (c) we see a
recurrence of the labelling problem encountered in the case of the drawing

of the incomplete cube, seen earlier. Example (d) is a second example of
an illegal L model, whereas example (e) has an illegal FORK junction.
Examples of other types of illegal ARROW labellings are shown in examples

(g) and (h).

Huffman only considered single objects, using a hand-worked analysis.

Clowes, working independently on the problem, devised a computer program,

called "OBSCENE", to perform this kind of analysis. Since it was designed

to handle scenes with multiple objects, involving consideration of addi-

tional fork and T~junctions, Clowes' program was equipped with a larger set

of corner models.

Working at M.1I.T., David Waltz generalized the Huffman/Clowes ideas in

two fundamental ways to handle scenes like those shown overleaf.
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1. To capture more information about the physical situation, he expanded

the Huffman/Clowes line labels to include boundary edges, convex edges,

concave edges including separable concave edges, crack edges and shadow

edges. After expansion the total number of legal corner models in the

data-base was 717. This stands in marked contrast to the many thousands of

possible corner models that could be generated, given that each edge could

be labelled in 12 possible ways. In other words, the structure of the

scene severely constrains the number of alternatives (i.e. restricts the

search problem). :

Not content with this, Waltz also extended the labels to include

information about illumination. The surfaces of objects can be categorized

as Illuminated, Self-Shadowed or Shadow-Projected: This means that a given

edge type can have illumination information added which describes the

illumination category on either side of that edge. For example, if a con-

cave edge is Illuminated on one side, the other side must also be

Illuminated. If, however, the edge is convex, if one side is Illuminated,

the other side might be Illuminated, or Shadow Projected or Self-Shadowed,

and so on. In practice, adding the illumination information increases the

number of legal corner models to 3,256. Since Waltz assumed that each

scene would be made up of blocks on a horizontal table top, any line seg-

ment separating the background (table) from the rest of the scene can only

be labelled in one of seven ways. This fact reduces the number of corner

models that can be used to label junctions on the scene/background boundary

to 245. In other words, the scene-background boundary provides additional

constraint.

 

2. The other improvement introduced by Waltz was a new method of searching

through the candidate corner models. The method converges quickly on the

possible interpretation of a scene. In general terms, the method is analo-
gous to building a jig-saw puzzle. Just as one starts by assembling the

edge pieces of a puzzle, the labelling process begins by labelling the

scene/background boundary. In turn, this labelling constrains the label-

ling of internal edges due’to the rule that in the case of planar objects

an edge cannot change its type along its length.

The search activity actually comprises two stages, namely the use of

selection rules to eliminate as many labels as possible by, for example,

starting with the scene/background boundary, and use of a filtering pro-

cedure, a method of quickly eliminating candidate labellings for internal

edges by applying the rule about edge type consistency. Let's see how the

filtering procedure works by taking a unit cube as‘example, as shown
overleaf.
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Step 1.
Compare A and B for mutually exclusive junctions. Since there are no out-

going arrows in A, we have no in-going arrows in Be

Eliminate B1 and B6

Step 2.

Compare remains of B, viz. B2 B3 BY B5 with C. Since there are no in-going

arrows in C, eliminate out~going arrows in B.

Eliminate B5

Now there are no + labels in B, 80

Eliminate C3 and Eliminate A3.

Step 3.

Comparé remains of C, viz. C1 and C2, with D. Since there are no + labels

or out-going arrow labels in C, there can be no + labels nor in-going
arrows in D, so
Eliminate D1, D5 and D6.

Step 4.
Compare remains of D, viz. D2, D3 and D4, with E. Since there are no +

labels or out-going arrows in D, there can be no + or in-going arrow labels

in E, so
Eliminate £3.

Step 5.
Compare E1 and E2 with F. Since there are no + nor out-going arrow labels

in E, there can be no + nor in-going arrow labels in F, so

Eliminate F1, F5 and F6.

Step 6.
Compare remains of F with A. No further elimination, so filtering is com-

plete.

In the case of a complex scene, the system might not be able to label every

edge uniquely. So it is equipped with special case heuristic rules (rules
of thumb) which try to find a plausible interpretation. For example, one

heuristic eliminates interpretations that involve concave objects in favour

of those that involve convex objects, and another prefers interpretations
which have the smallest number of objects (this heuristic prefers a shadow

interpretation for an ambiguous region to the interpretation of the region

as a piece of an object). Also, special case heuristics deal with the

labelling of non-trihedral vertices, the accidental alignment of edges, and

missing lines in the picture description.

The program reached the stage where it successfully handles scenes

such as those shown opposite. The segments which remain ambiguous
after its operation are marked with stars.  
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(39 SECONDS)

 

   

 

(48 SECONDS)
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We are now in a position to understand why Guzman's program works.
You will remember that we noticed thaat it worked best on scenes with convex

trihedral vertices, that is with convex objects. Accordingly, we can elim

inate from the set of Huffman's corner models all corners with concave

edges, including those for the L that imply a hidden concave edge, leaving

the set shown overleaf. Notice that L, FORK and ARROW junc—

tions now have unique corner interpretations, where the + labels, which
indicate convex edges, also match Guzman's links, i.e. we can derive

Guzman's links by planting a link at a convex edgé and’ no link at an
occluding edge.
 

Also, link suppression rules (no link is placed across a line at a

FORK junction if its other end is a barb of an ARROW, a leg of an L, or the

crossbar of aT) are equivalent to the rule that the opposite ends of a

line must have the same labelling. Indeed, the accumulation of link evi-

dence based on the existence of two links between surfaces means in effect
that both ends of an edge must agree that it is convex for it to be so

taken. If only one end says so, i.e. one link, there is a conflict which

must be heuristically resolved in Guzman's system.
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KNOWLEDGE DRIVEN SEGMENTATION

We turn now to consider a program written by Roberts which takes a 2-D

description of a scene and interprets it as representing a collection of

3-D bodies. In carrying out its analysis, the program uses three different

kinds of knowledge.

First, the program contains descriptions of three kinds of 3-D bodies,
namely, a cube, a right-angled wedge and a hexagonal -prism.

 

   

The assumption is that objects in the scene will be built from these

bodies. In the program, these bodies, or prototypes as Roberts calls them,

are represented in three-dimensions.

Second, the program extracts certain configurations of elements from

the 2-D representation of the scene. These configurations are used as cues

or clues in the process of finding out which bodies are present in the

scene. The actual configurations are formed out of what Roberts calls

“approved polygons". These are planar regions in the 2-D representations

of the scene which could correspond to the surfaces of the three proto~

types. Thus a triangle is an approved polygon because it could represent a

face of the right-angled wedge; quadrilaterals (a quadrilateral is a plane

bounded by four edges) and hexagons are also approved polygons. In the

domain in which Robert's program works no other configurations are

approved. In fact, what the program prefers as a cue 1s a combination of

approved polygons and, ideally, combinations in the following order of

preference:

(i) Three approved polygons surrounding a point is the most informative
cue combination. For example, overleaf, we see three quadrilaterals
with a common point A. This cue in the 2-D domain points to the cube pro-

totype in the 3-D domain.
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(ii) If the program is not able to find three approved polygons surround-

ing a point, it looks for the somewhat weaker cue of two approved polygons

sharing a common line, for example, line AB.

(iii) If the program cannot find any cues of types (i) and (ii), it will
accept the still weaker cue of a single approved polygon with a line coming

from one vertex, for example ABCD, with line BE.

(iv) Finally, if the program is not able to find an approved polygon with

a dangling line, it will look for a single point from which three lines
emerge, for example point B.

What the program does is to use the best 2-D fragment to select a 3-D

prototype. Roberts uses a predetermined order of prototypes (cube-wedge-

hexagonal-prism) over which the program searches for a prototype fragment

to correspond to the e-D fragment. That is, given a set of 2-D points
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forming a particular relationship, it searches the prototypes looking for a

set of points which have a similar relationship. Making comparisons on the

basis of similar point arrangement is a kind of topological comparison: it

makes no assumptions about the relative size of body and prototype. A size

match would only occur in special situations where the body was identical

to the standard prototype. Only then would there be an exact match between

the 2-D points projected by that body and the model points with which they

have been paired. Normally there would be a numerical mismatch between 2-D

points and prototype points, suggesting that the prototype will need to be
altered to match the input data. as

As a third form of knowledge, the program needs to know how to

stretch, rotate and project the 3-D prototypes so that it can make this

kind of match. It does this by solving a series of simultaneous equations.

Although the method of doing this will not be described here, it is

equivalent to two transforming operations on the prototypes. One operation

stretches and rotates the prototype to fit the cue configurations. The

other utilizes knowledge about projective geometry to check that a 2-D pro-

jection of the 3-D prototype could fit on to the appropriate part of the

2-D scene description. In the latter case, three possibilities arise:

(a) A fit means that the program has found the correct

prototype and the correct transformation.

(bo) If some of the prototype's points fall outside the
points in the 2-D representation of the scene, this

means it has selected the wrong model.

(ec) If all the prototype's points fall inside the points

in the 2-D representation but do not account for all,

this indicates that the scene contains a composite body,

made up of more than one prototype. The program has to

decompose the composite body into sub-parts that

can be checked out as transformed prototypes.

The best way to understand Roberts' program is to work through an

example of a particular scene, bearing in mind the kinds of knowledge that

the program brings to the task. Consider the scene shown next,

where each line corresponds'to a visible edge in the scene. We begin by

naming the regions R1, R2, etc. Although there are seven regions, only
five are approved polygons, namely R1, R3, R4, R5 and R6 which are four
sided. R7, which is five-sided, and R2, which is seven-sided, are not

approved polygons.

 

 



 

 

 

- 100 -

 

 

 

 

 q|

As a first step, the program examines the 2-D description looking for

a point surrounded by three approved polygons. Since there are no

instances of this combination, {it looks for two approved polygons which

share a common line. There are three instances, namely, R1 and R3 which

share line bd, R4 and R5 which share the line hl, and R5 and R6 which share
the line mn. Suppose it takes the R4/R5 combination. The program will

find that a cube and perhaps other prototypes have two ‘approved polygons

which share a common line. So it picks a line in the cube prototype which
has the approved polygons around it. Next, it picks a polygon from both
the 3-D cube prototype and the 2+D scene description as starting points,

and proceeds to list topologically equivalent point pairs. When finished,
it has a list of six three-dimensional points from the prototype and a
corresponding list of six two-dimensional points from the 2-D representa-

tion of the scene. Now its task is to transform the three-dimensional pro~

totype fragment to match the two-dimensional input fragment. Thereafter,

it calculates the overall fit between prototype and 2~-D ‘description to
decide if the prototype chosen is the correct one. In the case of R4 and

R5, the transformed cube prototype does not fit the 2-D data sufficiently

well, The same is true in the case of the R5/R6 combination. However, the

cube’ prototype can be transformed to fit the 2-D data giving rise to the
R1/R3 combination. The existence of the two T~junctions j and g, which can
be joined via ¢, d and f is also used as contributory evidence for the

interposition of one block in front of another one. Once the choice of

prototype has been confirmed by the goodness of the fit, the program uses

the prototype to supply information about the position of unseen lines in

the scene, and enters them into its final description of the scene.

The program still has to account for the body in the foreground of the

scene. Since the R4/R5 and R5/R6 combinations were unsatisfactory cues, it

looks for the next kind of cue, namely an approved polygon with one dan-

gling line. Notice that there are two, R4 with line kq, and R6 with line
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pq. The latter combination invokes a cube prototype, but this time the

prototype can be rotated, stretched and transformed to fit the input data.
Once again the program uses this prototype to supply information about the

position of unseen lines in the scene, and enters them into the final

description which is represented below:

 

 

   

By a similar process, the other combination R4 (now with line kr) also
invokes the cube model which is successfully transformed to match the input

data, leaving only the body shown below (h, 1, m,n, t, $s) to be
identified. Again, the two approved polygons which share a line invoke the

wedge model which fits the input data when: rotated, stretched and
transformed.
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Before moving on, a few words of comparison between Guzman's and

Robert's program might be useful.

1. Guzman's program segmented the scene called 'BRIDGE', into 8
separate bodies, namely:

Body 1: (R24 R9 R21 R27 R12 R25)
Body 2: (R22 R26 R23)
Body 3: (R17 R3_ R20)
Body 4: (R1 R2)
Body 5 : (R13 R14 R15)
Body 6 : (R19 R18 R16)
Body 7 : (R29 R28)
Body 8 : (R8 R11 R5. R6 R4 R10 R7)

The question is how would Roberts' program cope with this scene? We might

expect it to arrive at the following conclusions:

(R24 R9 R21 R27 R12 R25) is instance of cube cf. Body 1 above

(R22 R23 R26) is instance of cube cf: Body 2 above
(R17 R3 R20) is instance of cube cf. Body 3 above

(R1 R2) is instance of wedge cf. Body 4 above
(R3 RY R15) is instance of cube cf. Body 5 above

(R16 R18 R19) is instance of cube (or wedge) cf: Body 6 above
(R28 R29) is instance of cube (or wedge) cf. Body 7 above

So far, Roberts' program has made the same segmentation of the scene. How-

ever, at this point its analysis differs. Guzman's "Body 8" is ‘not an

instance of one of Roberts' prototypes. Instead, Roberts' program would

decompose it into its primitive parts, as shown opposite, yielding:

(R10 R32) is instance of cube ef. Body 8 above
(R33 R34) is instance of cube ef. Body 8 above
(R4 R11) is instance of cube cf. Body 8 above
(R6 R5 R31) is instance of cube ef. Body 8 above
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So Roberts' program finds three more bodies than Guzman's program, i.e.

missing edge data does not matter provided the outer boundary is intact.
In contrast, Guzman's program is highly susceptible to missing edge infor-

mation. The reason for this difference is that Roberts' prototypes carry

with them information about 3-D structure whereas Guzman's corner models

are derived from the 2-D appearance of a 3-D scene, and do not carry infor-
mation about 3-D structure.

 

2. Notice that Roberts' first test, namely finding a point surrounded by
three approved polygons, corresponds to Guzman's FORK heuristic. Notice

also that his second test, namely find a line flanked by two ‘approved
polygons, is Guzman's ARROW rule. Finally, notice also Roberts' use of T-

joints to provide evidence of interposition of one body in front of another
one.

3. Although we discussed Guzman's program before dealing with Roberts’

program, in fact Roberts' program was written about 4 years before Guzman's
program. Although it doesn't identify objects, like the arch object dis-
cussed above, it does identify all the primitive bodies. e.g. cubes, wedges

and hexagonal prisms, and can name them if required. Becausé of this it is
referred to as a recognition program, and is cited by many as an important

example of the theory of seeing which is based on the notion of a stimulus
fragment invoking a prototype model. But in reality, Roberts’ program is

special case segmentation program because it analyses a scene into its con-

stituent bodies, i.e. blocks, wedges and prisms. It does not recognize
objects made from these components, such as arches, bridges, tables and so

on.
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TWO EYES

Segmenting natural objects

So far we have confined our discussion to the problem of segmenting
scenes containing regular shapes. What about more complex, natural

objects? Can these be handled using similar techniques?

Suppose we are interested in the problem of analysing a photograph of

part of a plant. Plants are a challenging subject for analysis because
their natural curved surfaces are difficult to describe using the precise
mathematical methods that have proved satisfactory in more geometrical

domains. ‘Below, we see a digitised image of part of one of
MeLennan's plants. The actual intensity values that occur within the

superimposed rectangle are given in Table 1 (see Appendix).

100

 

The image was processed by Marr's system in the way described previously.

The contents of the data-base are drawn out below. The question is
can Marr's grouping methods separate the leaves to achieve a satisfactory

segmentation of the scene? Apparently they cannot handle this task.
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The primal sketch does not contain enough information to separate the

two leaves due to the lack of contrast across the edges of the leaf, as

shown by the image values in Table 1. So the aggregation techniques
deliver the form shown below: .

 

To segment this form into the two components shown below, the system

has to be given additional edge information. The need to provide this

extra knowledge represents a defeat for Marr's view, and suggests that
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building richer descriptions is not the solution to the problem.

 

But before we concede victory to the view that the analysis is con-

trolled by high level knowledge, let's consider the assumptions on which it

rests. The basic assumption is that the visual system is able to extract
some ‘distinctive features which suggest plants as context. But what are

these distinctive features which act as cues? In the case of plants, some

typical cues might be the simple shapes, PEAK and BAR, where PEAK suggests

a leaf tip and BAR suggest a stem. Similarly, NOTCHES formed between BARS
suggest branching in stems, .

Although no one has implemented a leaf recognising program, it might

include models of plants comprising characteristic plant parts and rela-

tionships between them. For example, a PLANT has such parts as STEM, LEAF,
NODE, ROOT-NODE, MAIN-STEM; and the characteristic relations include facts
about plant structure, for example every leaf is-supported-by a unique

stem. The plant parts might be models themselves, for example the leaf has

parts, TIP, VEINS, BASE, MARGINS, and these have relations like symmetry

relative to the MID-VEIN. Given the existence of these plant models, and
we beg the question how they were acquired, computing suitable cues for

invoking them would not be a difficult task. However, invoking a model is

only part of the process: the choice of modél has to be verified. In the

ease of Roberts' program, this was achieved by stretching, rotating and

transposing the prototype to fit the image data, and to provide missing

edge information. To provide the missing edge information to segment the

plant specimen shown above, the leaf recogniser would need to be
able to stretch, rotate, twist and transform its prototype to match the

input data, an extremely difficult matching problem.

Besides the difficulty in making the match between prototype and

specimen, an obvious counter argument is that such a program would need to

have the kind of specialized knowledge about plants which only a botanist
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has. Yet people can recognize part of plants without this kind of detailed

knowledge, so it should not be necessary to bring so much knowledge to bear
to partition such a scene.

But human beings have two eyes, not one. The extra information avail-
able from a comparison of the descriptions generated by two eyes might
solve the problem. We will turn our attention to this next.

Seeing depth

Up till now, we have been discussing visual processing in the context

of a single eye. But we have two eyes which work together to provide addi-

tional information about the properties of bodies in a scene.

Whenever we look at a body, our eyes pivot and alter their focus so

that their images are projected clearly on to both foves. This pivoting of

the eyes is known as convergence, and the amount that the eyes have to be

converged is signalled ‘to the brain to provide information about how far
away the body is from the viewer. For example, the diagram below shows
how the eves pivot inwards for viewing near bodies, and outwards for viewing
distant bodies.
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A simple experiment shows that the convergence angle is used directly
to signal distance. What happens if a pair of prisms of
suitable angle are introduced to bend the light entering the eyes, so that

they have to change their convergence to bring the images on to the centres

of the foveas? If the prisms are placed to increase the angle of conver-

gence, as shown in (a), bodies will appear far and small, whereas if
placed to decrease the angle of convergence, as shown in {b), hodies

will appear near and large.
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So the difference in convergence can provide information about the relative
position of bodies in the third (depth) dimension, to enable a scene to be

segmented.

We can see that the convergence mechanism is analogous to a range-

finder, But there is a serious limitation to range-finders: they can only

are brought into correspondence inthe two eyes by the convergence mechan-

ism. When many objects are present in a scene, a different strategy is

required.

Because the eyes are separated (by about 2 1/2"), each retina receives
a somewhat different view of a scene. This can be appreciated quite

readily by fixating a near body, with first the right eye closed and then

the left eye closed. It will appear to shift sideways in relation to more

distant bodies, and to rotate, when each eye receives its view. The slight

difference between the images is known as ‘disparity’, and this is the
basis for stereoscopic vision.

We can experiment with this, using a device called a stereoscope which
was invented by Wheatstone in 1833. It presents any two pictures

separately to the two eyes. Normally these pictures are stereo pairs, made
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with a pair of cameras separated by the distance between the eyes, to give

the disparity which the brain uses to give stereo vision.

Clearly the ability to fuse images on corresponding points of the two

retinae (as in convergence) is a remarkable property of the visual systen.
Fusion from non-corresponding points (as in stereo vision) is even more
extraordinary. Do we have any explanation about how fusion is achieved?

One rather obvious explanation is based on the notion that the

binocular fusion system might work by matching up distinctive features in

the two separate stereo images, ‘interpreting' the disparities as depth

information, But while it is true that the degree of similarity between

the two parts of a stereogram is extremely important in achieving fusion,
Julesz has shown that stereoscopic perception can occur in the absence of

patterns or contouw information.

In an important series of experiments, Julesz demonstrated that

disparity of elements alone is a sufficient stimulus for the depth

perception of dot patterns. He used pairs of computer-generated dot

patterns, each containing about 10,000 elements. When identical copies

were presented, one to each eye, they appeared quite flat i.e. two-

dimensional. However, when a square array of elements in the centre of

the right-hand member of the pair was displaced sideways by a distance of

about four elements, this produced retinal disparity and the displaced
section was seen lying a plane in front of or behind the remainder of the

pattern depending on whether the lateral shift of the displaced section
took place in the direction of the nose or ear of the observer,

Due to the dot pattern experiments we can be sure that any perceived
3-D structure (such as the central square of the stereogran) must occur at
or after the point of fusion of the information from the two eyes, and no

earlier. In turn this suggests that the binocular fusion system compares
the fine-grain structures of the two monocular patterns, picking out those

points of the two that are similar and fusing them, but discarding (or

ignoring) mis-matches. Understanding how it does this is the
stereoscopic matching problem

According to Marr and Poggio, stereo matching should take place
between elements which are reliably related to surface markings and
discontinuities. Clearly, for reasons given earlier, simple intensity
changes are poor candidates. Raw primal sketch canponents might be
better: in fact, Marr andPoggio use zero-crossings for matching

purposes, For them, physical considerations impose three constraints on

matching’

(i) a pair of candidate edge elements to be matched must

be physically similar if they have originated fram the

same place on an object's surface (the compatibility

constraint).

(ii) any iten in one tmage should match onl one item in

the other image (the uniqueness constraint).
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(iii) disparity should vary smoothly almost everywhere in an
image (the continuity constraint).

Marr and Poggio have proposed an algorithm for solving the

stereoscopic matching problem. It has five main steps.

1. Left and right images are filtered, at a range of scales

(just as if starting out to build a raw primal sketch).

2. Zero crossings are localized within these representations.

3. At coarse scale, matching takes place between pairs of zero
crossings of the same type in the two images.

4, Once matches have taken place at coarse scale, the output
is used to control a vergence system which changes the
positions of the elements in the representations of left
and right images to bring them into correspondence. In

this way, the matching process gradually moves fran dealing

with large disparities at low resolution to dealing with

small disparities at high resolution.

5. When a correspondence is achieved, the final step is to store

the information in a buffer store, called the 2 1/2D-sketch.
The reasons why it is called 2 1/2D instead of 3D is as follows.

We begin the explanation by recollecting that zero crossings in

the convolutions are caused by sharp changes in colour or

reflectance of the surface, scratches on the surface, sharp

changes in the shape of the surface, and so on. So, at

best the stereo algorithm returns disparity values along
some set of contours in the image. This means that depth

surface orientation can only be explicity determined along

such contours, To reconstruct a full 3-D description of

the surfaces at all points in the image, the method would

need to be extended. This is a current research problen,

So what is the value of stereoscopic vision? Julesz has suggested

that the main reason for its emergence was to break the camouflage of a

motionless prey (if it can do this, what effect would a_ binocular

representation have on our leaf problen?). Whether or not this is true,
binocular vision has enabled man to develop skills with his hands for
which the ability to make very precise judgments of depth, in particular

close judgment, is obviously very important. Before concluding this

discussion of stereo vision, we should note that stereo is only one of

many ways in which we see depth, and it only functions for canparatively
near objects (up to about 20'), after which the differences between the

images become so small that they become effectively identical.

Psychologists have discovered two additional sources of distance
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information, namely static and dynamic cues. The former are mainly

simple consequences of the geometry of the retinal image, and include
relative size, perspective and interposition whereas the latter are the
consequences of observer movement, and include motion parallax (where the
image of a near object moves a greater distance across the retina than the

image of afar object).
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RECOGNISING 3-D OBJECTS

So far, we have considered visual processing as a hierarchical

sequence of tasks, starting from the extraction of feature information from

an image, followed by partitioning the data to yield evidence of the

existence of separate bodies. Now, we have reached the top level in the

hierarchy, namely recognising objects in a scene by matching properties of

these bodies with descriptions (models) of objects stored in the computer's

memory.

The first question is what form might these models take? Given that

the shape of an object depends upon the viewing position (or in the case of

a fixed viewing position, the shape of an object depends upon its orienta-
tion), it might be thought that the computer will need to record all pos-

sible object shapes in its model. Recognition would be achieved when the

shape of the unknown body, or bodies, in the scene corresponds closely with

one of the model shapes. The difficulty is that any recognition system

equipped with many object models would have to store many thousands of

views in its models. Besides burdening its memory, searching for the shape

that matched the unknown body would be tedious, time-consuming and prone to

error.

How might the models be made more compact? The answer is to try to

build models which represent the invariant features of an object, i.e.

features which do not change with viewing position. Consider a rectangular

block viewed in two positions, as shown below:
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The edge information changes from one view to the other. What does not

change is the shape of the faces and their relationships. Consider the

vertex A, where the three faces intersect. In both views, point A is sur-

rounded by three faces of the same type, namely three quadrilaterals (a

quadrilateral is a plane bounded by four edges). So if the model of the
block represents the block as three quadrilaterals bounding a point, any

body in a segmented scene with these particular features will be seen as a

_ block because the description derived by the low level processes will match

with the model description. Of course, the situation is more complex: the

2~-D appearance of a block will be affected by the presence of other bodies.

If, instead of an isolated block, the object is an arch, as shown

below, the two supporting blocks will be characterised differently. Now,
we have two quadrilaterals sharing a common edge. So the model of a’ block

must also contain this description, so that the body fragments in the arch

scene will match the block model.
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In scenes with multiple objects, a block may be occluded by another

block, as shown next. So this means that the block model must

respond to an even smaller picture fragment, namely a single quadrilateral

with a dangling line.
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Notice that the evidence that an object is a block becomes progres-

sively weaker, going from three quadrilaterals, to two quadrilaterals to

one quadrilateral. If there are models of other kinds of blocks in the
system, e.g. rectangular wedge, hexagonal prism, then the weaker body

descriptions ‘will also match these models (a rectangular wedge would be

modelled as two quadrilaterals and a triangular face; a hexagonal prism as

six quadrilaterals and a hexagonal face). In that case, the system would

try to match the body description to the most likely model first of all.

Suppose the system is presented with the view of an arch, Suppose,

too, that the system has identified bodies A, B and C as rectangular

blocks. This is but part of the story since the system does not know that

there ‘is an arch in the scene. Just as it needs models so that it can

recognise bodies, it needs other models to enable it to recognise objects

made out of these bodies. These models will be more complex than the

models used so far.

So, how might an arch be represented? A convenient way of represent-

ing objects, parts and relationships is to use a directed graph, where

bodies are represented by nodes and relationships are characterised by arcs

linking nodes. Let's apply this technique to the arch structure. The

graph is shown overleaf.
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The top node is ARCH, which is decomposed into three nodes, A,B,C, each of

which is (i) a-part~of ARCH, (ii) a-kind-of BLOCK, (iii) a-kind-of OBJECT.
To distinguish an ARCH from other structures which are similar to, but not

examples of, an ARCH, as below, we have to add additional informa-
tion.

 

 

    

— 

 

      
 

For example, block A must-be-supported by blocks B and C; block B must-
not-abut block D, and so on. Note that this description does not refer to

any numeric properties of the image of an object, such as the shape of the

blocks. Since the object may appear in a scene viewed from any perspec-

tive, as below, numeric details would not be very useful aids to
recognition.

The abstract description captures the essential features that should be
invariant in any image of the object.
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Given that the recognition system is equipped with relational descrip-

tions as models of objects, the object recognition task can be seen as

involving two steps:

a) build up a relational description of the unknown body, in terms of its

components, their characteristics and their relationships;

b) compare this relational description with the set of stored relational
descriptions until a good match is found.

We will duck the problem of how the system builds the relational
description of the unknown object. Instead, we will focus on the second

task, comparing the unknown description with the model description.

An object description is a graph structure, made out of nodes and

relationships. A model description is a graph structure made out of nodes

and relationships. So the problem is to determine when two graphs match,

i.e. when they ‘are isomorphic. But again this is an over-simplification

since in the majority of cases the unknown object description will differ

in certain respects from its model due to imperfect edge evidence, missing

parts, extra parts, distortion due to the viewing perspective, and so on.

In other words, the description of the unknown object will be weaker than

it would be under ideal conditions. To restrict search time, and minimise

the likelihood of an incorrect match, it is important for the system to

restrict the number of candidate models used for any recognition instance.

So rather than match an unknown description with each and every model, it

is preferable to use an indexing method. Each model is equipped with an

index of key features, such as the main components and their connectivity
relationships. Given an index computed from an object in the image, a list
of models with the same index is immediately available. Indeed several

indices may be computed for a single model. Once the smallest set of can-

didates has been found, the actual comparison of descriptions can take

place.

Matching an object description with a model description produces a

list of similarities, and differences where they exist. For example, if
the object description contains all the essential components and relation-

ships stored in the model of an ARCH, the system will see the object as an

example of an ARCH. If, however, a relationship is present that the ARCH

model forbids e.g. contact between STANDING blocks, this difference will be
noted and the match will be rejected. Similarly, if some essential model

features are missing, the match will also be rejected unless the object is

occluded. Under these circumstances, the absence of essential|properties

is tolerated.

Once the appropriate model has been selected, if it is equipped with

appropriate numerical data, the program could discover, for example, if the

object in the scene is a toy arch or life sized.
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INFORMATION THROUGH MOVEMENT

So far we have considered static scenes and stationary observers. But
more frequently bodies move, or the observer moves, or both, and the pat-

tern of light at the eye distorts in a systematic continuous way.

We begin by recollecting that when we discussed receptive fields we

noted in passing that they were sensitive to motion in particular direc-
tions. Although carried out on animals, the results of the experiments

have ‘been generalized to human vision, giving support to the concept of a

visual information channel that is preferentially responsive to sideways
motion. We must distinguish between two different kinds of sideways
motion, real and apparent motion. Real motion is continuous displacement

of a body from one location in space to another location at a particular

velocity. If the observer's eye is stationary, a luminance discontinuity
in the retinal projection will be displaced across adjacent receptors at
the same angular velocity as those objects in motion. Apparent motion
refers to circumstances in which motion is perceived when there is no con-

tinuous physical movement in the real world. For example, if two nearby
stationary lights are alternately flashed, the observer will report seeing

a single light rapidly moving back and forth. In this case, since there is

no stimulus motion, the intervening receptors are not stimulated. Despite

this, we perceive the light during its flight across the space between the
two sources. This phenomenon is known as "phi", and is of course the basis

for motion pictures.

Consider a situation where light falls on a set of receptors at one

instant, and at a nearby set in the next instant, and so forth, succes-

sively stimulating adjacent retinal elements. How does the visual system

recover information about the body? Once again we are confronting the

correspondence problem which we encountered when dealing with stereo

vision. In this case, the correspondences are between similar features

projected on to a single retina at different positions in successive time

periods, If the visual system is able to identify corresponding points in

successive time periods, it can specify the structure of the body and it

ean compute its velocity from the positional change information.

The question is how might the visual system solve the correspondence

problem? In answering, we will consider a visual effect that was conceived

by Johansson. He presented patterns of dots on a screen, similar to those

shown overleaf (the links have been added to show relationships).
Although the dots appear to be ambiguous, naive subjects can tell in a

fraction of a second that they are seeing the movements of human figures.

Not only are they able to distinguish between walking and jogging move-

ments, but small anomalies like the simulation of a limp are also per-

ceived.  
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Johansson hypothesised the existence of a low level processing mechan-

{sm which extracts invariant relationships between the elements, presumably

corresponding to those invariant relationships which we extract when we

view people.

Besides discovering the visual effect, Johansson has also established

a new grouping principle to add to those which we have discussed previ-

ously. We will call it the constant-distance-apart rule. To illustrate

it, let us consider some simple configurations of dots, as shown here:

o-+—- on~, O, Os
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In (a) the stimulus consists of two bright dots in motion in parallel
tracks and with the same constant velocity. They are seen as being rigidly
connected and in motion along an approximately frontoparallel plane. Often

the dots are reported as end points of an otherwise invisible stick‘or rod.

In (b) the only difference from (a) {s the direction of motion. Now the

dots are converging. They are still seen as rigidly connected, forming a

rod, and this rod is seen moving in a straight track which goes obliquely

away from the observer at a specific angle to the frontal plane, i.e. it is

seen as moving in 3-D compared to the 2-D motion seen in the first ‘situa-

tion. In (a) and (b), the direction of the rod's perceived motion is at

right angles to the motion of the dots on the plane. This is a consequence

of the arrangement of the dots. Altering their relative positions, as

shown in (c), does not influence the perceived direction of motion. Now an

oblique rod is perceived moving in 3-D.

When a third (non-collinear) dot is introduced, a surface is perceived

instead of a line. Given the dot arrangement shown in (a) overleaf, the

observer always sees a rigid triangle moving obiiquely backward in space.

—
,

—
—
—

—
_
—

 



e
e

124

O->==~] I »-<0
ov J

In most cases, the surface is seen as having a frontoparallel direc-

tion in space. As in the previous examples, the point of convergence

determines the perceived direction relative to the observer. For example,

concurrent motion towards a point in the centre of the triangle results in

a perceived motion of the triangle in a radial direction, as shown in (b).

How does the constant-distance-apart rule help us to interpret pat-—

terns of dots as human figures? Let us consider a simple case, namely

motion of dots in 2-D without occlusion. Given a collection of dots which

represent a structure, one possible algorithm would be as follows:

1. In frame 1, link together all the dots into a network 1, where the

nodes depict dots and the ares depict connectivity relationships,

including length.

2. In frame 2, link together all the dots into a new network 2.

3. Compare networks 1 and 2, and remove the connectivity relation-

ships between dots which have changed their relative positions from

frame 1 to frame 2, i.e. have changed their length.

4. Compute velocity of movement, using positional changes of invari-

ant features from frame 1 to frame 2.

Notice that the new description produced by comparing network 1 and

network 2 is a structural description of the body in the scene. By apply-

ing the constant velocity assumption, it would be possible to compute posi-

tions of the dots in successive time frames.

Essentially the above strategy was used in a program written by Clock-

sin. Having generated structural descriptions, the program also recognised

these descriptions as instances of human activities like walking or falling
by comparing the derived descriptions with stored idealised descriptions of

these activities. In carrying out this analysis, Clocksin's system had to
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cope with some missing and extra body parts caused by some minor self-

occlusions by body parts, e.g. hand obscuring light at waist.

Recovering structure in this way is analogous to depth perception

through stereopsis, with successive frames substituting for adjacent images

and displacement values playing the role of binocular disparity of ele~-

ments.

How well does Clocksin's explanation confront the psychological data?

While it handles single figures moving sideways on a plane, it is far from

obvious how to generalize this approach to handle more complex problems.

For example, take a more complex case where there is motion of two human

figures on a plane. If they are dancing together, the system will generate

a single network’ to represent both figures. The question is how will it

segment the network into two sub-networks. Can it do so without invoking

high-level knowledge about dancing?

To answer this question, we turn to work by Ullman at M.1I.T. which

abandons the planarity assumption. For example, if a transparent beach
ball with tiny light bulbs mounted in randomly chosen positions on its sur-

face is set spinning in a dark room, the correct spherical layout of the

lights is seen immediately. When the spinning stops, so does the percep-

tion of the spherical array. The question is how does one see the correct

3-dimensional structure when'very many 3-D structures might have produced

the moving 2-D retinal projection? The answer is that the interpretation

process must incorporate some internal constraints that rule out most of

the possible 3-D interpretations, in favour of a unique solution. These

constraints can be thought of as implicit assumptions about the physical

world which, when satisfied, imply the correct solution. The constraint

that Ullman proposes is called the rigidity assumption i.e. any set of ele-

ments undergoing a two-dimensional transformation which has a unique

interpretation as a rigid body moving in space should be interpreted as

such a body in motion. Notice that Ullman's rigidity assumption is similar

to Johansson's observation that rigidity has a special role, as expressed

in his "constant-distance-apart" rule.So, under the assumptions

1) that the correspondence problem has been solved, and

2) that the objects are rigid bodies,
Ullman has derived what he calls the structure-from-motion theorem. It
states that three separate views of four non-coplanar points on a’rigid

object uniquely define the 3-D structure and motion of the object. The

implementation of this theorem involves the following steps

1. The image is divided into sets of four points

2. Each set is tested to see if it has a consistent rigid-

' body interpretation in the three views. In many cases, after

this first form there will be at least one consistent set for
each object in the image.

3. Each remaining point is tested to see if it belongs to

“one of the rigid body sets.

Ullman illustrates this through a more complex situation, one which

involves two sets of points arranged in two non-planar configurations. It
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comprises a projection of two co-axial cylinders on a display screen. Each

eylinder is defined by 100 randomly chosen points lying on its surface.
The common axis of the two cylinders is vertical. :

ORTHOGRAPHIC
PROJECTION

    

 

 COUNTER ROTATING
SCREEN CYLINDERS

Each eye's view appears as a near-random collection of dots. However,
when the changing perception is viewed, the elements in motion‘across the

screen are perceived as two rotating cylinders whose shape and angle of
rotation are easily determined. Is there a connection between Ullman's

work and Johansson's work? In Johansson's experiments, the correct 3-D

structures are seen even when the snapshots do not contain four co-planar
points. At best, in Johansson's snapshots only pairs of points are rigidly
connected, such as the ankle and the knee or the knee and the hip. Rigid
quadruplets of points just do not exist. This suggests that Uliman's

method cannot be used to segment a network of dots, representing a couple

dancing. A solution to this problem is still outstanding, as is a solution

to the’ interpretation of dot patterns, representing figures which recede

and approach. The latter might be handled if the constant-distance-apart

rule is interpreted in terms of proportions of overall height of object

rather than in absolute terms.

Perception of causality

We turn now to consider another example of a program that interprets a

series of discrete images of objects that move in relation to one another.

It was developed by Sylvia Weir. She was interested in the phenomenon of

causality, first investigated’ by a Belgian psychologist called Michotte.

What Michotte did was to show human subjects visual displays of 2-D

coloured shapes such as squares, circles and triangles, which moved in

relation to one another at different speeds. He asked his subjects to

describe what they saw, and they reported impressions of objects, for exam-
ple, billiard balls, chasing one another, pushing one another, passing by
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one another, and fleeing from one another. Although Michotte claimed that

different subjects interpreted a given kinetic event in the same way, sub-
sequent investigators have found that people are less consistent than

Michotte claimed.

Whereas Michotte argues that there is no question of an interpretation

being superimposed on the impressionof movement, rejecting the effect of
past experience and an acquired knowledge of mechanisms, Weir suggests a
knowledge-based explanation. Briefly, her view is that information

extracted from a particular kinetic pattern invokes one of a set of memory
models which describe actions like pushing, chasing and fleeing. Her evi-

dence takes the form of a computer program which interprets a representa-

tive selection of the kinetic situations used by Michotte, and in a way

which is consistent with Michotte's results, and those of subsequent inves-

tigators,

The program operates as follows. A kinetic pattern typical of the

kind used by Michotte is discretely sampled to yield successive pictures

representing successive instants in time, like the sequence of static pic-

tures making up a cine-film. Conceptually, the input is shown below:
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In practice, the initial grouping problem is avoided, and the program is
given descriptions of the pictures rather than the pictures themselves.
Obviously to compute motion, its first task is to detect changes which
occur from frame to frame. It does this by entering into its data-base
symbolic descriptions of the positions of elements in each frame. A sym-
bolic description takes the following form

Cat R1 R screen [frame 1] (colour black] [shape square] [position] [name]

Next, it matches the symbolic descriptions representing elements in pairs
of successive frames to yield information about change of position. Making
matches at this level involves handling the correspondence problem ‘referred
to above. That is, the program's task is to pair the descriptions of the
same object from successive frames although that object has changed its
position by an appreciable amount during the time interval between frames.
To. illustrate this process, let us.see what the program makes of the change
between frames 1 and 2. Comparison of the descriptions reveals that
regions R2 and R4 have identical descriptions, which constitutes good evi-
dence for pairing them. However, R1 and R3 have different descriptions on
account of their differing positions, so they cannot be paired in a

straightforward way. Inspection reveals that their colour is the same and
differs from the colours of both R2 and R4. In the absence of any competi-

tors, the most sensible pairing is deemed to be R1 with R3 and R2 with R4.

So the program constructs a new description of the form

[A moves] [frames 2] [direction to-the-right] [speed 2] [from 1] [to 3]
{B stationary] [frames 2] [direction 0] [speed 0] [from 6] [to 6]

The successful pairing relies on the fact that few objects move in the

environment i.e. there are no competitors to complicate the issue.

What the program tries to do now is to generate a symbolic description

of the relationship between objects in the scene, such as the fact that a

moving object A is approaching a stationary object B. Let us suppose that

the experimental instruction [fixate midscreen] was input as part of the
first frame's description. This instruction establishes the middle of the
screen as the reference point for A's movement, and this is reinforced by

the presence of object B as a target sitting at this reference point.
Under these circumstances, adding the description [A moves] to the data-
base results in a new description [A approaches B] [frames 2] [cue A moves]
being generated.

When this description appears in the data-base, it activates a pro-

cedure called a demon. A demon's job is to look out for a particular set

of circumstances. In this case, the demon is an impact demon which will be

on the look out for A reaching B.

Meanwhile, having computed A's speed, the program introduces the

assumption that objects move at constant velocity to enable it to predict

its positions in successive frames. On this assumption, the expected next

position of A is R5. Notice that besides simplifying the correspondence

problem, this assumption also enables the program to detect changes in the

speed of an object. In this case, however, the object is in the expected
position, so its movement will not be perceived as a change. In fact there
is a "no change" situation until Frame n-1 gives way to Frame n.
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to

consider the program's knowledge about real actions, such as pushing,

carrying along, launching. Descriptions of these actions, expressed in a
network representation, are stored in the program's memory. For example,

as shown below, the description for pushing includes such components as

approaches Y), (X collides with Y) (Y withdraws from X).
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(X approaches Y} 4s also a component of the carry along description, shown
next.
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Carry-along schema.

Both these descriptions were invoked when the lower level description (A
approaches B) was entered in the data-base, and both predict that an

impact will occur. This accounts for the fact that an impact demon was
triggered to look out for A reaching B. When this happens, signalled by
the appearance of the description (A next to B) in the data-base, the

program infers that the expected collison has occurred and enters into the
data-base the description (A collides with B). This description invokes
another demon which has two tasks:
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(i) it modifies the region-pairing process. The constant-

velocity assumption is abandoned in favour of an absolute

pairing between R9 (in Frame n) and R11 (in Frame n+1)
with no sense of surprise. By pairing R11 (in Frame n+1)
with R13 (in Frame n+2) and R12 (in Frame n+1) with R14

(in Frame n+2) the program establishes that B has
started moving. This movement away from the midscreen

reference point produces the description [B withdraws
from MIDSCREEN])

(ii) it sets up a search for the consequences of the impact

predicted by the stored description(s) invoked. Asa
result, when B starts moving, this movement will be

interpreted as a consequence predicted by a stored

description provided its time constraints are obeyed.

Notice that when more than one stored description is
a candidate, the time constraint information may be

the critical factor in distinguishing which one should

be rejected.

The program incorporates a number of subtleties which can account for

much of the variety in behaviour displayed by subjects undertaking the

psychological experiments. For example, being instructed to look at dif-

ferent places on the screen influences a person's perception of the kinetic

event. Above we considered the situation in which the centre of the screen

was the reference point. Suppose, instead, the reference point is the side

of the screen. The program doesn't expect anything to happen at the cen-
tre. Instead, the screen itself is the reference frame, and adding

{A moves] to the data-base description generates the description

(A movesacross screen] instead of [A approaches B]

This new description does not activate the impact demon so when Frame n is
reached there is no reason why the region-pairing process should be

altered. According to the rules invoked at Frame 2, R9 is expected to move

to the right but R10 is expected to stay still. Consequently, at frame n+1

region R12 is paired with R9, and R11 with R10. But in the following
frames, odd-numbered regions are paired together as before, as are even

numbered regions. In other words, the picture sequence is interpreted as

one object passing over another stationary object. The change in colour at

Frame n+1 is noticed, but is treated as less significant than the fact that

the movement is the expected one. Analogously, Michotte's subjects saw the

passing effect under similar experimental conditions. Some also saw a

small retreat of the stationary object as the moving object passes over it.

This phenomenon is neatly explained by the pairing of R10 with R11 instead

of with R12, as previously pointed out.

Just how good a computational metaphor is Weir's program? We have
already seen that its interpretations of kinetic events are similar to the
interpretations made by human subjects. But while the interpretations may

be similar, are they produced in the same way? Just how well does the

mechanism in Weir's program confront the psychological data? There are a

number of weaknesses.
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While the discrete sampling notion seems to be useful because it

enables a system to judge change of speed by comparing actual changes of

position with changes predicted by some built in rule, like the constant

velocity rule, it introduces the correspondence problem. Matching the same

elements in successive frames in a scene of any degree of complexity is a

difficult task. At what level should the match be attempted? This ques-

tion raises the’kind of problems investigated by Lamontagne who was unable

to solve the problem of whether to group feature points into a higher level

unit before computing motion of that unit, or whether to compute the motion

of individual feature points before grouping them into higher level

unit(s). In the latter case, the correspondence problem is particularly

difficult due to the large number of elements to be individually matched

from frame-to-frame.

If we abandon discrete sampling and inferred movement information in

favour of real movement information, can we avoidthe need to invoke

knowledge to account for the perception of causality? Put this way, the

answer is likely to be "no, we do need knowledge about different kinds of

motion so that we can communicate what we see to others", However, if we

ask whether or not we need knowledge to see objects in’motion, the answer

might well be "no, we don't need knowledge to see something move". Unless

we accept this latter statement, we have to face up to the logical problem
of accounting for the acquisition of the knowledge used to mediate percep-

tion by a system whose operation depends on its existence.

Of course, the constructionists i.e. those who believe that seeing is

model driven, might argue that the phenomenon of apparent movement, that is

our ability to see an object in motion when the eye is stimulated with a

succession of static pictures, indicates that the human visual system is

able to infer the experience of motion. No-one would deny this: what is

at issue is whether the visual system was deliberately designed to infer

motion from static images shown in close temporal succession, or whether

the phenomenon of apparent movement is a side-effect of a system designed

to compute real motion. Of course, there could be a biological reason for

having a system capable of analysing both kinds of motion. A predator

stalking its victim over rough ground, through forest terrain’ and so on

would provide intermittent information of its presence to its intended

prey. Being able to take advantage of fragmenting information would be of

considerable benefit.

What we may conclude, therefore, is that the low-level mechanism for

identifying the elements in the Michotte displays and for computing their

motion are implausible when the psychological evidence is confronted. How-

ever, notice the crucial distinction that arises between the ability to see
bodies in motion and the ability to talk about these bodies as objects

engaged in scme particular form of activity. Although we might wish to

discard the lower level mechanisms used by Weir, some notion like schema or

model invocation is needed to account for the variability in the behaviour

of Michotte's subjects. Clearly a physicist would have a richer set of

kinetic analogies to draw upon to communicate his perceptions compared with

a non-physicist, leading to a variety of interpretations of the same pat-

tern of kinetic stimulation. However,it is quite another matter to be

asked to concede that a physicist's perception of forms, shapes and move-
ment patterns is entirely different from that of a non-physicist.
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CONCLUSION
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CONCLUSION.

We started from the position that seeing is so easy that it
seems as if there is no problem to be explained. Through our
efforts at exploring the design of artificial seeing systems, whether
or not they operate in ways which are similar to the ways in which
the human visual system operates, we have gained some insight into
just how complex the underlying processes are. In the first
lecture, we noted that the theory of seeing which is most popular in
psychology and in artificial intelligence is the constructivist
theory. To recap, its starting point is the compression of the 3-D
visual world on to a flat 2-D pattern on the retina. Thus, there is

never sufficient information contained in a retinal pattern to
determine which 3-D scene accounted for that particular retinal
pattern. But since our space perception of scenes is both valid and
reliable, according to this theory we have to infer (Helmholtz’s
term) the third dimension. It is argued that we do this with the

aid of additional information (called cues) contained in the retinal

pattern, in combination with stored knowledge in memory which has

been invoked to assist with the interpretation of the input data.
According to this theory, therefore, seeing is a knowledge based
process. The key issues are concerned with building rigorous
explanations of the way in which knowledge is stored, invoked and
used: no attention is paid to the issue of accounting for the
acquisition and organising of this stored knowledge.

Unfortunately, one way in which the theory is inadequate is
that it cannot explain how we can perceive bodies in a scene without
invoking stored models. In the absence of a mental model, we might
not be able to name an object; we might not know its function, but

at least we ought to be able to acknowledge its presence. From
studies of patients with severe brain injuries which render them
blind, there is evidence that such people can actually see without
knowing it. The patients in question undoubtably have injuries in
the visual area of their brains; they never see a flashing light
projected on the part of the retina associated with the brain damage;
in fact they deny ever seeing anything there at all. But if a light
is briefly flashed and if they are asked to guess its position by
pointing to it, they can do so with remarkable accuracy. They can
even guess whether a line flashed within the ‘blind" area is
horizontal or vertical, even though they claim seeing no line at all,
and find the whole exercise rather foolish. This phenomenon is
known as "blindsight", and it is thought that this kind of perception
is mediated by more primitive parts of the brain which were thought

previously only to control eye movements.

We also noted the alternative explanation of seeing, advanced
by the psychologist J.J. Gibson, to the effect that the succession of
retinal images contains all the information needed to construct a 3-D
representation of the visual world. Gibson’s view is that this
would be obvious to theorists if they did not think of the retinal
image as a compressed or squashed two-dimensional picture, but rather
as a source of organised optical information. His theoretical
analysis suggests that the information content of the retinal image
is rarely if ever incomplete. Therefore, the perceiver does not
need to infer the third dimension, nor rely on past knowledge of what —
the scene might contain. All he has to do is to extract relevant
information from an image to construct a 3-D representation of a



scene. Of course, it is difficult to reconcile Gibson’s view with

our own experiences. In particular, there is the problem of

accounting for many of the practical phenomena which produce varying
visual interpretations, such as the illusions, ambiguous shapes that
we saw during the first lecture, or Michotte’s kinetic patterns, and

so on

We will conclude by asking whether there is any way in which
these opposing points of view can be reconciled. The weakness of
the constructivist ‘theory is the inadequacy of the low-level
information gathering mechanism, whereas the weakness of the theory
of ‘direct perception’ is the lack of high-level interpretative
mechanisms. Putting the two together would solve many of the
problems thrown up by the separate explanations, and would enable us
to hypothesise two different kinds of seeing, namely exploratory

seeing and predicted seeing. The distinction between these two

kinds of seeing is that exploratory seeing would be data driven for
the purpose of building up memory models of objects and events,
predicted seeing would be model driven in a goal context.
Obviously, exploratory seeing would be a time-consuming process due
to the large amount of information being handled by a system which is
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inherently slow (the nervous system). In contrast, predicted seeing -
would be a selective, hence fast, process, more in tune with a

rapidly changing visual world.

We have already looked at some examples of predicted seeing in the
form of the programs written by Roberts and Weir. We have also
considered a simple example of exploratory seeing, in the form of the
program written by Winston which builds models of objects from
examples. The challenge for the future is to combine these
approaches within a single computational model.
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Tabre 1

(The top table shows the intensity valucs for a small section ofthe iiimage PLANT
lowertable gives the vatues of edge-mask convolutions over the same region. Only residual decay from
the edge above this region is measurable. No general-purpose edge-finder could discern the edge of the
nearerleaf in this part of the image.)
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