i

LOGIC 1h COURSE NOTES 1986-7 -

PRELIMINARIES

This is a "fat" half course, running for 12 weeks {until week 3 of the Spring
Term). In the Arts Faculty it is the first half of Loglc and Philosophy of
Science 1. In other faculties i1t is a self-contained half course. There
are no prereguisites for Logic th.

Classes. Three lectures per week: ﬁanday, Tuesday, Thursday at Spm in Lecture
Theatre 3, Appleton Tower. Tutorials weekly in groups of about 10 at times and
venues to be arranged. Some additional {optional) classes are likely.

Revision classes will be held later in the year.

Assessment. Class examination (2 hours) on January 29th. Degree examination
(also 2 hours) in June. Marit certificates are awarded on the basis of the
class exam. with other class marks taken into account in borderllne cases,.
There are no exemptions from the degree examination.

Due Performance. The work to be duly performed for this course consists of:

{a) Attendance at tutorials. THIS IS COMPULSORY. THIS MEANS YCU.

(b) Handing in answers to exercises, as required from time to time, not
unreasonably or persistently later than the due date.

(c) Sitting the class examination.

Failure to complete this modest workload will result in witholding of
certificates of due performance unless a good reason is produced. Pressure
of work from other courses is pot a good reason. If you miss classes
through illness, get d medical certificate. Fair warning will be given in
writing to any student in danger of losing a "d.p."

Set Book. We shall not be working through a text in this course. The
system and notation presented are taken (with very few modifications) from:

E. J. Lemmon,
Beginning Logic,
Van. Naostrand Reinhold, London, 1965 {or later editions).

Students in‘the past have found access to a copy of Lemmon useful though not
absolutely essential. It is available in paperback from Thin's.

Computer Program. There is a program called LEMMON-AID which checks proofs for

validity and is intended to go with Logic 1h. It runs on the University's ,
SIRIUS microcomputers and can be used by any Logic 1 student during any open
session of the Micro Lab in the Appleton Tower. Guidance on the use of LEMMON-

AID will be given at an appropriate point in the course.
Help. Any Logic 1 student wanting help or advice on any aspect of the course
{or other matters within reason!) can call at my room in the David Hume Tower

at any time between 8.30 am and 6.3C pm, Monday to Friday. I am always
avallable for consultation except when actually %taking classes.

October 1986 ] ' dr J K Slaney

Room 2.05, DHT.
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The subject of study in this course is formal logic. It is 2asier to

illustrate what logic 1s than to give a simple defipition, but philosophy
courses traditionally start by defining the topic, so at this stage a

definition may be in*order. -Logic, then, 1is the science of reasoning.
It has to do not with the psychology of reasoning - it is not science in that
sense - but with the possible inferences which can be drawn, with the' language

in which they can be expressed and with their correctness or incorrectness.
Expansion and explanation of this statement will have to awalt the development
of the study.

Logic has to do with grguments. An "argument”, as logicians use the term, 1is
not a dialogue but a series of statsments called the premisses of the argument,
followed by some word like 'so' or 'hence’ or 'therefore’', followed by another
statement called its conclusiogn. The premisses are supposed to lend rational
support to the conclusion in the sense that anyone who accepts the premisses
and is faced with the argument is forced, on pain of irrationality, to accept

the conclusion. As an example of an argument, consider:
No dogs are allowed in here. (premiss)
Snoopy i1s a dog. {premiss)
So Snoopy is not allowed in here. {conclusion)

As a more complex case, consilder:

1. The deed was done by either his Lordship, the butler or
the Unfortunate Miss Lavinia. '

2. Whoever did the deed was in the house on Friday, but the
Unfortunate Miss Lavinia did not arrive until Saturday.

3. Therefore (from % and 2) the deed was done by either his
Lordship or the butler.

L Whoever did the deed must have been sober at the time,
which clearly rules out his Lordship.

5. Therefore {(from 3 and &} the butler dunnit.
Here the premisses of the argument are siatements 1, 2 and 4. The conclusion
is5 statement 5. We get from the premisses fto the conclusion by way of two
smaller arguments, the conclusion of the first (statement 3) forming one of the
premisses of the sacond. Such an intermediate stage in a compound argument
may, if it i1s important enough, be dignified with the title "Yemma™. It is
not strictly necessary, for 5 follows from 1, 2 and & without it; it is added
only to make the argument easler o follow. Later in the course we shall

encounter many argument structures much more complex, than this one, and it is
part of our aim to develop the means to handle them with ease and efflclency.

A good argument is said to be yalid. An argument is valid if, and only if it
is impossible that its premisses should all pbe true while its conclusion i3
false, That is, 1f the premisses are ELrue, then (necessarily) so is the
conclusion. To assert the premisses of & valid argument and deny 1ts
conclusion 1s to,contradict oneself. Conversely, an argument 1s inwvalid if

there is a way for its premisses to be true and 1ts conclusion false,

Motice the difference between validity and truth. Arguments are valld or
invalid; statements or sentences or propositicns are true or false.
Thie premisses of a valid argument are said to sntail or imply its

conclusiun,
The conclusion is said tu Ffollow from, be deducible from, be derivable from or

be a conseguence of the premisses.
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A valid argument need not, of course, have frue premisses. We requlre only.
Ehat if the premisses are true then so is the conclusion. An argument will be

called sound just in case (a) it is valid, and (b} all its premisses are true.
Mote that Lemmon in the texthook uses the word 'sound’ to mean 'valid'. The
usage just specified is standard, however, so we shall just let Lemmon differ.

Consider now the following valid argumant.

Snoopy is a cat.
All cats are reptiles.
Therefore Snoopy is a reptile.

Clearly not only is this valid (though unsound}, but we can explain why it is
valid. It 1s of a valid form, which we can express using letters to stand
in for predicates and names somewhat as they stand for numbers in algebra:

a is F.

Everything F is G. O
Therefore a 1is G. "

Notice that reasonably idiomatic English sentences may have to be paraphrased
to make them fit the form. For this process we have to rely on our educated
intuitions as speakers of English: there is no automatic method availahle.

Logic gives us valid argument forms. A form is valid if and only if every
argument of that form is valid. To show that an argument is valid we

typically find a valid form which it exemplifies. A glven argument will be an
instance of more than one form, so it is very difficult to show invalidity by
means of pure logic. We can show an argument form to be invalid by finding

an argument of that form with actually ftrue premisses and an actually false
conclusion. This 1s called a counter-sxample to the invalid form. Even Lif
we can't find a valid form for an argument, it may still be valid.

The People's Flag is red.
Therefore the People's Flag is coloured.

is a valid argument, even though it is likely to defeat our logical system.
Formal logic will not, then, capture all valid arguments. But it captures a ..-
large class of them, and is our tool for investigating the concept of validity. '

we are now going to concentrate on the branch of logic known as the santential
or propositional calculus. This involwves only whole sentences and the logical
relationships between forms of combination Of whole sentences. We shall cease
(for now) to worry about particles Like ‘all and  some ' and about such things
as names and predicates. Instead we shall consider such locutions as

It is false that......

Either...... ar......

If...... ‘then... ...
These are called connectives. A connective is an expression which applies to
one or more sentences to form a longer sentence in which the originals function
a: parts. Matural languages like English abound with connectives, lika:

The Ancient Greexs belileved that......

...... becauss......

...... although......

Probably......

Maybe...

I find 1t incredible/disgusting/exciting/etc. that......
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Try filling the blanks with various typical English sentences like

The sguare rouot of 2 is irrabtional.
Hearts never actually win so much as a plastic teaspoon.
Some people get pleasure from Logic 1h.
Figs will fly.
to gain some feel for the way connectives work in English. We shall study Jjust
a few connectives whose logical properties are particularly interesting.
These, with the notation we shall use for them, are:

Both ...... and ...... &
Either ...... O ..on... v
If ... ... then ...... =
It 1s not the case that ...... - .
...... if and only if ...... cee. £

With this notation, starting from sentence letters, we can build up sentence
forms of any complexity:

-P 2 4

{(P&a) v (P&R)

P> (@ + (R =+ S)) etc.
Notice that we use parentheses in the familiar way to disambiguate compounds.
Just as in arithmetic {3 x &) - 1 differs from 3 ox (& - 1), so in
logic we must distinguish between (P & Q) + R and P& (@ % RJ. The
symbol '-' 1is always read as applying to the smallest following sentence, so
that for instance -P v is read as (-P) v @ rather than -{(P v Q).
If we want to express the latter we have to parenthesise. Sentence forms

built up in this way with the given formal connectives shall be called

formulas. A precise definition of "formula” will be given later.

Before developing the formal calculus of logic, we should note two important
concepts concerning occurrences of connectives in formulas. First, every
occurrence of a connective has a scope. This consists of the connective
itself together with the formulas it connects. Lemmon's definition gf the
scope is the shortest (subl-formula in which the occurrence lies, For
gxample, consider the formula

-{(P & Q) % ({P v R) 2+ -5

The scope of the first '-' is -(P&Q), while the scope of the second '-' is ~-§.
The scope of the '&' is P&Q, and that of the second ‘3 1s (PvR} + -3.

Second, the main connective of any formula is the occurrence of a connective

which 1s not inside the scope of any other. That 1s, the scope of the main
connective 1s the entire formula. °~ Thus the main connective of the above
sample formula i1s the first "3°. The main connective of

P@m % R)

is the first '&', while the main connectives of

(P & Q) |3\ R
is the second '&". ALL the rules of our formal calculus will operate on
main connectives only, so this concept, though simple, i1s very important.




It is convenient to have a short notation to repressnt the claim that a given
argument form is demonstrably wvalid. For this we use the symbol " — ",
{the "turnstile”, sometimes misleadingly called the "assertion sign”).

Suppose that A and B are any two formulas. Then

A therefore 8

is an argument form. If we want to claim that we can prove it valid, we write

A B.
More generally, where AI, ey An and B are all Formuléé,
AL, ool . A : B. is a seguent, and
A, ... .. , A — B means that this sequent can be proved.

8y a slight abuse of language, I shall sometimes call A, L., . An - B

the "sequent”, in accordance with Lemmon’'s usage (which i1s again slightly non-
standard on this point). By another fairly harmless deviation, a correct ~
sequent will be said to be "valid" rather than “true”. Thus for example, .

P& Q : P
P, @ : P& Q
P : P

are all valid sequents (because they represent valid argument forms), while
p : P& Q

is invalid {why?}.

One more bit of terminology can conveniently be introduced at this point.

One formula is said to be a substitution instance of another if and only if

every sentence of the first form is also of the second. An alternative
definition is this: formula A is a substitution instance of formula B if and
only if A results from B by substitution of formulas for sentence letters.
Analogously, and importantly, seguenits can be substitution instances of other
sequents. As a special case, notice that every formula is a substitution
instance of itself. To illustrate, (P&Q) v =R 1s a substitution instance ;.-
of @ v P, resulting from it by substitution of P&Q for @ and -R '
for P. The same formula is pot a substitution instance of Qv Q,

because substitution must be uniform, the same formula replacing the ‘same

letter throughout. This definition of "substitution instance” is specific to
propositional logic. When we later come to more intricate parts of logic it
will no longer be adequate.

Check that you know the meanings of the following:

argument, valid, sound,
argument form, counter-example, ~connectlive,
sentence letter, furmula 3c0pe,

main connactive, seqguent, substitution instance
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We shall now start to construct a formal calculus for the rigorous proof of
logically valid sequents. First we must say what is to count as a proof in
the system, and to explain this we begin with the notion of a derivatiocn.

A derivation is produced by filling out an argument with intermediate steps
between premisses and conclusion, perhaps with comments saying how each line
follows from earlier ones.- By means of derivations, dificult and unobvious
arguments (for example, those relating the axioms of geometry to its theorems)
can be spelled out and reduced to small, simple, obviously valid steps. The
proof of sequents in formal logic 1is likewise reduced to about a dozen small-
scale rules whose operation can be iterated to produce intricate derivations.

A proof consists of lines of proof, written one below the other and numbered
consecutively starting from 1. No great significance attaches to the cholce
of numerals as labels: anything similar, such as letters a,b,c,.... would
have served equally well. The numerals just happen to be a convenlent and
familiar sequence. To the right of the line number is written a formula, and
to the left is written zero or more numerals separated by commas. This
represents a sequent. the written formula being its conclusion and the
“assumption numbers” being shorthand for the premisses. For example,

1,2,5 (16) P + (@ & R)

would be the 16th line of a proof and means thét P % [Q&R) has been derived’
from the premisses assumed on lines 1, 2 and 3. The line is also annotated by
the addition to the right of a brief justification for the inclusion of that

‘Line. Details will be specified when we come to particular cases. In order

to count as a proof, a series must have every constituent line justified.

The most elementary rule is what Lemmon calls the Rule of Assumptions.

At any stage of any proof, any formula may be introduced on a
new line. It depends on that line number only (i.e. on itself)
as assumption. The annotation is the letter "A"

Evidently, the rule of assumptions only allows us to prove sequents which are
substitution instances aof P : P. All such sequents are clearly valid, but
rather unexciting. To make ‘logic more interesting, we need rules governing
the behaviour of various connectives. These will transform the trivially
valid results of the rule of assumptions into nontrivially valld sequents,
some of which may even be surprising.

The simplest connective to grasp is conjunction, &. This is intended to
corespond to the English word ‘and’, though it will be clear that this
correspondence 1s not exact. For one thing, 'and', like its cognates in

other Indo-European languages, does not only join sentences. Sometimes it
joins nouns, verbs, adjectives, etc. as in:

Jack and Jill went up the hill. {joining proper nouns)
Dogs delight to bark and bite. {joining verbs)
I'm ready and willing 1f you are. {joining adjectives)




It may also join adverbs or phrases of almast any kind. In the second place,
unpacking these constructions into conjunctions of the form P&Q may give
incorrect results.. While the second example above does mean .

(y

Dogs delight to bark and dogs delight to bite
we cannot similarly convert

Chalk and cheese are different.

York is between London and Edinburgh.

Tom, Dick and Harry carried a plano upstairs.
into

Chalk 1s different and cheese is different.
York is between London and York is between Edinburgh.
Tom carried a piano upstairs, so did Dick and so did Harry,
In the third place, even where 'and’' really is a connective, it may not be &,

His wife left him and he cooked the supper. .
He cooked the supper and his wife left him.

are not synonymous, for instance, while
One false move and I shoot!

is not a conjunction at all, but a conditional.

For all that, 'and' i1s relatively well-behaved logically. The other
connectives are in their various ways even harder to formalise adequately.
The formal rules for & are very simple. A conjunction P&Q carries exactly
the force of its two conjuncts P, Q taken together. Thus we may validly infer
the conjunction from the conjuncts and, conversely, the conjuncts from it:
P & Q P& Q p
e — ———— Q
‘.G p C.- Q
o P& Q
The general rules for & follow immediately. Where A and B are any formulas
and X and Y any sets of formulas (represented by lists of assumption numbers) .
X :+ AL B X : A& B
X+ A X : B -
X A Y + B
A, ¢ A% B
The first two of these are annctated with the one line number (of the input
line) and '&E' ("& Elimination”]). The last is annotated with the two input
line numbers and '&I' {"& Introduction"). The order of the two input lines
in the proof is irrelevant. For brevity and readability,.we can write rules

like these which do not change the stock of assumption numbers with the "X"s
and "Y"s omitted: .

A& B A & B A B
A 8 A& B
Examine the following proofs to see haow the two rules operates. Try to see

how each application of &E or &I is an instance of the abstractly stated rules.
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P&¥G | aQ&rp

1 (1) P & Q A .

1 (2) P 1 &E

1 (3) Q 1 &E

1 (&) Q@ &P 2,3 &1

P &Q, R%S = P & S

1 (1) P & @ A

2 (2) R & 5 A

1 (3) P 1 &E

2 A4 S 2 &E
1,2 (5) P 3.4 &I,

& S

Exercise: write out the sequent represented by each line of this proof.

The next connective to be introduced is the conditicnal, ", As noted

earlier, this is intended to be read 'if...then...', so we begin by considering
the meaning if that expression in English. Under what circumstances is it

correct to assert 'If P then Q'? I suggest that such an assertion is correct
if (and only if), given the facts, Q@ follows from P. That is to say, P 2 @
is true iff there is a valid argument whose conclusion is @ and whose premisses

are P and (perhaps) some truths. This definition of the truth conditions for
P % @ has two halves. First, if you are in a position to assert P % @, '
then you are in a position to argue from P to Q. This is obvious, since you

are in a position to use the argument form
P>+Q, P therefore Q.

Second, if there is available enough collateral information to get you from P
tp Q, then you may correctly assert the conditional P 2 Q.

' Given the suggested account of conditionals, we should expect a formal logic
which deals with a connective < 1intended as "if...then’ to satisfy the
condition that for all formulas A and B,_and for any set X of assumptions,

X b A38 iff X,A P B.
This is the Deduction Egquivalence and lies at the heart of logic as we are
doing it. Its importance is that it ties the connective 9 to the relation of
deducibility. t quickly gives rise to the two rules governing the behaviour
of + 1in Lemmon's system. The first is "Modus Ponendo Ponens”:

A 3 B A

Annotation is the two input line
B numbers, and the expression 'MPP’'.

or in unabbreviated format,

X : A+ B Y @ A

.Y ¢ B.

-
——



The second is the rule of "Conditional Proof";

L

X,A : B Annotation is the input line number,
the discharged assumption number,
X :+ A3 8B and the expression "CP".

Note that CP has only gne input line, the line where the consequent of the
desired conditional occurs, and that the antecedent A must be one of the

assumptions on which it depends. That assumption number disappears as a
result of CP. It is said to be "discharged”.

The following proofs illustrate the use of the rules.

P33R | (P&Q)+R

1 (1) P2 R A ( premiss )
2 (2) P%&aQ A ( the antecedent assumed ) .
2 (3) P 2 &E -
1,2 (4) R 1.3 MPP ( the consequent derived)
1 {5) (P & Q) 2 R 2, CP ,
Mote that line (5) does not come from lines ([2} and (4). It comes from line
(4) alone, discharging assumption 2. In the application of CP here, X is the
numeral '1'. A is the formula P & Q, represented on the left of line (4} by
the numeral '2°. B is the formula R. With those identifications, check

that we do indeed have an instance of the rule as formally stated ahove.

An application of CP does not usually just “"happen”, like &E or MPP. It has
to be set up by prior assumption of the intended antecedent. Where several
CP steps are needed, the process is iterated, as in this proof:

P = (@ +R) 3 (@3 (P &R}

1 (1) p A { premiss)
2 (2) Q2R A ( antecedent for CP !
3 (3] Q A { antecedent for CP ) .
2,3 (&) R 2,3 MPP ) i 4
1,2,3 (5) P & R 1.4 &I { first conseqguent )
1,2 (6) Q% (P & R} 3,5 CP - ( discharging 3 )
1 {7) {@ + R} + {@ % (P & R}) 2,6 CP

Here the desired conclusion 1s a conditional, so we assume its antecedent at
line (2). We are then trying to get its consequent, Q@ % (P & R} so that CP
can apply. That is, the sub-goal i3 fo prove the sequent

P, @393R F @3 (P &R)

which we achieve at line (6). . The new conclusion {(the consequent of the old
one} 1s in turn a conditional, so it too will be proved by Conditional Proof.
So we assume its antecedent, @, at line (3} and aim for its consequent P & R
from the three assumptions now in play. That is, the new gub-sub—goal is

P, @R, Q = P &R

which is derived at line (5) by a couple of easy moves.

The theory of the conditional is so important, and the operation of Conditional
Proof so critical for the formal system being presented in this course, that
you must make sure you understand it. The computer program LEMMON-AID has
dozens of CP exercises designed to help on just this point.
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An applicétion bf CP always discharges one of the assumptions. MNow what happens
if we carry on applying the rule when there is only one assumption left? Well,

the left-hand side of the sequent produced is, naturally enough, empty:

1 (1)

P &-Q o A
1 (2) P _ oo 1 %E
(3) (P & Q) + P 1,2 CP.

A formula thus proved from the empty set of premisses is called a theorem of
logic. As a special case of the deduction equivalence, A 2 B 1s a theorem
if and only if A [— B. (I.e. iff the sequent A : B 1is provable). We write

- A , | .
to claim that the formula A is a theorem. . Theorems may be used in the proof

of sequents with non-empty premiss sets, as in this example:

1 (1) (P 3P) 3 aQ A
2 (2) p A
(3) PP 2,2 CP
1,3 MPP.

1 &} - Q@

Recall the informal definition of entailment (validity of arguments) with
which we began.  An argument is valid iff there is no way all its premisses
could be true without its conclusion being true. . It follows easily from this
definition that whatever follows logically from some of the premisses also
follows from the whole set. This is because, ohviously, there is no way for
all of the premisses to be true without in particular the ones needed for the
argument being true. Hence if we can derive A from premisses X, then we can
derive A from premisses X and Y together:

If X = A then X, Y — A.

This intuitively correct principle goes under several names in the standard
literature of logic. Here it shall be called augmentation. If our system of
logic is correct, it had better admit the principle in the sense that any
augmentation of a provable sequent is also provable. This is indeed the case
for finite sequents (and Lemmon's system has no place for infinite ones).

For a typical example, consider the following proof:

P, Q, R F @

1 (1) P A { premiss |}

2 (2) Q A { premiss )

3 (3) R A { premiss )
1,3 (&) P &R 1,3 &I
1,2.3 (5) (P & R} & @ 2.4 &1
1,2.,3 (6) Q 5 &E. -

"The general method for augmentation is to conjoin the "dummy” premisses with &I,
to use %I again to conjoin them onto a. "working” premiss, and theh to use &E to
take them off again, leaving their assumption numbers on the left and all else
unchanged. As a special instance of augmentation we have '




;.That ls.'any theorem lS a consequence ‘of anythlng you llke
<. This.may be. 1ntu1§1vely surprlslng,_but on our worklng ‘definition of validity it
iz well uustlfled’ if A is true no matter what then ln partlcular it 15 true
\'whenever all the formulas in'X are true. : : :

—y

'3 other symbols _ } Lt e S o l .

‘In writing out formulas we allow ourselves a few freedoms such as omitting the

X F' A

‘however irrelevant.

gt o
It is now time to'give a more rigorous definition of what is to count as a
formula. This is done in. stages ,“flrstly. the alphabet to be used consists
of 13 symbels Lo BT , o . g}

5 sentence 1ettefs.'-'."P;-i”fQ*f. IRﬂ" S T

1 monadic connective -

4 dyadic connectives .'&f AR S ff{'

Secondly, an atom (or "atomic formula") is defined as follows:

1. Any sentence letter is an atom.: _

2.. Where A 'is an atom, so is A followed by /",

3. Nothing islan atom except as a consequence of clauses 1 and 2 above.

So an atom is Jjust a sentence letter followed by zero or more “primes”

Thirdly, there is a definition in similar style of "formula" in terms of "atom"
1. Any atom is a formula.. _

2. Where A 1s a fermule, $0 is a monad;c conneCelve followed by A.

3. Where A and B are formulas, so is "{', followed by A, followed by a

dyadic connective, followed by - B, followed by )
4. Nothing is a formula except by clauses 1, 2 and 3 of this definition. .

outermost pair of parentheses. This makes for readability. Following the
definition, we can show whether a given string of symbols is a formula or not.
A formula is assembled from sentence letters in steps, =ach step producing a
sub-formula either by extending an atom (by adding "primes”) or by introducing
a connective as the main connective of that sub-formula. Work through the
definition, constructing a formula like

(-=P 3 (-(@ v P) & R)) o | - .

to make sure you understand how “formula” has ju;t been defined.  Nowhere
else in Logic 1 [and probably nowhere else in life) do we pay quite so much
attention to quite such minute details. Logic has this way of making us

examine, and be precise about, utterly simple things.
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The negation of a proposition is what is asserted when that proposition is

denied. In logic we use the symbol '-' to turn the statement that so-and-so
is the case into the statement that so-and-so is not the case. We read -P
as "It is not the case that P' and think of it as having the opposite force
from P. It is easy to set out a table showing the conditions under which the
use of negation results in a true statement or a false one:

P -P

true false

false true

That is, negation reverses truth value. Some of the salient features of
negation can be read off this table. Re-negating the negation of P reverses
the truth value again, so the value of --P 1is the same as that of P. The
equivalence of --P to P is called the law of double negation. It gives
rise to a pair of formal rules:

-=A A

A -=-A
The annotation for each of these is the one input line number and 'DN'. In

neither direction does DN have any effect on the pool of assumption numbers,
so the usual '¥X ' has been omitted for clarity. It is also worth
noting that like all the rules DN only allows introduction and elimination of
connectives in main position (well, two of them at once, if we must be

pedantic). Occurences of the string --' in minor positions cannot be
added or deleted by DN.

DN on its own is not sufficient to capture negation. To complete the theory
we add another rule, MTT (Modus Tollenda Tollens). This rule corresponds to
the valid argument form

If P then Q.

Not Q.

Therefore not P.
Arguments of this form are common. Consider:

If it's Tuesday, this is Belgium.
This is not Belgium.
Therefore it isn't Tuesday.

If I stirred my coffee then the spoon is wet.
The spoon is not wet.
Therefore 1 did not stir my coffee.

The formal statement of the rule is, in brief format,
A+ B -B

-A

or in expanded format:



XY : -A

The annotation is the two input line numbers and the expression 'MTT'. See
how the rules look in practice by studying the following proof.

-P3-a | a=3P

1 (1) -P 2 -0 A ]
2 (2) Q , A { Antecedent of Q@ 2 P for CP }
2 (3) =-=Q 3 DN
1,2 (&) -=-pP 1,3 MTT
1.2 (5) P L DN
1 (6) Q3P 2,5 CP.
Notice that the DN moves are essential if the proof is to accord with the
rules, for Q is not the negation of -Q. At this point, it will be worth- .
while to read sections 1 and 2 of Chapter 1 of Lemmon's book. There are '

useful exercises on negation at the end of section 2, and several proofs with
notes in the course of the text.

Consider thé following proof.

P3-P F -p

1 (1) P -P A
2 (2) P A
3 (3) P3P A
2,3 (4) P 2,3 MPP
2 (5) (P3P) P 3,4 CP
1,2 (8) -P 1,2 MPP
1,2 (1) -(P3P) 5,6 MTT
1 (8) P93 -(P3P) 2,7 CP
() PP 2,2 CP -
(10) . --(P 3 P) . 9 DN | O
1 (11)  -p 8,10 MTT.

This has a certain formal impressiveness, like a five-move combination in
chess, but it achieves the effect by being devious, by turning in and in on
itself until the conclusion pops out like a rabbit from a hat. Such obscure
combinations are a fair part of the game, of course, but if the object of the
system is to make proof-discovery easy then there ought to be a way of
circumventing them with less virtuosity. Lemmon provides such a way in the
form of an extra rule, Reductio ad Absurdum, RAA.

RAA rests intuitively on two principles. First, self-contradictions are
logically false. That is, any statement of the form P & =-P Jjust logically
cannot be true. Secondly, whatever entails a false conclusion must itself be

false. Putting these two together, if some premisses entail a contradiction
then at least one of the premisses must be false. So if P together with
other premisses entails a contradiction Q & -Q then if those other premisses
are all true, it must be P that is false. The formal rule corresponding to
this thought is

X,A : B& -8B

Annotation: discharged assumption number,
X 1 -A line number of contradiction, and 'RAA'.




RAA yields a powerful proof strategy. To derive a negative conclusion =A,
assume the positive A and try for a contradiction. Also, where there is no
obvious direct route to a desired conclusion, we can often get it by assuming
the negation of what we eventually desire, deriving a cantradiction and then
applying RAA followed by DN. The RAA strategy is known as indirect proof or
proof by contradiction. The following are simple examples.

P3-P | -p

1 (1) P> -P A

2 (2) P A
1,2 (3) -p 1,2 MPP { Just line (B) of the old proof }
1.2 {(4) P & -P 2,3 &I

1 (5) -P 2,4 RAA.

—  -(P & -P)

1 (1) P &% -P A

(2) -(P & -P) 1,1 RAA.

As was proved in Lecture 10, the rule RAA is in principle redundant: its effect
can be secured {though at greater length) by (mostly) MTT and DN. There will
be more on the subject of such “derivable” rules in the next set of notes.

The next connective to be introduced is disjunction, '...or...'. Where A and 8
are formulas, A v B 1is the disjunction of A and B, which are its disjuncts,
It is read ‘Either A or B or both'. This is "inclusive” disjunction, and

contrasts with the “"exclusive" disjunction 'Either A or B but not both', which
we rarely need in logic. S0 a disjunction is true iff at least one of its
disjuncts is true. Notice that we may often be justified in asserting a
disjunction without being justified in asserting either disjunct. For example
unless we knew that the roulette wheel was going to stop on "either red or
black”, betting on the outcome would be even less rational than it actually is;
but if we thereby knew which it would stop on, roulette would be even more
boring than it actually is, and casino owners would be much poorer than they

actually are, The rule for introducing v follows from inclusiveness:
A . B
AvaB A v B

Annotation is the one input line number and 'vI‘.
The elimination rule is more complicated. It is best approached by way of a
simpler-looking rule corresponding to a valid form of argument:

P v aQ, P % R, Q@ 2R therefore R.
Arguments of this form are plentiful. Consider, for example:

Either inflation will rise or output will fall.
If inflation rises, the recession will deepen.
If output falls, the recession will deepen.
Therefore the recession will deepen.

Number X is either odd or even.
If x is odd then x{x+1) is even.
If x is even then x(x+1) is even.
Therefore x{x+1) is even.



In formal notation, the corresponding rule is of course

Av

A3 C

B+ C

C

or, putting in the sets of assumption numbers,
A=>C

X

A v

B

Y

B =

C

X, Y.z

c

Lemmon's version of vE is slightly different in that he replaces the two
conditional inputs by forms equivalent to them by the deduction equivalence:

Y., A

X

: AV

C

Z,8

c

The annotation for vE is

X,Y,2Z

c

five numbers and the expression 'vE'.

The five are

the three input line numbers and the two discharged assumption numbers. That

is, you cite

the line number of the disjunction
the assumption number of A and the line where C was derived from it
the assumption number of B and the line where C was derived from it.

This looks complicated,

Example 1.

1

N

]
.

Example

[P N ]

~
1

~
T~ o~

1,

-
N

L)
¥

P v
{1)

(2)
(3)

(%)
(5)
(6)

{7)

P 3

(1)
(2)
(3)

(&)
(5)
(8)

1)

(8)
(9]}

(10)
(11)

and in fact the best way into it is by working examples.

Left disjunct of (1) for vE }
conclusion derived from it }

Right disjunct similarly }

conclusion derived again }

4L, VE.

-p.

{ Antecedent for CP }

{ Left disjunct }
{ Preparing for MTT }

{ Right disjunct }

7.8

vE

S4 and X4 contaln some 48 further

@ F Pvi(avR).

P v a A

p A

P v (@ v R) 2 vl {

Q A {

@ v R & vI

P v (Q v R) 5 vI |

P v (@ v R) 1, 2.3,

-Q, P & =R — {(Q v R) &

P93 -0 A

P9 -R A

Qv R A

(A A

--Q L DN

-p 1,5 MTT

R A

--R 7 DN

-p 2,8 MTT

-P 3, 4,6,

(@ v R) & -P 3,10 CP.
S3, X3, E&4,

The LEMMON-AID sheets E3,

sequents whose proofs involve the negation and disjunction rules.
highly recommended for practice especially in using RAA and vE.

These are
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We now have all the rules for Lemmon's system for the connectives &. P, -, V.

Lemmon goes on to introduce a generally useful method of shortening proofs.

He gives rules of Theorem Introduction and Seguent Introduction (TI and SI}.
TI allows us, whenever we have proved a theorem, to give it a name and then to
introduce it as a line of proof at any time. It rests on no assumptions at
all, and the annotation is 'TI' with the name of the theorem. The proof of
the theorem could in principle be interposed, making TI redundant, but this
would evidently he a waste of effort and space: since the proof worked last
time, it would work this time. I allow, though Lemmon does not, any
substitution instance of a proved theorem to be introduced under its name by
TI. Notice that TI is not a formal rule because its operation depends on the
historical accident of whether a particular result has already been proved.

The rule SI is more general, and more useful. Recall that a provable sequent
is supposed to correspond to a provably valid argument form.  Given that all

the premisses have been validly derived from some assumptions, therefore, its

conclusion also follows validly from the same assumptions. (Read that again

to make sure you see the point.) Given a proved sequent

A ..., A : B

and a proof in which the formulas A1 ..... An all occur on lines, we may

proceed to write B as the formula on a new line, resting on the assumptions
needed to get A, ..... An. In the formal notation for stating rules, SI is:

A1...An : B X1 : A1 e Xn : An

The annotation cansists of the n lines on which the various Ai occured and the

expression 'SI' with the name given to the sequent A1...An : B. In practice,
n tends to be small - usually either n=1 or n=2. By allowing the case n=0 we
could see Tl as a special instance of SI. What SI gives us, in effect, is a

new rule of the system corresponding to each proved sequent. Where we have
proved

A ..., A : B
1 n
S1 gives us the corresponding rule
A e
1 An
B

This is a secondary rule, as opposed to the primitive rules &I, vE, etc. A
rule is admissible in a given logical system if its addition would not allow
anything new to be proved, so that if added it would in principle be redundant.
1t is a derivable rule if it is admissible not only in the given system but
also in any extension of that system with extra rules, connectives, etc. Note
that all secondary rules (which Lemmon calls “derived” rules) are derivable and
therefore admissible, but that not all admissible rules are derivable.

Lemmon's Chapter 1 and Parts 1 and 2 of Chapter 2 could be read at this point.
Note particularly the use he makes of TI and SI. His remarks on the bi-
conditional are something of an afterthought and may be ignored for now.



Thus far our formal logic has been a system of proofs. Although the rules
(MTT, &L, etc.) were motivated in terms of the conditions In which it would be
correct to assert statements of given forms, their formulation and use makes
no reference to meanings. The proof system is pure svntax. Questions about
truth, falsehood and the like belong to semantics, or the theory of meaning,
which gives us another way to investigate validity and invalidity of sequents.

Sheet 4 of these notes, introducing negation, uses simple tables recording the

effect of negation on truth and falsehood. The idea of such truth tables
extends naturally to other connectives. Every statement has exactly ane of
two truth values which we shall symbolise 'T' and 'F', Intuitively, true
statements have the value T and false ones the value F. An interpretation

of the formal language i1s simply an assignment of truth values to the atoms.
This results in a value for each formula. The rules by which these values

are calculated are summarised in the truth tables. For negation, we have
A -A
T F
F T
meaning that for any formula A, when A has the value T -A has the value F
and vice versa. For the dyadic connectives, there are four possible cases:
A B A& B A v-B A3 B A €3 B
case 1 T T T T T _ T
case 2 T F F T F F
case 3 F T F T T F
case & F F F F T T

These tables should be memorised.

It is fairly obvious why the tables for '&' and 'v' are as they are. That .

for '?', however, is Fa{_less Cleariy correct. The value F in the case where
A is true and B false is easily motivated, but why the value T in all the other
cases? One answer is given by the (syntactic) provability of the sequents

Q = P2
-P = P 3.

These show that the rules CP, %I, RAA, etc. have the outcome that @ and -P each
entail P % Q. So if those rules are correct, Q cannot be true or P false
unless P =@ is true. Thus whatever lent plausibility to the rules can now
be enlisted in support of the truth table. '

Truth tables for complex formulas can be built up from those for their parts.
To illustrate, let us compute the value of the formula
(P v @) & -(@ » -R)

for an interpretation which assigns T to P, T to-Q and F to R.

P a R (P v Q) & - (a2 3 -R)
T T F T T T F F T T TF

Having filled in the values of the three atoms P, Q@ and R we copy those

.—“‘_"_
."'"J'




values under the occurrences of the atoms in the formula. Then we fill in
the value of each subformula under its main connective, calculating it
according to the truth tables. Eventually the value of the whole formula |
appears under its main connective (in this case the '&'). The process can be’
repeated for every possible assignment of values to the three atoms: rd

P Q R (P v Q)& |- (@ =

R) -

bt B s M M+ I B I
M A AT o~
T T R | R
MmN A~~~
MM o~ A = —
MM A4 -~
MM ST -
b r e 1 B B B 1 B R |
T A AT T o
- = = 1~ - - T
M =M~ T
b T B I R R

In constructing such tables it is easier to compute in columns than in rows.
Notice that the construction technigue, unlike the process of searching for
proofs,.is entirely mechanical, requiring no ingenuity or imagination. Truth
tables therefore yield an automatic procedure for analysing complex formulas.
Recall that a set X of premisses entails a conclusion A iff it is
impossible for everything in X to be true while A is false. Accordingly, we
say that a sequent

X, = A

1s semantically valid iff there is no interpretation giving the value T to all
formulas in X and F to A. To test a given sequent for (semantic) validity
therefore, we just construct its truth table, consisting of the truth tables of
its constituent formulas side by side, and look for a row which has T under'
the main connective of every premiss and F under the main connective of the
conclusion. I1f there is such a row then the sequent is invalid because there
is a way to make the premisses true and the conclusion false. It is clear
enough that the truth table test gives a purely mechanical procedure for
deciding on the validity or otherwise of sequents. We use a double turnstile

X B A

to record the claim that the sequent X : A is semantically valid.

In practice it is tedious to write out all the rows of a truth table test, and
mistakes can easily occur (especially if there are many atoms around). To
overcome this problem, we use a quick testing method which only requires us to
construct those rows likely to yield a refutation. To illustrate, consider

(P2 (@ vR)) D (-(S&Q)F ((P&S)IR).

We are to test this formula to see if it is a tautology. That is, does it
always get the value T regardless of the values of the atoms? Its full
truth table has 16 lines and so is laborious to construct. Instead, we note
that we are seeking a line giving F under the main connective. The formula
is a conditional, and so can get F only if its antecedent gets T and its
consequent F. The consequent is also a conditional, so in any refuting
assignment its antecedent and consequent must get T and F respectively.
Applying this reasoning as far as it will go, we reach

(P2 (@ v R)) 2 (- (S & Q) % ((P & S) 9 R))
T F T F T F F
2 1 & 3 6 5 7



The numbers show the order in which the values were inserted. Now by applying
similar reasonings, such as that if A & B gets T so do A and B, we reach

(p » (@ v R} 2 (-(S & Q) = ((P & S) 2+ R))
T F T F F T T 7 F F
2 1 4 10 3 8 6 8§ 5 7

Now any subformula must have the same value every time 1t occurs, and a true
conditional with a true antecedent must have a true consequent, so

(p 2 (@ v R} =2 (-{S & @) =+ ((P & S§) = R))

T T T F F T T F F T T 7 F F

11 2 14 12 1 4 13 10 3 8 6 9 5 7
But now Q@ must get the value T, to make the disjunction @ v R true, and it
must also get the value F, to make the conjunction S & Q@ false. This is L
plainly impossible, so our original supposition that there could be a .

falsifying assignment for the whole formula has been refuted.

The general principle of this kind of test is to start by writing T under
the main connective of each premiss (if there are any) and F under the main
connective of the conclusion. That is, we suppose there were a refuting
assignment. Then we reason, using the truth tables, about how such values
could possibly have got there. This forces more values, on smaller and
smaller subformulas. If an absurditv results - for instance, if some sub-
formula gets forced to have both values - then the sequent we are testing has
been shown valid. If a complete assignment of values, free from absurdity,
is found then the sequent has been shown invalid.

It sometimes happens that no more assignments of values are forced by what we
have, even though the line is incomplete. When this occurs we split the
attempted assignment, trying two lines which differ at some chosen point.

For validity of what is being tested, both attempted lines must turn out

absurd (explain to yourself why ). For an example, consider :
P v 4@, P &= Q = P & @ ll'
T T F
1 2 3
Here no further assignments are forced by the tables. So we pick a subformula
(generally it pays to pick the longest one available, but in the present case
we have to pick an atom because there is nothing better around). We pick P.

Now set up two attempts, differing in the value assigned to P.

P v Q, P & Q@ = P & Q
T T T T T F F
1 L 2 5 68 3 7
P v @, P &= Q = P & Q
F T T F T F F
6 1 1 b 2 5. 3
Follow the numbers, and check that you see all the reasoning involved. In

each case, though for different reasons, Q has been forced to take two values.
Hence either way the supposition is reduced to absurdity, so there can be no
refuting assignment, so the sequent is valid.
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Paradoxes of Material Implication

Among the sequents provable in orthodox logic, of which Lemmon's system is one
formalisation, are some which must strike the reflective observer as somewhat
bizarre or even downright invalid. They include such specimens as:

P = a=vpP
- = P20
P, =P b= Q
P . = (@ » R) v (R 2> S).
Try filling in actual sentences for the letters in these. For instance:
The People's Flag is Deepest Red;
therefore

eilther if you're gullible then you'll believe Lemmon,
or if you'll believe Lemmon then you'll believe anything.

This can hardly be claimed as an argument which commends itself intuitively as
valid. For one thing, even if the conclusion were true, the premiss would be
entirely irrelevant to it. Yet the sequent is valid on a truth table test,
and it has a proof in Lemmon's logic. There is thus an apparent mismatch
between the orthodox logical properties of the formal connectives and the

intuitive data about validity which the system was designed to capture. The ~
rather startling sequents above, and others like them, are known as the

paradoxes of material implication.

The philosopher R.J. Fogelin gave an imprecise definition of a paradox of
material implication as a provable sequent whose proof requires “funny
business”. THe utility of such a definition, of course, depends on what

sense can be given to the notion of "funny business”. Let us look at a proof.
1 (1) P A
2 {2) Q A
1,2 (3) P& Q 1.2 &I
1,2 (&) P 3 &E
1 (5) @ >P 2,4 CP.
This is a legitimate proof according to the formal rules. The funny business
surrounds the claim at line (4) that P has been derived from Q@ so that CP can
apply at line (5}). The assumption of Q (assumption 2) is used in the

derivation of P alright, but it is intuitively clear, if a little hard to
express formally, that it is not used in a way that makes P really depend on it.
To say that P came from Q under other assumptions stretches the sense of 'from'.
Interpreting a concept in such a way that its sense is stretched like this is
what Fogelin means by "funny business” We might suggest a precise definition
of 'paradox of material implicatian’ for the fragment of the language involving
only the connectives = and -. A" sequent in _which no connectives other than
3 and - occur is a paradox of material implication if apnd only if (a) if-is

provable, and (b)) ever roof of it involves




It is sometimes said that the paradoxes are not really problematic because they
just show that the English locution "IF...THEN' does not meap the same as 3.
This response will not do, however, since the rules of lemmon’'s system are 31l

well motivated by appeal to the inferentia
connectives in natural languages such as English. Since those rules lead to

the paradoxes, either the paradoxes are acceptable or the rationale for the
rules is not. The ‘above proof uses only the rules A, &I, %E and CP. Anyone
who thinks that paradox is not valid for English ‘IF’ and 'AND' must say which
of the rules just mentioned is invalid for the English version and why. So the
paradoxes are genuinelv paradoxical: they are quite counter-intuitive, yet they
follow from convincing principles culled from our understanding of ardinary
reasoning. To resolve the situation, something has to give.

The standard, classical response is to accept the paradoxes as valid principles
governing natural connectives and learn to love them. . Support for this option
comes from proofs like the one on the last page which derive the disputed
principles from ones it is relatively hard to reject. 0ften the classical .
theory is presented as the lesser of two outrages; it is claimed that to abandon

%I or CP or something would be much more counter-intuitive than the paradoxes
themselves. How cogent such a thought is depends both on intuitions about
relative outrageousness and on how great a revision of logic is in fact forced

by avoiding the paradoxes. The latter question is a delicate one, and is so

far unresolved.

Obviously, the major problem for the classical view is to account for the fact
that most people feel a natural resistance to the paradoxes on first encounter.
To explain why the paradoxes are repugnant, it is normal to turn to the
distinction between appropriateness and truth. There are many ways in which
an utterance might be inappropriate even if true. It may be impolite, for
instance. Most of these are not interesting for logic, but some are.
Importantly, it is in general inappropriate to tell only part of the truth in

a long tale if one is in a position to tell all of it more shortly. Thus if

" you ask me how Hearts did last Saturday and I reply, knowing that they won,
‘Well, they didn't lose’' then what I say is perfectly true, because winning
entails not losing, but by saying it I mislead you into thinking that perhaps ;“O

they drew, or that I don't know whether they won or drew. So we have two
statements, - W ('Hearts won') and L ('Hearts lost') such that W entails -L
although the utterance of W is appropriate and that of -L is inappropriate.

In the same way, it is held, if I know that @ then I mislead by asserting
P+ @, for I convey the false impression that I don't know whether @, or
indeed whether P, but only some connection between them. This does not mean
that Q@ doesn't entail P 9 Q, for logic is only concerned with preservation
of truth, not with any other impressions our premisses and conclusions may
convey, Reflection on the difference between appropriateness and truth has
helped to convince many philosophers that the classical response to the .
paradoxes faces no serious difficulties. The "inappropriateness” argument
seems rather weak to me, however, for it fails to explain why we feel less
resistance to the inference from P to P v @ than to that from @ to P 2 Q.

The alternative to giving up our intuition of paradoxicality .is of course to
reject the paradoxes as invalid and to amend our formal logic so as to avoid
being able to prove them. This option has generally been less popular than
the classical one, though it has gained ground over the last 25 or 30 years,
since respectable alternative logics became available, The easiest way into
such an alternative system is to pay more attention than Lemmon does to the
ways in which premisses can be combined with each other in sequents. In the
proof cited earlier, two assumptions were put together by &I and then put
asunder by CP, Neither move is in itself objectionable: the funny business




lies in combining the two. What we need is a distinction between the way in
which &I combines assumptions and the way in which CP requires them to have
been combined. Such a distinction is aimed at matching the different ways in
which premisses can be used to generate a conclusion.

To produce a paradox-free logic in place of Lemmon’s we give ourselves two

notations for combining assumption numbers on the left. Let us use the comma
{,) and the semicolon (;) for these. Then & 1is tied to , as in the usual
presentation, whereas < is tied to ; . So we now have the rules
X : A Y : B
&I ~ (Just as before)

X, Y : A& B

but
X A2>B Y : A
MPP (note the semicolan)
Y @ B
X:1A : B
CcP (and again)
X + A9 B '
The rules MTT, RAA and vE will also have to be modified slightly. Notice haw
the derivation of the paradox given on page 1 above is now blocked. It goes

through as far as line {4&)
1,2 (&) P

but to apply CP in its new form we should require the stronger
1;2 (%) P

which is not forthcoming. It would require a way of involving Q@ in the
derivation of P more deeply than just by its coming in and going out again as
happens in this proof. This can be shown (though I shall not show it here)
to be impossible in the amended system. The other paradoxes are likewise,
and for roughly similar reasons, underivable,

It is a matter of unsettled philosophical debate whether such a restricted
system, a so-called "relevant” logic, captures the intuitions better or worse

than the standard brand. It is also an open question whether the restricted
logic is adequate to allow important theories, in mathematics for instance, to
be reconstructed formally. The two formal systems, Lemmon's and the relevant

logic, give different and conflicting accounts of valid reasoning. Part of
the interest of formal logic is that it both generates philosophical problems
such as that of choice between these accounts and provides the tools with
which these problems may be tackled. Hard questions arising include:

Are the paradoxes useful? Are they needed? If so, for what?
What difference does it make (e.g. to mathematics) if we manage without them?
What, exactly and in full generality, is a paradox of material implication?

What intuitions are there in this area? How may they change as a result of
logical investigations such as we are now undertaking?

What considerations bear on the question of which logic (if either) is correct?



Soundness and Completeness

We have developed propositional logic in two ways: syntactically via a proof

system and semantically via truth tables. These two developments give us two
relations of logical consequence or validity. The next question is whether

the two are in fact one, whether the same sequents are valid semantically as
are provable from the rules. The answer 1is "yes". This answer comes in two
parts. Firstly, every provable sequent is valid according to truth tables.
This is called the soundness of Lemmon's rules. It amounts to the
correctness of those rules (MPP, vE, etc.) for logic as semantically given.
Secondly and conversely, every (semantically) valid sequent is also derivable
in the proof system. This is the completeness of the rules, for it amounts
to their having omitted nothing valid.

Soundness is proved rather laboriously by showing two facts. The first is

that every sequent introduced into a proof by the rule of assumptions is valid. _f.
This is trivial {(explain to yourself why). The second is that every use of '
one of the other rules preserves validity in the sense that if its inputs

are valid then so is its output. This has to be shown by cases and invelves

a lot of detailed reference to the truth tables. Lemmon gives the argument on
pages 17 - 82 of his book. The upshot is that there is no way for any invalid
sequent to get into a proof, so every provable sequent is valid.

Completeness is much harder to prove. There is a completeness theorem of
sorts in Chapter 2 of Beginning btogic, but it leaves out the difficult case

in which a valid sequent has infinitely many premisses. To deal with such
deep difficulties we need much heavier mathematics than can be covered in this
course - the full completeness theorem is proved and discussed in Logic 2.

For the moment my confident assertion will have to serve (Proof by Authorityl).

There are several reasons for showing soundness and completeness.

(a) Since the two notions of entailment coincide, any rationale supporting

one can be enlisted in support of the other. Thus on the one hand the truth

table for 'v' which is obviously correct can be used to justify the rule vE .
which might otherwise be rather obscure, while on the other hand the truth

table for ‘2 which is somewhat under-motivated is supported by whatever

lent credibility to CP, &I, RAA and the like.

(b} Truth tables give an easy decision procedure for validity of sequents.
This transfers via the completeness thearem to a decision procedure for
provability, giving us a way of checking whether sequents are derivable or not.

{c) In particular, soundness assures us that the proof system is in several
senses consistent. Minimally, not everything can be proved in it. More
strongly, there are formulas which do not entail contradictions according to
it. These things we expect of any well-motivated logic, of course, but it is
welcome that they can be proved to hold.

(d) A truth table test, especially one using a slick method such as a one-
line test or a truth tree, will often give not only the information that a
sequent is valid but also some reasons why it is valid. We find out what
prevents it from having an invalidating assignment, and by studying this we
can often see how the sequent might be proved. Proofs often simulate truth-
table reasoning in a way which must be picked up from examples.
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We now turn from the logic of sentential connectives to a more comprehensive
system allowing us also to take account of logical inferences which turn on
the behaviour of words expressing generality. Such locutions as 'all’,
"some' and ‘'none’ come within its scope. We shall now be concerned with the
internal structure of atoms (i.e. of formulas without connectives) as well as
with compounds built out of them. Consider the following, for example:

All logicians are admirable.
Some philosophers are not admirabhle.
Therefore not all philosophers are logicians.

This is plainly valid in virtue of its form. To demonstrate and explain its
validity, however, we need a richer language and more formal machinery than
are available in the logic we have treated so far.

First we need to be able to name things. In logic, a proper name is a simple
{(that is, unalalysable} linguistic particle serving to pick out and refer to an
individual thing. Examples of ordinary proper names include

Scotland

Thirty-four

Hearts

Margaret Thatcher

These designate a country, .a number, a football club and a human being, I

suppose. Lemmon uses lower case letters as names (he calls them "terms"):
m, n, o, ..... proper names
a, b, c, ..... arbitrary names.

The distinction between proper and arbitrary names does not apply at the level
of pure logic, so I shall simply call them all names or terms. Logically
proper names such as are symbolised by these letters differ from names of
ordinary language in that they are guaranteed to pick out exactly one
individual. Ordinary names like ‘Mary’ designate ambiguously (there are many
people called Mary), or they may not designate at all {consider 'El Dorado' or
‘Zeus', for instance).

So we can name things. Next we need to be able to describe them. For this
we use predicates. A predicate i1s an expression which yields a sentence
when appropriately many names are inserted in it. For examples, consider:

is larger than Andorra
is a multiple of ten

can beat

supports
The first two of these require one name to make a sentence; the last two need
two names each, Lemmon uses upper case letters

F, 6, H, ..... ,

which I shall call predicate symbols or predicate letters, to stand in for
predicates as these occur in formulas. Within each piece of discourse, each
predicate is specified as being one-place, two-place, etc. according to the . 4]
number of names it takes,. This fixed "adicity” is another difference from (a1 -
ordinary language, where predicates like 'are related' take no fixed number

of names, '




With this apparatus we can already form subject-predicate sentences like

'"Edinburgh is a city' and ‘'John loves Mary'. These can be formalised ‘Ce’
and Ljm respectively (with obvious mnemonic choice of letters). Note that
predicates precede names. Using connectives, we can now say

John and Mary love each other Lim & LmJ

John and Mary love themselves Lij & Lmm

Mary's love for John is not reciprocated Lmj & -Ljm.
So far, however, we cannot express generality. We cannot say

Mary loves everybody
Somebody loves Edinburgh

and the like. For cases like this we introduce variables and guantifiers.
In order to express a universal claim like

Everything fades
we first paraphrase it to give the slightly more awkward _
Take anything you like; it fades. .
To render this expressible in the formal language, using F for 'fades':
Take any thing; call it x: Fx.
or
For each and every thing, x, FXx.

Here the letter X 1s not a name, although it goes in the place of one, for

it is not designating any particular thing. Rather, it is a variable. The
locution 'for every thing x' 1is symbolised by putting the x in parentheses, .
so our formal notation for 'Everything fades' is now

(x)Fx.
The expression '(x)' 1is a universal quantifier. It must be followed by
what would be a formula if the variable x were replaced by a name. There is

a separate universal quantifier for each variable x, vy, z, x', y', etc.
Now consider how to express in the same notation such a statement as

All philosophers are demented. .
Take any philosopher, x: x is demented.
Take any thing, %: if x is a philosopher, x is demented.
(%) (Fx 9 Dx). [ using 'F' for 'Filosopher' ]
Notice that in the formalisation of such statements the universal quantifier
naturally goes in tandem with the conditional, .
[t is also very useful to have an expression corresponding to the claim that
some object of a given kind exists or has a given property. To formalise
Flying saucers exist
we turn it into the equivalent
There exists at least one thing which is a flying saucer.
or, with a variable,
There is some thing, x, such that x is a flying saucer.

The locution 'There is some thing, x, such that.....' 1is symbolised ({3x),
This is an existential quantifier, So, using F for 'is a flying saucer':

{Ix)Fx.




Note that at this stage we do not distinguish between the singular ‘There is a
flying saucer' and the plural 'There are flying saucers'.

To express 'Some F is G' " or 'Some Fs are Gs' we again combine the
quantifier with a connective. Consider

Some logicians are cuddly.

There is [such a thing as] a cuddly logician.

There is some thing, x, such that x is both a logician and cuddly.
(Ix) (Lx & Cx).

In the expression of such existential claims the natural connective to use is
conjunction (&%). DO NOT ATTEMPT TO USE <3 FOR THIS PURPOSE.

The definition of a formula of first order or quantificational logic is rather
more complicated than that given earlier for the propositional calculus, since

the language is so much richer. The alphabet is extended to give us
terms (i.e. names) a, b, c,d, m n, o, 2", b", .......
variables Xo Vo 2, X', ¥y, oz, x' oyt ..
predicate symbols F, 6, H, F', G", .......
and the reverse “E". An atom is now either a propositional atom or a
predicate symbol followed by one or more terms. The clauses for constructing

formulas are:

1. An atom is a formula.
2. Where A is a formula, so is -A. (i.e. '~=' followed by A)
3. Where A and B are formulas, and § is a dyadic connective,

(A b B) is a formula.

I Where ALt] is a formula containing term t and v is a variable not
accurring in A[t]l, and A{v] 1is the result of substituting v for t
throughout ALt], both (v)AlLv] and (3v)ALv] are formulas.

It is worth noting some consequences of clause 4 as given here and by Lemmon.
Here are some formulas and some non-formulas.

Formulas Not formulas
Faa Fxx

Fba Fxy

(dx)Fxa {dx)Faa

(3x) Fxx (3x) Fxy
(y){3x)Fxy (%) (3Ix)Fxx

That is, our formal language has no place for "free variables® not bound by
quantifiers, or for “vacuous quantifiers" which fail to bind variables, or for
“confusion of bound variables” whereby one quantifier occurs inside the scope
of another binding the same variable.

The problem of translating English sentences into formal notation is perhaps
as hard as any technical one raised by the logic in this course. The reason
is that there are no infallible rules or algorithms to do the job for us.

All we can do is to paraphrase, using our command both of the formal system
and of the natural language, and relying on imagination and inventiveness.



We know how to say 'Some Footballers are Hairy® and ‘All goats are Hairy':

(Ix) (Fx & Hx) (x)(Gx = Hx).
Now how about 'No goats play football'? Well,

-(3Ix){Fx & Gx) or equivalently (x)(Gx & -Fx).
Examples like this can easily become‘very intricate, especially if we add a
two-place predicate (i.e. a relation) such as '...kicks...'. A sentence like
'Only hairy footballers kick goats' is ambiguous. That is, 1t sustains two
quite different readings. It might mean either of

(1) Whoever [or whatever] kicks a goat is a hairy footballer

(i.e. all episodes of goat-kicking are by hairy footballers).
(2) Any footballer who kicks a goat is hairy.
‘Aristotle kicks a goat' means that there is some goat Aristotle kicks:
(3y) (Gy & Kay). .
So the two readings above can be rendered:
(1) (x)((3y)(6y & Kxy) -+ (Fx & Hx))
(2) (x}((Fx & (3y)(Gy & Kxy)) <+ Hx).

Try to see why these are indeed formalisations of the two sentences, and why
they do not mean the same, The exposure and exact explanation of ambiguity
is one of the important applications of formal logic. It can often help to
clarify difficult issues in philosophy, mathematics, linguistics and even real
life! Arguments like

All goats are hairy
Therefore any footballer kicked by a goat is kicked by something hairy

can be formalised, given a little thought:

{x)(6x 2 Hx)

(x) { [Fx & (3y)(6y & Kyx)1 = (3y){Hy & Kyx) ) ] .

and will turn out provable in the logical system to be developed in the next
part of the course. That such complex argument forms can be proved valid in
modern logic is a major respect in which it is an advance on the kind of logic
in use prior to this century.

One particular potential ambiguity in English gives rise to a common confusion
which is important enough to have been given a name. This is the "quantifier
shift” and gives rise to the “quantifier shift fallacy". Consider

Everyone kicks someone.

This could refer to one unfortunate universal kickee, or it might allow

different kickers different targets. That is, it could translate as either of
(x) {3y ) Kxy
{Iy ) {x)Kxy.
These are obviously not equivalent. Yet in more complex cases it is rather )
easy to get them confused. The "fallacy” is to infer the second from the

first. You, of course, would never do such a thing.
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This sheet concerns the proof system of first-order logic or the lower
predicate calculus. The notion of “proof" is much as it was for sentential
logic, except that we have a new definition of "formula" (see Course Notes 7)
and some new rules for introducing and eliminating quantifiers. The rules
for connectives are simply taken over from the sentential case,

The rules of UE {(Universal Elimination) and EI (Existential Introduction) are
very easy to state, motivate and use. UE corresponds to the valid argument
form known as "instantiation”:

Everything is F Therefore a is F.
Since a is one of the things, what is true of everything must be true of a in
particular. Formally, then, where (v)A[v] 1is a universally guantified
formula and A[t] results from it by dropping the quantifier and substituting
term t for variable v throughout,
(v)ALv]
Alt]

or in unabbreviated format

X (v)Alv]

X : Aft]

The annotation consists of just the one line number and the expression ‘UE’
For an example, consider the following very simple proof.

(x)(Fx % 6x), {y)Fy = Gm

1 (1) (X} {FX 3 Gx) A
2 (2) (y)Fy A
1 (3) Fm < Gm 1 UE
2 (&) Fm 2 UE
1,2 (5) Gm 3,4 MPP.
The rule EI is equally easy. It corresponds to the obviously valid form
a is F Therefore something is F.

Formally, where (3v}Alv] is an existentially quantified formula, and A[t]
results by deleting the quantifier and substituting t for v as before,

Alt]
(3v)ALv].
The annotation is the one input line number and 'EI’. Note that neither EI
nor UE has any effect on the set of assumptions. Note also that the

formulation of EI allows that not all occurrences of t in Alt] need turn
into occurrences of v. For example, suppose that t is the name b and



that (3v)Alv] 1is the formula

(Ix) (Fx 3 Fb)
then A[t] is the formula
Fb % Fb.
This allows the following proof.

=  {(3x)(Fx 2 Fb)

1 (1) Fb A

(2) Fb 2% Fb 1,1 CP

(3) (3x){Fx + Fb) 2 EI
The rules to introduce the universal quantifier and to eliminate the .
existential one are slightly harder to state and use because they are subject
to some restrictions. It is convenient to approach them by comparing the
quantifiers with & and wv. The universal quantifier behaves rather like
conjunction, To say 'All politicians are devious' 1s like saying

"Thatcher is devious and Kinnock is devious and Steele is devious and .......
Similarly, the existential quantifier is a kind of disjoiner: someone finds vE
exciting iff gither Socrates or Zico or Junior or ........ finds VE exciting.
Listing all the abjects in the universe in this way is not in general
practicable, however, which is why we have quantifiers.

The rule UE corresponds closely to &E. &E takes us from a conjunction to one
of its conjuncts. UE takes us from a generalisation (like a big conjunction)
to one of its instances. Similarly, where vI gives us a disjunction based on
one of its disjuncts, EI gives us an existential claim based on one of its

instances. The remaining quantifier rules correspond similarly to &I and VE.

&I takes us from both conjuncts to a conjunction, so UI ought to take us from
all the instances to a generalisation. Unfortunately, the universe might

be infinite; and even if it is not, some things might have no names. .
Physicists do not have to name each individual electron before they can reason
about them, for instance. So it is usually impossible to give all instances
of a generalisation. What we do, therefore, is to pick a typical one and
reason from it. What 1s true of a truly typical individual is true
universally. "Let ABC be a triangle’, we say, and go on to infer 'that at
most one of its angles is obtuse or whatever. Provided no assumption was
made about ABC apart from its triangularity, the result stands proved for all
triangles. In principle the proof could be repeated for any particular

triangle we cared to pick. The formal rule corresponding to this kind of
reasoning is as follows. Let ALt] be a formula containing term t, and let
v be a variable not occurring in it. Then let (v)Alv] be the result of

substituting v for t throughout ALt] and prefixing the universal
quantifier. The rule is then

i

X @ Alt]
provided t does not occur in any
X : (v)A[v] of the formulas in the set X.
The proviso is to ensure that the term t is indeed typical. It does this

by ruling out any assumptions which might constitute special pleading about
the object picked out by t. Notice that the direction of substitution this



.

time is v for t, not t for v as it was for UE and EI. This rules out
the fallacious “proof”

1 (1) Fb A
(2) Fb & Fb 1,1 Cp
(3) (x){(Fx =+ Fb) 2 Ul 2?7?27

Of course, it would have been entirely in order to infer
(3) {x)(Fx 2 Fx) 2 UI.
Here is another proof, showing UE and UI working together.

(%) ({Fx % Gx) - (y)(-Gy & =Fy)

1 (1) (x) (Fx 2 6x) A
2 {2) -Ga A
1 (3) Fa + Ga 1 UE
1,2 (4) -Fa 2,3 MTT
1 (5) -Ga 2 -Fa 2,4 CP
1 (6) {(y){-Gy 2 -Fy) 5 UI.
The proof strategy here is worth a second look. The desired conclusion is

universal in form, so it will be derived from a typical instance by UI. That
is, the intermediate goal is to prove the sequent

(x)(Fx % Gx) = -6a ¥ -Fa.

The new conclusion is a conditional, so we assume its antecedent for CP. We
are now aiming for

(x)(Fx 9 6x), -Ga = -Fa

which we achieve at line (4) by an easy UE-MTT combination. The assumption

involving the name, a, upon which we wish to generalise must be discharged
before we do so in order that the constraint on UI be met.

EE is related to vE as UI is to &I. The upshot of vE is that a disjunction
entails just what follows regardless of which disjunct we pick. EE reflects
the analogous principle that if a conclusion B follows from Alt] whatever
t might be, then B follows from the existence of something or other
satisfying the description A. As before, we use a typical term t, so that
the argument to B in no way depends on what term it is. To guarantee this,
t must not occur in any auxiliary assumptions used in deriving B, and must
not occur in 8 itself. Let A[t] and v be as above (in the case of UI)
where the variable v is substituted for term t. Then

X (3v)Alv] Y, Aftl : B

provided t is not in B
X, Y : B or in any formula in Y.

The annotation consists of the two input line numbers (of the existential and
of B) together with the discharged assumption number (of the typical instance
Alt]l) and the expression "EE'.

Applications of EE have to be "set up” in a way reminiscent of vE (though not
as complicated). Given an existential formula to be broken up by EE, first




assume an instance of it - what Lemmon calls a "typical disjunct”. Then
derive the conclusion from it. To ensure that the term used is really
typical, choaose a name which 1s not in any other assumption to be used and
which is not in the desired conclusion. Notice that the assumption ALt] is
just that - a result of the rule of assumptions - and not in any way derived
from (3Jv)Alv]. Notice too that the rule has only two input lines although
three numbers get cited in the annotation. The following proofs illustrate
EE and the other guantifier rules. '

1. (Ix)Fx - (3y)Fy
1 {1) {3x)Fx A
2 {(2) Fa A
2 (3) (3y)Fy 2 EI
1 (&) (Iy)Fy 1,2,3 EE.

Here line (2) is the assumption of a typical instance of line (1). The two
input lines for line (4} are thus (1) and (3). Note that EI applies before
EE in order to remove the term t (in this case the 'a') from the conclusion.

2. (Ix)(Fx & G6x}, (x)(Gx 2 Hx) = -{x){Fx & -Hx)

1 (1) (Ix) (Fx & Gx) A
2 (2) (x}{6x & Hx) A
3 (3) (%) (Fx 9 -Hx) A { for RAA purposes 1}
4 (&) Fa & Ga A { typical case of (1) }
2 (5) Ga @ Ha 2 UE
3 {6) Fa + -Ha 3 UE
4 (1) Fa b %E
A (8) Ga L X%E

2,4 (9) Ha 5,8 MPP-

3.4 (10} -Ha . 6,7 MPP

2,3, 4 (11) Ha & -Ha 9,10 &I
2,4 (12) -{x)(Fx % -Hx) 3,11 RAA
1,2 (13) ~{x)(Fx 2 -Hx) 1.4,12 EE.

Note that we cannot apply EE before RAA here, since 'a’ occurs in 'Ha & -Ha'. .

3. -(x)(Fx 2 6x), (x)(Fx 2 Hx) = -(x)(Hx 2 6x)
1 (1) -(x)(Fx 9 Gx) A
2 (2) (x)(Fx ¥ Hx) A
3 (3) (%) (Hx & Gx) A
A (4) Fa A
2 (5) Fa & Ha 2 UE
2.4 {6) Ha L,5 MPP
3 (7) Ha + Ga) 3 UE
2,3,4 (8) Ga 6,7 MPP
2,3 (8) Fa < Ga L,8 CP
2.3 (10) (%) (Fx % Gx) 9 Ul
1,2,3 (11) (x)(Fx 2 Gx) & -(x)(Fx & 6x) 1,10 &1
1.2 (12) -(x}(Hx 2 Gx) 3,11 RAA.

It is important to see that we CANNOT apply UE to line (1), because it is of
the form =-~A, not of the form (v]JALv]. Rules only apply to MAIN operators.
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SECTION 1. ON NONEXISTENCE
Man} theorems of ordinary predicate logic have as main opénator an existential
quantifier. For example, :

4

= (3x)(Fx > Fx)°

1 {1 Fa
(2) Fa + Fa 1,1 CP

(3) (Ax) (Fx ¥ Fx) 2 EI.

Thus it is provable, as a matter of sheer logic, that something or other exists,
that the universe is not empty. Well, it is true that the universe is not
empty, and we might look for metaphysical arguments for supposing this truth a
necessary truth. What is unsettling about the logical guarantee of existence,
however, is that logic only gives bare existence, telling us nothing about what
has to exist. Metaphysical reasons why something exists, rather than nothing,
tend to be reasons why some kind of thing has to exist (physical objects, space-
time points, minds, God, numbers, sets or whatever). Logic will have none of
this: prouably something exists, but nothing provably exists. This is odd.

Another oddlty concerns the ex19tentlal import of umniversal quantification.
The provable sequent

(%) Fx = (3Ix)Fx

attests to the fact that "all implies some”, that what is true of everything is,
as a matter of pure logic, true of something. That might not be a bad claim
for logic to make; the oddity is that there is no parallel claim in cases of -
restricted quantification over things of a given kind. We cannot validly

argue

All men are mortal (x){Hx < Mx)
So some men are mortal {3Ix) (Hx & Mx])

because logic (rightly in my view) leaves open the possibility that there be
no human beings at all. There is an asymmetry bhetwsen the logic of 'men’' and
that of "things' which is rather unpleasing.

Yet a third cause far concern is orthodox logic's unconvincing treatment of
the problem known picturesquely as "Plato's Beard". This is the problem of
how we can truly say:of something that it does not exist. Pegasus (the
mythical flying horse) does not exist, for example, but in order to say so we
need to use the name 'Pegasus’. Now if names get their meanings by referring
to objects, this particular name must fail to get a meaning, and so it cannot
meaningfullynbe used to say anything at all. The problem generalises to.that
of giving an account of the meaning and use of non-referring names in all
contexts, not just in the context '.... does not exist'. “Logically proper
names” are always guaranteed to pick out exactly one thing, so names like
"Pegasus’ are taken by orthodox logical theory either to be unformalisable or
to be short for descriptions (so ‘Pegasus does not exist’ really means 'There
are no flying horses’ or something like that). But there appear to be no




grounds other than sheer dogma for holding vacuous names to be unformalisable,
while the view that they are translatable as descriptions misses the strong
intuition that ‘Pegasus does not exist’' is about Pegasus (or putatively about
Pegasus) in a way that 'Flying horses do not exist’ is not about flying horses
but about the world, saying of it that none of the horses it contains can fly.

One way of answering the above worries is to change orthodex logic a little,

giving what is known as Free logic. We need to add a special new monadic
predicate symbol ‘E' for "exists”. Then the quantifier rules get changed
slightly. '
UE. (vIALv] Et © EI. Alt] . et
ALt] (3vIALv]
ur. X,Et : A[t] EE. X : (3Jv)ALv] Y,Et,A[t] : 8
X : (v)ALv] ' X,Y : 8

The definitions of the formulas {what gets substituted for what) and the
restrictions (that t not occur in X, etc.) are exactly as in the orthodox case.
"Free logic needs the extra input line for UE and EI, assuring that t exists,
because it allows for empty names like 'Pegasus’. We do not want to allow
the argument

Pegasus is nonexistent
Therefore there exists something nonexistent

as an instance of EI, for example. Nor do we want to argue by UE from

All horses are flightless

to _ _ . !l'\

I1f Pegasus is a horse then Pegasus is flightless.

In the cases of UI and EE, the discharge of the extra assumption Et amounts to

the point that the quantifiers only range over what exists. To be sure that
all horses are flightless we need a guarantee that Red Rum is flightless,
perhaps, but not one that extends as far as Pegasus. A few examples will be
more useful than verbal explanations of the free logical rules.
—  (x)Ex
1 (1) Ea A
(2) (X)Ex ) 1,1 UI. {i.e. from (1) discharging 1}

(x)Fx = {x)(Fx v Gx)

1 (1) (x)Fx A _ _
2 (2) Ea A { necessary for UE to work }
1,2 (3) Fa 1,2 UE
1,2 (4) Fa v Ga 3 vl
1

(5} (Xx)(FX v Gx) 2,4 UT. { discharging assumption 2 }



(x){Fx 2 6x}, (Ix}(Fx & Hx) = (3x)(6x & Hx)

1 (1) {(x){Fx 2 Gx) A
2 (2) (Ix) (Fx & Hx) A
3 (3) Fa & Ha A { typical instance for EE }
4 (&) Ea A { also for discharge by EE }
1,4 (5) Fa 3 Ga 1,4 UE { note (4) needed }
3 (8) Fa . 3 &E
1.3.4 (1) Ga - . 5.6 MPP
3 (8) Ha 3 %E -
1,3,4  (8) Ga & Ha : 7,8 &I
1,3,4 (10) (Ix) (Gx & Hx) 4,9 EI { note {4) again }
1,2 2,3,4,10 EE.

{11) (3x) (Gx & Hx)

The second of these proofs should be compared with the .usual classical proof
of the same sequent, which of course does not involve assumption 4. Perhaps
more important than the question of what ordinary sequents are still "provable
in free logic is that of which standardly provable ones have no proofs there.
The following are unprovable: '

: Ea
: (JIx)Ex
o (I} (Fx 9 Fx)
(x)Fx : Fa
' Fa : (3x)Fx

:{xlFx : (3IX)Fx

The unprovability of these in free logic is an outcome of two things: that

free logic allows for terms which fail to refer and that it allows the empty :
universe. If nothing at all exists, then, for any predicate F, (x)Fx is true
and (3Ix)Fx 1s false. B

The motivating worries of a page or two back are now settled, or at least

less bothersome than they were. That something exists is no longer provable,
so there is no longer a puzzle as to why this should be a logical truth when
nothing in particular has to exist, The asymmetry between the existential
import of unrestricted quantification and the lack of it where quantifiers are
restricted has now vanished, also because the empty universe is tolerated.

As for Plato’'s Beard, well it has been trimmed at least. We can allow empty
names into the language without getting any obvious nonsense. We have a
perfectly straightforward way of formalising ‘Pegasus does not exist’ in the
formula -Ep. We have not settled the issue of whether to regard the name
‘Pegasus’ as simply not denoting at all or whether to regard it as denoting a
nonexistent object. Free logic is neutral between these two positions.’

"My own feeling is that although free logic is an advance on the standard system

it is not sufficient for a solution of the outstanding problems raised by non-
existence. My intuition is that while it is literdlly true {as a truth about
this world) that Pegasus is a mythical horse, and it follows that Pegasus is

mythical, it is not literally true, and therefore does not follow, that Pegasus

is a horse. That is, a mythical flying horse is a kind of mythical- horse,
and a mythical horse is a kind of mythical thing, a mythical horse is pot a
kind of horse. Such an intuition cannot yet be accomodated in free logic

as formulated above, so it seems there is much work still to be done.

Note finally that it is possiblé to adopt an eclectic attitude to free logic
and the usual system, using standard logic for its simplicity in situations
where the empty universe and vacuous names are not countenanced but keeping
free logic in reserve for use where these things become important.
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SECTION 2 - VAGUENESS

Serious problems are for logical theory are raised by the fact that most of

the descriptive expressions of natural languages are vague. That is, there
is usually a more or less imprecise borderline between those cases to which a
given description applies and those to which it does not. A couple of

examples will make the problem clear.

First, consider a long series of coloured patches shading very gradually from

‘red, through orange, to yellow. We can imagine the difference between each

and its neighbour to be so slight as to be imperceptible. Suppose there are
10,000 patches in the series. Now patch 1 is red. Moreover, of any two

patches which are indiscriminable in respect of colour, if one 1s red then so

is the other. By repeated applications of MPP, then, we are led to the

conclusion that patch 10,000 is red. This conclusion is false, because patch
10,000 is yellow, not red. There must be something wrong with the argument. .

Second, consider the chickens and eggs. Suppose Darwin was right about
evolution: that it happens not in sudden great mutations but by a gradual
accumulation of small ones. Any animal and its immediate offspring then
belong to the same species according to the usual tests: they have similar
structure; they are genetically very similar indeed; they are cross-fertile,
So chickens can come only from chicken eggs, which in turn can be laid only by
chickens. Consequently there have always been chickens, even 300 million.
years ago, before birds evolved.

The problem in each of these cases is that the relevant predicate ('....is red’
or '....is a chook') is insensitive to sufficiently small changes in a respect
{shade, genetic composition), but is sensitive to sufficiently large changes
in the same respect. Yet the large changes: are made up of small ones. The
logical argument involved is extremely simple, consisting of a large number of
conditional premisses ' .

If patch 1 is red then patch 2 is red

If patch 2 is red then patch 3 is red

etc :
together with an initial antecedent .
Patch 1 is red
from which the false conclusion follows by a mere 93939 uses of MPP. In an
alternative form of the argument, the conditionals could all be obtained by UE
from the generalisation .
For any number n, if patch n is red then patch n+1 is red.

There are only three possible ways out of the difficulty. These are:

{a) Deny that the problem is well posed. That is, hold either
that no logic is applicable to vague expressions or that such
logic as does apply is not formalisable.

(b) Maintain that the argument is invalid. That is, hold that
MPP in the form used above is not a valid principle but a
- fallacy.

(c) Hold that although the argument is legitimately set up and’
valid it is not damaging because one of its premisses 1is
false.  That is, claim that there is a last red patch in the
colour series and a first chicken in the evolutionary series.



What might look like a fourth option, to accept the conclusion that every
coloured object is red, that we are all chickens, etc., really collapses back
into option (a) because other rules of our language dictate that the predicate
‘...1s red' is to be witheld from lemons, whence the fourth option involves
holding the rules of our language to be inconsistent. But if they are
inconsistent then they are not (coherently) formalisable.

Some philosuphers try to evade the problem by maintaining not that it is
impossible to apply logic to vague discourse but that there is no need to do

SO. Respectable parts of language, such as natural science, are held to be
capable of getting by without vagueness, so logicians are not required to worry
about such things. My response to this is threefold. Firstly, 1t has not

been established that much of natural discourse can be freed from imprecision.
Secondly, even if, say, science can be done without vagueness, there is no
obvious reason why it should be. Thirdly, even if it should, that is no
solution to the problem afflicting words like ‘red’ and ‘chicken’. Problems
are not solved by changing the subject.

Option {a) is unattractive. It involves holding that there is no coherent
way of reasoning in most of ordinary language. This is evidently in conflict
with the data - with the fact that we do argue, theorise and criticise using
such language, and that we apply criteria of rationality to each other's
theorising, etc. in a reasonably stable way. Some formal logicians may be so
keen to preserve their abstract theory from confrontation with uncomfortable
evidence that they are prepared thus to consign most of what people do when
reasoning to the category of the utterly irrational, the uninvestigable.

Such an attitude shows a lack of respect for the ordinary. The rules in
force governing assertibility in natural languages may not be those of a given
formal calculus, or even much like them, but they are rules nonetheless, and

can be stated too. There are in any case some formal rules, like &I and &E,
which have not been shown to lead to any problems and whose applicability in
cases of vagueness seems straightforward. My objection to option (a) is that

it retreats too far, securing logic against refutation only by cutting it off
from applicability to real life.

Option (c¢) is initially less repugnant. It corresponds to the natural response
that "vou have to draw the line somewhere”. If one of the conditional
premisses is to come out false, there must be some particular number n such that
it is false that if patch n is red then patch n+1 is red. In symbols,

-{ RInl 3 RIn+#17 ). :
By elementary truth functional logic, this is equivalent to

‘Rin]l & =~ Rin+1].
The problem faced by option (c) is to give an account of how such a thing could

. be. It seems, after all, that if you are committed to describing something as
red then you are committed to describing anything indistinguishable from it as
red also. The meaning of "red” is fixed only by the use we make of it, so
there would seem to be no way its applicability could turn on distinctions too
fine to be drawn. This problem is even plainer in the case of the predicate
"....looks red' rather than '....is red’. How could there be two objects such

that (i) no difference of colour between them is detectable just by looking,
but (ii) one of them looks red and the other does not? The chickens and eggs
raise a related form of the same difficulty. There are reasonably well
established criteria for sameness of species, though since no two individuals
(other than clones) are precisely alike genetically these criteria are subject
to certain degrees of imprecision. Nonetheless, any two animals one of which
is the parent of the other will fall well within the area where the criteria
are satisfied. Yet it is to be held that one of these animals is a chicken
and the other is not. Again it is far from obvious that such a description

of the situation is coherent. o

r



. X+X to be the same as X.

...5_
Option (b) is also not an easy way out. The only rule of inference needed
for the problematic derivations is apparently MPP; and surely no rule is more
deeply embedded in our natural understanding of connectives. In an important
paper on the subject ('Wang's Paradox’, reprinted in Truth and Other Eniagmas),
Michael Dummett puts the point thus: '..... [To abandon MPP] seems a desperate
remedy, for the validity of this rule of inference seems absolutely constitutive
of the meaning ..... of "if".'  The supporter of option (b) must therefore

tread a very fine line indeed, providing an alternative logic in which the
deduction equivalence and MPP are retained as “"constitutive of the meaning of
‘if'", while the above derivations which appear to employ MPP are somehow
blocked.

I believe that the way to tread that line is, as in the otherwise quite distinct
case of relevant logic, to distinguish between two ways of combining premisses

or assumptions. ‘As in that case, we could write X, Y for the result of’
simply. collecting up the bunches of assumptions X and Y, and write X3 Y for
the result of not only getting X and Y together but applying the one to the P
other. Then we may keep the deduction equivalence in the appropriate form .

X;A entails B iff X entails A 2 B

and continue to use both MPP and CP, as motivated by this equivalence, with
semicolons on the left. The rules for introducing and eliminating connectives
and quantifiers will be exactly as they were for relevant logic - that is, Jjust
Lemmon's rules, minus RAA, with attention paid to the difference between .commas
. and semicolons - but the conventions for matters like counting repetitions of
assumptions will be different. For present purposes we do not mind
augmentation in the “semicolan” form

X - : A leading to X;¥ . A
but we do very much object to ignoring repetitions of assumption numbers. So
we shall not be able to count X;X as meaning the same as just X. We- get
1 (1) P& (P2 Q) . A
1 (2) P ' . -1 &E 4
1 (3) P+ Q 1 &E ‘l’
131 (&) Q 2,3 MPP : .
for instance, but cannot derive the séquent P& (P2>Q) : Q. Semantically

the idea is to count not just truth and falsehood but degrees to which the truth
might be stretched in order to accomodate given vague propositions (e.g. that
this patch is red or that that animal is a chook).” Then to get P, Q@ to
hold it is necessary to stretch things just far enough to get each.of P and @
to hold. To get P Q to hold, we have to stretch far enough for P and
far enough for @ put together. We can think of “putting together” in this
sense as something ‘like adding together. - And of course we don't expect

The philosophical problems raised by the phenomenon of vagueness are extremely
difficult and open deep issues both in logic and in the philosophy of language.
I cannot pretend to have solved them in these three pages. What I have tried
to do is to indicate the nature of the paradox, outline some difficulties facing
the various potential solutions and finally sound hopeful about one particular
line of response. Most philosophers would disagree with my views both on
vagueness and on the prospects for "deviant” logic. Once again, your task is
to think about the problem yourself, not to learn to repeat my mistakes.
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In the final part of this course we shall consider one further, and very
important, extension of the logical apparatus. This is the addition of a
means of describing things as identical or different. "Identical” here is to
mean strictly one and the same thing, not just "exactly similar” as it often
does in colloquial speech. Examples of true identity statements include:

Tully is Cicero

Hesperus is Venus

George Orwell is Eric Blair
Scotland is Scotland.

Other locutions meaning that Hesperus is Venus include:

Hesperus and Venus are identical
Hesperus is the same thing as Venus
Hesperus and Venus are one and the same.

Do not confuse the "is" of identity with the copula, or "is” of predication.
Be clear as to the difference between the roles of "is" in the two sentences:

Edinburgh is no place for the faint-hearted.
Edinburgh is Auld Reekie.

The formal notation for identity is the symbol =', Where t and u are terms,
we form the statement that t is u inserting '=' between them -
t=u

- as is familiar from primary school arithmetic. Technically, the identity
symbol is a dyadic predicate letter, but we write it in infix position for
familiarity. 1t symbolises a relation: the trivial relation which everything
has to itself and nothing has to anything else. Negated identity statements
will usually be written

t # u

again for reasons of familiarity and convenience.

The rules for introduction and elimination of identity in proofs are guite
simple. In the first place, everything is itself, as a matter of logic.

Accordingly, the introduction rule for '=' allows any self-identity statement
t =t '

to be introduced on a line by itself, resting on no assumptions at all. The
annotation is simply the expression '=I', as there are no line numbers cited.
The elimination rule corresponds to another very simple insight into the
logical force of the particle. If a and b are one and the same thing then
whatever is true of a is true of b (because its being true of a is its being
true of b). To put the point another way, if a and b differ in some respect
(e.g. a is red and b is not) then they are not identical. This law, or
principle, of the "indiscernability of identicals” gives rise to the rule =E:

t = u Alt] where A[t] is a formula containing term
t, and Aful] results from it by replacing
Alu] at least one occurrence of t by term u.

It is important that not every occurrence of t in A[t] need be replaced by u
{though we allow that it may be). For example: -



{2) a = a

1 (1) a=~h A
1 (3) b =a 1

2 =E.

Here the first 'a' but not the second in line (2) is replaced by 'b’ to get

line (3}. Note that there are no assumptions for line (2}. SI on the above
sequent gives us a secondary rule
t=u Alul
Alt]

We shall relax the formalities enough to allow this rule, too, to be called
‘s’ So nhow for =E it does not matter which of the two terms in an identity
statement is replaced by the other. This saves some tedium.

The addition of a notation for identity has greatly increased the expressive

power of the limited language of first order formal logic. Consider
Ted alone is running (x})(Rx €3 x = t)
Everyone except (perhaps) Ted is running (x){x £ t > Rx)
Ted is the fastest (x){x # t <+ Ftx)
There is more than one runner ~OO(YI{(RX & Ry) 2 x = vy)

or (A%)(3y){(Rx & Ry) & X # vy)

{Rx for 'x is running’. Fxy for °'x is faster than vy'.)

The third of these is of some general interest. In English, adjectives which
admit of degrees, like "fast”, give rise to both comparative and superlative
forms. The comparative "faster than” may be formalised as a two-place
relation as above. The logic of comparatives can be studied as a subject in
its own right. They obey certain laws in virtue of being comparatives:

(%) (y)(Fxy 2 -Fyx)
{x){y}(z)({Fxy & Fyz) 3 Fxz)
(x){y)({z)(Fxz ¢+ Fyz) &3 (z}(Fzx & Fzy))

for instance,. Try to see why each of these is true of “faster than”. Now

the superlative "fastest" is systematically related to the comparative. The
fastest is the one faster than any other. To express this relationship we

need to be able to say "other”, and for this we may use '#'. Thus the identity

symbol yields a reduction of the theory {or at least the logic) of superlatives
to that of comparatives which in turn can be represented in the calculus of
relations. The effect is explanatory and a conceptual simplification.

The fourth of the above examples also generalises in interesting -ways. With
identity we have a means of saying there are at least two things of a given
kind. Without identity we cannot even say there are two or more things in
existence. Note that

(Ix) (Iy)(Fx & Fy)
does not assert the existence of two Fs, for they must be distinct:
(Ix)(3y)L(Fx & Fy) & x # y).

An equivalent formula which is slightly shorter is

(%) (3y)lFy & x # y).




ln a similar way we can say that there are at least three Fs:
(x){y){32){Fz & -{x =2z v y = 2)).

Generally, to say that there are at least n Fs:

{x1} ------ (Xn} (3y) (Fy & =-(x, =y Vo oeeerens v Xq = vib.
To assert that there are at most two Fs is to deny that there are three or more
The same applies to "at most n" for any chosen number n. Hence "at most” is
expressible using identity. For example, Unitarianism - "There is one God at

most® - is straightforwardly formalisable
(3x)(y)lGy =+ x = vy)
or equivalently
{x){y){i{6x & Gy} 2+ x = vy} or -{3Ix}(IyI{(6x & Gy} & x # y).

For “There are at most two Fs" we can use
(Ix}(Ay)(z){Fz + (x =2 v y = z})

and generally for any given number n we can express “There are at most n Fs”

(3x.)....... {axnl (yl_tFy < (x1 =Y OV oiieee.- VX, = y)).

Finally, there are exactly three Fs iff there are at least three and at_most
three. Similarly there are exactly n iff there are at least n and no more
than n, whatever number n might be. Thus we can express these “numerically
definite quantifiers” by conjoining the appropriate pairs of numerically
indefinite ones. In the cases of small numbers, there are neater ways of
expressing them using biconditionals:

There is exactly one F {Ix)(y)(Fy 'Gé X = vy)
There are exactly two Fs (Ix)(Iy)(2)(Fz &) (x=2 v y = 2)).

The most important numerically definite quantifier is "There is exactly one....’
which expresses the existence and uniqueness of something satisfying a

description, To say there is exactly one F is to assert the existence of
such a thing as the F. ‘The’ is the most commonly used word in written

English, and for that reason if for no others its formalisation is of great
importance. The doctrine that at least a central class of its uses can
indeed be captured in predicate logic with identity is due to Russell and is
known as the theory of definite descriptions. The theory has philosophical
ramifications and raises problems which are not the concern of this course.
The debate as to its correctness or otherwise is still not concluded.

A definite description may be defined roughly as a phrase of the form "the F'.
Such phrases are grammatically rather like proper names. At first sight, they
seem to mean much the same as proper names too. It appears a stylistic matter
whether one refers to the current head of government as 'Margaret Thatcher' or
'The [first] British prime minister of 1987', and logic is indifferent to style.
Consider, however, the phrase 'The President of Scotland in 1987°. This is
clearly meaningful despite the fact that there is no such individual. In
logic, names are guaranteed to refer to exactly one individual, whereas definite
descriptions are not. Moreover, proper names have to be assigned to their
bearers by an act of naming whereas a definite description has an internal
structure which enables us to understand it, find out which thing it picks out,
investigate claims made with it and the like without our having been made party
to a specific convention concerning its reference.



Bertrand Russell's idea ('On Denoting', Mind, 1905) for explaining these facts
is to construe a sentence like

The Earth's natural satellite is airle;s

as being really a conjunction. It asserts, says Russell, two things:
(a) The Earth has exactly one natural satellite.
(b) Whatever is a natural satellite of the Earth is airless.

These two, and hence their conjunction, can be expressed in the notation of
first order logic with identity, providing a solution to the problem of
accounting for the logical behaviour of 'the’, Most neatly:

The F is 6 {(Ix){(y}(Fy &> x =y} & Gx).

Notice that the theory does not provide a direct translation of the definite
descriptive phrase 'the F', for the above formula contains no part which can

be so read. Such phrases are analysed only in context. That is, we are
given not a direct equivalent of the definite description but a way of finding,
for any sentence in which such a description occurs, an equivalent one in which
no definite description occurs. Such a means of eliminating definite
descriptions as linguistic primitives is a contextual definition of them.

Russell's theory of definite descriptions also offers solutions to two more
motivating problems. It accounts for definite descriptions which fail to
refer by analysing sentences in which they occur as making false claims.

The President of Scotland in 1987 is 6 feet tall

is analysed as a conjunction

There is exactly one president of Scotland in 1987
and any president of Scotland in 1987 is 6 feet tall

which is false because its first conjunct is false. One way for the sample
sentence to be false would be for the President to be some other height; but
it can turn out false for the alternative reason that there is no president.
The Russellian theory allows is to say all this (to make these distinctions,
etc.) and to represent its logic within the ordinary first order system.

Secondly, the theory accounts well for the way that understanding novel (newly
encountered) definite descriptions differs from understanding novel names.
Such understanding amounts to understanding the embedded indefinite
descriptions ('...is a satellite', etc.) plus knowing how quantifiers and
identity work. This outcome of the theory squares well with common sense.
The theory might still be wrong, but it is not just silly; and its success in
accounting for this much is at least some evidence in its favour.

Lemmon's treatment of identity in in Chapter 4 Section 3 of Beginning Logic.
You are advised to read this section, as it goes into certain details omitted
above, especially concerning numerical quantifiers.

To Lemmon's suggestions for further reading I would add five titles. The
finest book ever written on logic is H.B. Curry's Foundations of Mathematical
Logic (1963) which, however, is very hard. S. Haack's Philosophy of lLogics
and J.D. McCawley's Evervthing That linguists Have Always Wanted To Know About
Logic..... (1980) are much more readable and well worth a look. The most

approachable texts in mathematical logic beyond what we have covered are
probably Metalogic by G. Hunter {out of print but in the library) and
Computability and Logic by G. Boolos and R. Jeffrey.



