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Abstract.

The ability to navigate is an essential prerequisite for the construction of fully autonomous robotic
vehicles. For underwater (as opposed to land) vehicles, the navigation problem is compounded by the
continual perturbation of the vehicle motion by the movements of the medium. Continuous perturbation
necessitates a continuous solution to the navigation problem: it is not possible to hold the vehicle
stationary while the navigator computes where the vehicle actually is.

In this paper I describe a feature-based navigation system designed for the continuous navigation
task (though it is also applicable in the land-based environment). Various versions of the system have
been implemented, and have been tested using realistic simulations of suitable sensors. Experimental
results derived from simulated two and three dimensional motion trials are presented.

The system infers the motion of a sensor-carrying vehicle from the observed movements of recognis-
able feature points in the environment. Feature points may be stationary or moving and may be only
intermittently visible. Feature point motions need not be fully observable, though the performance of
the navigator is best when full relative motion information can be inferred for each feature from its
sensor returns. | A« 0{9% Pnor ekt Divecktan /Dutﬁwcé 7

The system does not require ¢ prior: knowledge of the location or motion of the features on which
navigation is based. It can also incorporate knowledge of vehicle dynamics if available and can utilise
efficiently any direct vehicle positional or velocity information (such as rate of turn, heading, or odom-

etry)'W\w is ao{aWQ@ ”
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Introduction

The ability to navigate is an essential prerequisite for the construction of fully autonomous
robotic vehicles and a great variety of navigator systems have been devised for such vehicles.
By navigation I mean the ability to know the relationship between the current position of the
robot vehicle and its previous positions or the positions of objects observed in its environment.
Navigational competence in this context is the ability to answer the questnon “Where am 177,
rather than “How do I get to... 7,

In view of its importance, it is not surprising that a great deal of effort has been applied to
the design and construction of effective navigation systems, mostly for application in land-based
autonomous or semi-autonomous (e.g. guided vehicles in factories or warehouses) vehicles.
The majority of these systems are based on beacons — readily visible objects which are fixed
in the environment and with respect to which the navigational fixes necessary for computing
vehicle motion may be taken. Beacon systems in general require that the beacons be fixed and
stationary (for obvious reasons) and frequently need a priori knowledge of the positions of the
beacons. N@s{ @ (-\OM

Perhaps the earliest well known example of a beacon-based navigation system used by a
mobile robot can be found in the work of Moravec (1980); similar techniques are proposed
by Hannah (“bootstrap stereo”, 1980) and used in modern missile navigation systems (e.g.
Hostetler and Andreas, 1983). A good review of navigation systems for factory automatic
guided vehicles can be found in (Cheng et al., 1986).

The feature-based navigation System described in this paper differs from state-of-the-art
beacon systems in two important ways.

¢ It does not require any a priori knowledge of the locations of features (analogous to

beacons). QQQ\A.W N ‘W\ W’V 2

o It does not require the features to be stationary, and will determ.tne automatically whether
a feature is moving significantly.

—

In other respects it is very similar to the beacon navigation systems: the navigator uses knowl-
edge of the positions and movement of features to infer the movement of the vehicle. Any
direct vehicle motion information is also used in the inference process, and estimates of the
position and motion of features are also obtained.

Motion Resolution

The feature-based navigation system operates by inferring the motion of a sensor-carrying
vehicle (the observer) from the apparent motion of the observed environment. In order to do
this, the observer must have access to a collection of recognisable points in the environment,
which I shall call features, whose motion with respect to the observer can be determined.
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These features, for which sensor-relative motions are supplied to the navigation system,
may be any entity in the external environment which is recognisable over time and is visi-
ble fairly frequently (though not necessarily continually). The type of sensing used may be
anything appropriate to the class of features considered, provided it can provide the apparént
motion estimates required by the navigation algorithm. Examples of features and correspond-
ing sensors include bright easily identifiable patches on marine objects observed with a sonar
ranger, optical marker tapes viewed using a rangefinder, or ‘pieces of environmental objects
observed using a multistatic television camera array. Note that the beacons used by beacon
systems are covered by this definition of a feature.

The basic problem addressed by the system is this:

Given a sequence of noisy estimates of the apparent motion of a number of
features in the environment, determine corresponding estimates of the motion of
the vehicle and the features with respect to an arbitrary but fixed stationary frame
of reference.

Effectively, the system is given motions of features relative to the sensor, and it determines
which if any of the features have a proper motion, what their proper motion is, and what the

motion of the sensor is. The global stationary reference frame is generated and maintained

by the system as the ‘frame of absolute rest’ with respect to which all proper positions and
velocities are recorded. It is arbitrary, but could be registered with an a priort world map if
desired. ) '

A formal mathematical description of the process, called motion resolution, by which the
apparent motions presented to the observer are resolved into their components is outwith the
scope of this paper, but may be found in (Hallam, 1985). What follows is an informal descrip-
tion of the algorithm for linear observer motion and of the rotatlon compensation mechanism
for dealing with observer orientation changes. “— coeiver ¢ “@l‘%&@ Aw‘@d’mm
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Linear Motion Resolution - ~
The linear motion resolution system deals with the motions of the observed feature points and

with translational motion of the observer. It is structured as a computational cycle, outlined
below. The flow of information during the cycle is summarized in Figure 1.

Motion Prediction
The current absolute position and velocity of each fea.ture point and of the observer are

U\\\’! ol ‘fﬁhﬁv\ 7 predicted, based on estimates of their motions obtained from _previous.cycles. If a feature
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\ow) Nqﬂ% is believed to be stationary, its velocity for the purposes of prediction is set explicitly to

oS zero. Modelled observer or feature dynamlcs may be included in this prediction process.

Feature Observation
New relative position and veloc1ty estimates for each currently VlSlb]e feature are obtained
from the sensor(s). These estimates are either direct measurements or are the result
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of tracking filter computations on the direct sensor measurements. Each estimate is
accompanied by an indication of its expected error covariance.

Reflected Motion -

The relative motion measurement for each feature is subtracted from its predicted ab-
61\;55 O™ solute motion. This difference is an estimate of the reflected motion (that part of the
W’(@“ observed apparent motion which is due only to the movement of the observer) and is used
to estimate the absolute motion of the observer. Agam, an error covariance is associated

with this estimate.

Observer Estimation
J 4 '; Wf Estimates of observer motion derived by the previous step from the feature observations
= are combmed using a Kalman filter, with the predicted motion of the observer. If the
d/l)“‘ observer’s absolute motion can be wholly or partly measured by sensors, information
LN Z] from them can also be included in the estimation process. The result is a composite
}r &\ ot observer motion estimate which incorporates all the available information in proportion
CoMNPEML . 45 the confidence expressed in it by its error covariance.

Feature Estimation

The composite estimate of observer absolute motion is added to the measured relative

Mﬁ &W) motion of each feature to provide an updated @ posterior: estimate of that feature’s

or Gt (4¢e  absolute motion. The composite observer estimate and updated feature motion estimates
form the basis for the motion prediction step in the subsequent computational cycle.

Motion Test
Mavivg ' A motion hypothesis test is applied to the new estimates for each feature point to classify
\m‘mﬁg >0 it as moving or stationary. If a feature is classified as stationary, its absolute velocity
will be assumed to be zero during the prediction step — this is what enables the system
to anchor its global reference frame to stationary features.

A feature point is included in the cycle whenever it is seen, and the prediction of its current

_. absolute position and velocity is made with respect to the estimates computed at the last time

it was seen. Feature points seen for the first time have no predicted absolute motion; the
initialisation of the estimates for such features is discussed below.

><Rotat10n Compensation

The main weakness of the linear system described above is its assumption that observer orien-

tation is known. This is true either if the observer cannot alter its orientation during motion

or if there is direct sensory information providing an estimate of the observer orientation at
each point. If the latter obtains, then measurements made by the sensors can be corrected

for the known varying observer orientation so that linear motion resolution takes place in a

reference frame whose orientation is fixed. This correction process is rotation compensation.
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Of course, the orientation of the observer will not in general be known perfectly. Further,
the observer may not possess sensors able to provide imperfect orientation estimates. However,
it is still possible to infer observer rotary motion and compensate for it, because the apparent
motion of features will contain components due to the observer rotation and these will appear
in the reflected motion estimates in the linear algorithm. They can be recognised because they
are normal to the relative position of the feature.

Feature-based rotation compensation is achieved using a similar cyclic computation to the
linear motion resolution system. It’s schematic diagram is shown in Figure 2. The compensa-
tion mechanism is based on the following extra steps.

¢ Each time features are observed, the current observer orientation is predicted. The sensor
measurements obtained from the features are compensated using the observer orientation
prediction so that linear motion resolution may be carried out in a rotation compensated
reference frame (f.e. one with nominally fixed orientation).

. e The set of reflected motions computed are analysed for evidence of rotary observer motion
and a composite estimate of the observer angular velocity is computed. Since the reflected
motions have been calculated in a nominally fixed orientation frame, the rotation estimate
is actually the error or differential observer angular velocity.

e The differential angular velocity is combined with any absolute orientation information
available from direct sensing in order to provide the basis for subsequent observer orien-
tation prediction.

o The feature velocities (relative and absolute) recorded by the linear motion resolution

system are corrected for the differential angular motion. This correction is required
because the angular velocity of the rotation compensated reference frame with respect
to the world has decreased since the differential error has been corrected.

The observer differential angular motion actually induces non-linear feature motions in the

rotation compensated frame of reference. Provided the differential angular velocity is small it
. is possible to obtain a good estimate of the angular motion. In this situation, it is possible to
navigate entirely using feature-derived information.

Initialisation

-As noted above, the motion resolving algorithm operates cyclically, combining predictions
of feature point and observer motions based on previous cycles and current measurements
obtained by sensors. In order for the cycle to begin, however, initial estimates of feature and
observer motion are required. In this section I describe how those estimates are obtained.

The observer angular velocity is initialised to zero, since it can be shown that for moderate
angular accelerations the compensation loop will converge geometrically to the correct estimate.
This completes the initialisation of the rotation compensation mechanism.

Wgﬁ%&wmwﬂw -




The translational motion initialisation is accomplished using the first set of feature relative
motion measurements obtained from sensors (note that this may imply several sightings of the
features if their motion is not fully observable in a single sighting). The absolute positions
of these feature points are set equal to their observed (relative) positions, they are assumed
stationary, and the translational motion-resolution algorithm is cycled once beginning with
the Reflected Motion step. This initialisation is equivalent to assuming that the origin of the
absolute reference frame is coincident with the current position of the observer. (If the absolute
origin and orientation must register with an external map, for example, that registration may
be achieved after the motion resolution initialisation has finished).

Since it is likely that some of the feature points seen initially will be moving, there will
in general be classification errors in assuming that all are stationary. The misclassifcation of
moving features causes the global reference frame to drift, and the drift continues until all
moving features are correctly classified. Only misclassified moving features have this effect -
if a stationary feature is misclassified the navigator estimates (typically) small proper motions
for it.

All new feature points (apart from the initial set) seen during the operation of the algorithm
are assumed to be-moving, in order to avoid the potentially disastrous misclassifcation of
moving features. Their estimated absolute motions are computed by a.pplymg only the Feature
Estimation step at their first sighting.

_ | ( |
Determining Feature Motions = IMOU(U? &/ 5%00@&9

The status (moving or stationary) of a feature point is determined each time it is seen using an
appropriate hypothesis test. The hypothesis test may be either local, t.e. dependent only on
the feature whose status is in question, or global, in which case the consequences of the local
decision on other feature estimates is taken into account when the decision is being made.

In the two dimensional motion system a local hypothesis test was used. This was based
on the sequence of estimated absolute velocities of the feature concerned, the classification
method being a chi-square test operating on the estimated mean and error covariance of the
velocity sequence.

In the three-dimensional system a more sophisticated global hypothesis test is employed.
First described in (Hallam, 1987), this test is based on the notion of a weak assumption of
a stationary environment. Features which are assigned moving status are in violation of this
assumption and a fixed constant penalty is paid for each such feature. Features that have
stationary status incur a cost computed from their estimated absolute velocity — clearly, a
stationary feature should have a small estimated motion. The motion decision test is applied
to all of the features observed during a cycle, and the status values assigned are those that
minimise the global cost of the decision.
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Experimental Performance

Two experimental feature-based navigation systems have been implemented, one able to handle
full two dimensional motion of the observer and one able (to date) to deal with translational
and known rotational observer motion (i.e. it assumes perfect observer orientation sensing).
In this section I present performance data for these two systems. '

The Two Dimensional System

The algorithm has been implemented and has been tested extensively! using simulated data.
Full details of the results of the tests can be found in (Hallam, 1985); a summary of those
results is presented here.

The motion of the observer and of feature points was simulated using linear state transition
models. ' The models incorporated deterministic and random forcing inputs. Feature point
observations were generated intermittently, the chance of a successful sighting of each point
being a simulation parameter, and measurement noise (in polar coordinates) was added to the
computed relative position measurement. _

All the noise vectors in the simulation were Gaussian and their covariances were simulation
parameters. The implementation used Kalman tracking filters to estimate the velocity of each
feature point from the intermittent sequence of noisy relative position measurements provided
by the simulation for that point.

In all the tests reported below the measurement noise parameters were set to correspond
to the performance of a typical marine sonar sensor. The radial resolution assumed was 6¢m
(1em noise standard deviation) and the angular resolution was 3.4° (10 milliradian standard
deviation) and the sensor repetition rate was 2.5Hz.

Two series of Monte Carlo tests comprising twenty members each were used to investigate
the performance of the algorithm for composite rotational and translational observer motion. In
all the tests the observer motion parameters were chosen at random from Gaussian distributions
with 0.1ms~! standard deviation and the set of feature points was uniformly distributed at
random in a 200m square. '

In the first set of tests no feature points were moving. Thus there was no danger of moving
feature misclassification when the first set of feature points was seen. The results for this set
of tests are presented in Table 1. ' ' '

In all these tests the algorithm was successful in establishing a stable absolute reference
frame. The frame spatial stability measure represents the degree of consistency between the
simulated disposition of the feature points and the disposition estimated by the algorithm.
This was assessed by fitting a least square error affine transformation between the true and
estimated absolute positions; the quantity displayed in the table is the fit error per feature
point.

In the second set of tests there were four stationary feature points arranged in a 70m square

1This work was funded by SERC grant GR/C/44730.




Observer Motion
w/mrds™! | v,/mms™? 0% /em? Fit Error/em?
X y b y
True 47.13 | 51.76 71.25
Estimation Error 0.02{ 0.61 0.38 2.87 0.65 44.29
Max. in any test 0.70 | 6.51 2.69 | 352.30 66.85 786.10

Feature Motion Estimation Errors
§v,/mms™ | R/m | 0% /m* ok /m?
' X v
max év, 11.75 | 101 1.02 | 0.0065 0.1283
min dv, 0.04 99 0.62 | 0.0516 0.0233

R | Approximate range to feature
w | Observer angular velocity
v, | Observer linear velocity estimate

6v, | Observer velocity estimation error

o2 | Measured feature position variance

o3 | Variance of position estimation error

Table 1: Stationary Feature Series: 20 tests, 4-10 visible features. The results of a typical test
are shown; all tests were successful. '



Observer Motion
w/mrds™! | v,/mms™! o%/em? Fit Error/em?
X y X y
True 99.04 | 37.06 22.04
Estimation Error 019 1.75 0.26 | 1464 86.3 235.9
Max. in any test 0.31 [ 10.21 3.29 | 2275.0 213.6 681.9

Feature Motion Estimation Errors (3/7 moving)
bv,/mms™ vy, R/m ob/m?

max 6vy 14.77 | 120.4 | 101 0.202

min bv; 5.91 | 297.6 44 0.020

R | Approximate range to feature

w Observer angular velocity

v, | Observer linear velocity estimate
bv, | Observer velocity estimation error
évs | Feature velocity estimation error

ok | Variance of position estimation error

Table 2: Moving Feature Series: 20 tests, 4 stationary features, 1-5 moving features. The
results of a typical successful test are shown; 8 tests succeeded.

and between one and six moving ones. The velocity components of the moving points were
Gaussian variates with 0.2ms™! standard deviation. In these tests at least one feature point
was misclassified as stationary at the start of a run. The algorithm succeeded in eight of the
tests and performed comparably to the first set of tests.

In two of the successful tests the algorithm correctly classified only three of the stationary
feature points and estimated small random velocities for the other one. This resulted in greater
observer velocity errors (about five times the typical error) and position noise variances (about
10 to 12 times larger) than for the other tests. This degraded performance was nevertheless
satisfactory. o

Table 2 gives the results summary for this set of tests. Figure 3 shows a scatter plot of the
true and estimated absolute positions of the feature points and observer for one successful test
in this series.

All the failures in the series were caused by a failure to discriminate correctly between
stationary and moving features just after initialisation. An example of a failed test in this
series is shown in figure 4 where it can be seen that the misclassification of feature 1 has
resulted in erroneous estimates for the motions of all the other features.
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There were two reasons for these discrimination failures. First, the proportion of moving
feature points in the failures was high (typically 3 to 5 moving points) and the number of
points in total was small (at most 10). The misclassification of a feature point as stationary
was therefore able to affect the observer motion estimates sufficiently to force all other points
to be interpreted as moving. Second, the hypothesis testing mechanism used in this implemen-
tation was simple and tended to misclassify points occasionally because of the effect of velocity
estimation noise. Any moving point so misclassified could potentially cause failure.

The global hypothesis test implemented in the three dimensional system (currently the
subject of experimental investigation) was designed to avoid the propagation of error apparent
in figure 4. It achieves this by trading off the number of moving features hypothesised against
the consistency of the resulting estimates.

The Three Dimensional System

The three dimensional feature based navigator? deals with the situation in which the observer
orientation is known (though work is in progress to extend it to full three dimensional motion
resolution). It has been tested using computer simulations similar to those described above for
the two dimensional system.

In addition, further testing has been carried out using data obtained after signal process-
ing from a realistically simulated experimental sonar device. This sonar measures range and
azimuth angle, has a 360° scan with a beam width of about 4°, an elevation beam width of
about 30°, a range window of 20m to 100m, and a repetition rate of 1Hz. Since the sonar
sensor is effectively a planar one, a direct vehicle depth sensor is also provided.

The vehicle follows a roughly elliptical three dimensional trajectory at a speed of between
2ms~! and 5ms™1, taking some five minutes to complete the circuit. Plan and elevation views
of the trajectory are shown in figures 5 and 6, which show both the true vehicle trajectory
and the estimated vehicle trajectory. It is immediately apparent that the trajectory estimated
by the navigator matches closely the true trajectory (so closely that in places it is hard to
distinguish them). i :

The performance of the navigator in estimating the vehicle motion as it traverses the circuit
is also shown in figure 7, which illustrates the actual estimation errors at each point along the
trajectory. The navigator estimates the vehicle position to a worst case accuracy of about four
metres, which is approximately 1% of the trajectory major axis and a considerably smaller
percentage of the distance actually travelled by the vehicle. The net error over one circuit is
about 0.5m. |

The test data shown in figures 5 to 7 were obtained in a test situation where the orientation
of the vehicle was varied in a realistic way, depending on heading and speed, as it traversed
the circuit. Perfect measurements of the orientation were, however, supplied to the navigator
since it is not yet able to handle full three dimensional vehicle motion.

2The three dimensional system is being investigated in the course of a collaborative research project, the
industrial collaborator being the Marconi Maritime Applied Research Laboratory at Cambridge, UK. The pro;ect
is funded by SERC Grant GR/E/00068.
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Conclusions

A feature-based navigation system, similar to state-of-the-art beacon s;jrstems,—-haa been de-
scribed. By comparison with beacon systems it can:

¢ infer the motion of a vehicle from the apparent motion of features in a noisy environment
where passive motion is present;

¢ determine whether features under observation are moving or stationary and deal appro-
priately with each type;

¢ function without any a priors knowledge of feature position or motion;
e incorporate vehicle dynamics or absolute motion sensing uniformly;

¢ incorporate information from a wide variety of feature detection sensors using standard
statistical estimation techniques.

The system has been implemented in both full two dimensional and partial three dimen-
sional observer motion versions and has demonstrated good navigation performance in these
situations. The two dimensional system is able to navigate accurately using only information
obtained from a simulated sonar sensor, while the three dimensional version uses an addi-
tional direct depth sensor to compensate for the two dimensional nature of the available sonar
information.
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