MSc in Information Technology: Knowledge Based Systems

Intelligent Assembly Systems

A Practical Example - The Soma Cube Assembly Problem

The text of these notes is an edited extract of sections of Planning and Performing the Robotic Assembly of Soma
Cube Constructions, MSc Dissertation, Chris Malcolm, Edinburgh University, September 1987. For further reading
(not required) you may consult this.

The problem

Construct a planner which will plan reliable soma cube assemblies. The planner will be told the shape and position
of the parts, and the shape of the intended assembly. It will have a priori knowledge of the capabilities of the robot,
gravity, etc.. The plan should execute reliably in the real world.

e

What to do first?

"It will be a behaviour-based system. Thus reliable behaviours must be contrived in the on-line system, in terms of
which the plan will be constructed. Therefore the behaviours must be constructed before the planner, since what
behaviours turn out to be possible will influence the planner.

But behaviours are always designed within a context of a set of rules which define the subset of the world which
the behaviours must tackle. A good choice of rules simplifies the job of the behaviours. So before tackling the
behaviours the rules should be set out. So the first thing to do is to decide on the rules. Of course the rules will be
liable to revision as the implementation of the behaviours and the planner proceeds. Here are the rules that were
used in their final form.

The rulss

Picking up the pristines
These are presented in distinct and separate positions without possibility of interference from neighboring
acquisition procedures, and with an isolated cubie standing up, so that the double grip (grasp, release, rotate z
axis 90 degrees, grasp) may be used for best accuracy of acquisition. Only the Zed part can’t be presented with
a cubie up. The acquisition grasp will always be downwards.

Putting the part in the assemblage

Parts will be put into the assemblage with a downwards motion of a downward gripped part, except for the last
part, which must be pushed in sideways. A sideways push could have been used for other insertions as well, ’
thus increasing the choice of the planner at the expense.of complexity - but experiment showed that restriction
of this motion to the last part still left plenty of assemblable solutions. Note the important point that while a
part might be able to be slid in sideways under another part, this is in general liable to failure due to form and

other uncertainties, hence the insistence upon downwards part mating, . D r:D 70{@
Grasping in general b lt pffilxwm
4
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This is always done across a single cubie - a limitation of the gripper. To avoid gripper interferenpe problems it‘L
is also a rule that the gripped cubie must be (one of) the nearest to the gripper along the axis of approach.

Finger clearance . Ve =7 j
It is assumed that a finger requires no more than one cubit clearance in order to release a gripped cubie.
Gripper clearance b
In order to avoid gripper clearance problems requiring detailed reasoning about the gripper size in cubits (and

the cubit is liable to change), gripper clearance is assured by the rule that during part mating no gripped cubie
will be below the level of another cubie of the assemblage.
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Uncertainty
The part acquisition behaviours will always cope with at least half a cubit of location uncertainty, within which
envelope the rotation uncertainty of the pristine must be less than 45 degrees.

Gross motion without collision ‘

It is assumed that there exists a cubit-related safe height within the scope of the robot in which all part translo-
cations can be performed without fear of collision.

Re in
Most parts cannot be acquired with a part mating grip, and so must be regrasped. A small table is provide for
this regrasping, since the Adept robot suffers from knuckle clearance problems close to the table. This small

table is intended to permit grasping of the bottom cubies of a part, but will this be possible under all cir-
cumstances? Having discovered. by experiment that this does not impose a serious limitation on the number of _

possible assemblies, the rule was made that bottom cubies will not be grasped.
8 e
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I learned some of the principles I now know by considering the results of this experiment. Those are given in the
Conclusions. The principles I used in the implementation are explained in this section. '

The general principles of behaviour désign

There are two distinct aspects to programming behaviours: the action in the real world; and the programming in the

robot control language (in this case VAL2). As far as the programming is concemed the principles are the same as
for good structured programming, the most important of which is to ensure that each parameter js assigned a value ,
in only one place in the program, so that to change it (and everything that depends on it) requires a change in only

one place. Examples of such parameters are the cubit the depth of grip of the gripper on a cubie, the spring-out of

the fingers on opening, the amount of vertical error to allow in part put-downs, and so on. Thus changing the cubit
should never entail changing more than one number in the on-line program.

A second principle, partly a corollary of the above, is that the minimum number of positions should require to be
taught - or alternatively passed from the planner. Where positions are interdependent, this interdependence should
be expressed in the on-line coding. Where interdependence is mutual or cyclic this may involve the need for a
matrix (spatial transformation) inversion function in the programming language. There may be even more complex
examples inexpressible within languages like VAL2, requiring the power of a spatial inference engine such as forms
the basis of the RAPT system [Popplestone et al 1978]. Generally speaking one should import into the on-line sys-
tem the kind of representations and computations it can handle, no more; and on the other hand, good justification
should be found for importing less.

These are the programmable side. The action side is the general requirement that the output uncertainty of a
behaviour should be significantly less than the input uncertainty with which it can cope. This is a signpost rather
than a literal rule. A literal derivation which must be adhered to is that the input uncertainty of a behaviour must
exceed the output uncertainty of the previous behaviour.

Of course it would have been most unwise to rely entirely upon my own ideas of what a behaviour ought to be, so
the family development approach was adopted, i.e., test them using a family of related assemblies, with the require-
ment that they should be general enough to handle the members of the family without change. In this case the fam-
ily comprised the several versions of the soma cube available.

I decided that I needed four elementary behaviours: part acquisition; part regrasping; part put-down; and cube pat-
into-shape. It tumed out that I needed two different part acquisitions: pick, which just grabbed the part; and get,
which grabbed it twice at right angles. This was because one of the parts could not be presented with a single cubie
upwards. Because these two could only handle limited uncertainty I invented another behaviour, patting-into-place,
which prefaced the getting of each part.

It turned out that I did not need to take any precautions to adjust out errors in the regrasping behaviour: the

regrasping always worked, though there was one extreme case which was close to the limits of possibility. And the
scheme of spacing out the assembly turned out to be able to cope with all the errors that were introduced during the

regrasping. -

The generality of these behaviours was devéloped by making them work on three different versions of the soma
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cube, using two different plans that I invented myself.

This was the bottom up part of the development finished. The job of the planner was now defined: it had to invent
plans just like the one I ended up with when I had got all the behaviours working in a hand-coded assembly. A
shortened form of a typical generated plan is reproduced below. .

The plan

PROGRAM plan()
CALL sinit()
H
CALL zjustz(bl.get, 2)
CALL zjustz(b4.get, 2)
CALL zjustz(b7.get, 2)
H
H
CALL zpcalc(centre, bl.put, -1,0,2,0*gap, 2*gap, drop)
CALL zpcalc(centre, bd.put, 0,0,2,1*gap, 1*gap, drop)
CALL zpcalc(centre, b7.put, 1,1,2,2*gap, 2*gap, drop)

HESTEEEEE The placing of lell ~e-=eene---
CALL zpatget(b1.get, RZ(90), -0.5,1.5, RZ(0), -0.5,0.5)
CALL zget(b1.get:RZ(0))

5 - No regrasping required.
CALL zput(bl.put:RZ(-270))

HE The placing of fork3 -----e--s-- .
CALL zpatget(bd.get, RZ(90), -1.5,0.5, RZ(0), -1.5,0.5)
CALL zget(b4.get:RZ(-90))

; - No regrasping required.

CALL zput(b4.put:RZ(-90):RZ(-90))

e The placing of right «---sceee--
CALL zpatget(b7.get, RZ(90), -1.5,0.5, RZ(0), -0.5,1.5)
CALL zget(b7.get:RZ(0))
; - Straight case. -
CALL zmanip(table, RZ(-90):RY(-90),0,-1,2,RZ(-90):RZ(0),0,0,2)
CALL zput(b7.put:RZ(-90):RZ(0))

HE The placing of zed ----e------
CALL zpatget(b6.get, RZ(90), -0.5,1.5, RZ(0), -0.5,0.5)
CALL zpick(b6.get:RZ(0)) .
; - Reversed case.
CALL zmanip(table, RZ(-180),0,0,2,RZ(0):RY(90),1,0,2)
— CALL zput(b6.put:RZ(0))
’
R saseanene
CALL zvpatcube(centre)
RELAX
MOVES park ;
END -
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Knowledge representation

PROLOG was the language the planner was going to be written in. The first question to be addressed was the ques-
tion of knowledge representation. This is always a very important question in any Al program.

The knowledge to be represented is the shape of. the parts, of the assemblage, and of the empty space. The kind of
questions that need to be answered from this knowledge are: does this part fit into this empty space; is the cubicle a
technical term meaning a cubie space in the soma cube world. to the left (up, under, etc) of this one occupied?

The two candidate types of representation which occurred to me were: a direct representation of space occupancy,
such as a 3D array or list of triples, from which could be deduced the relationships of cubicles and faces to one
another; or a constructive representation of the parts and spaces, in terms of a tree of up, left, under, eic. types of
relationships, from which could be deduced space occupancy.

Let us examine these alternatives in the light of the problem of fitting a part into the empty space remaining at
some point in the assembly. It is most important to be able to answer this question quickly. There are seven parts,
and there are about 100 different ways of fitting each part into the empty soma cube. If this seems surprising, note
that there are 24 possible rectangular rotations (6 faces of the cube, and 4 rotations of each face), times the transla-
tions of each orientation within the cube shape. The figure of 100 is in fact a rough average of the results obtained
after throwing out symmetries of the parts. There are about 100 billion (100°7) possibilities here. If one were
examined every microsecond, it would take three years to examine them all. Under these terrifying circumstances
the-crucial question is which representation will permit this fitting operation to be done as rapidly as possible.

Consider the spatial relationship representation. The overwhelming requirement of speed for the part fitting loop
means that nothing should be computed within that loop which could be precomputed beforehand. In other words,
relationships of adjacency should be fully enumerated. While the somad parts are simple enough to be represented
as trees even in a fully redundant manner, this is not true of the shape of the assemblage, and the remaining space.
This means that the fitting question is one of fitting a tree into a net, which doesn’t sound very tractable. It is also
hard (i.e. I couldn’t do it) to devise a unique normal form of tree expression so that, for example, rotational sym-
metries can be identified by equivalence of expression.

Consider a spatial occupancy representation. Suppose each cubicle is represented as a triple [x,y,z], being its co-
ordinates. A part, or the hole left, or the assemblage, can be represented as lists of triples. The question of fitting
becomes a question of whether each of the cubies of the part is also a member of the hole list. This can be done in
a single pass if the lists are kept sorted into order. This seems nicely tractable so far. Translations of the part are
easily handled just by vector addition throughout the list. It turns out that rotations are also easily accomplished by
combinations of axis swopping and negation. It would be wasteful to repeat these translations and rotations every
time the part was considered for a fit, so these computations could be removed from the fitting loop by doing them
all at the start, and keeping a large list of all possible translations and rotations at the start. Thus the fitting opera-
tion reduces to selecting one member from each list of part rotations and translations which fits into the remaining
hole, backtracking until they all fit.

That sounds like a reasonably simple and rapid computation, except of course for the size of the solution space.
Since the translations and rotations are pre-computed once and for all, there is little extra overhead in being clever
about the possibilities, so as to reduce the number. For example, many of the parts have rotational symmetries.
These can be checked for and thrown out of the list. All possible translations can be taken to be all possible transla-
tions which fit inside the assembly shape - other shapes are not as simple as the cube.

When spatial relationships are required, their computation is relatively simple. For example, the cubicle xwards of
[x,y.z] is [x+1,y,z].

I have discussed this spatial representation in terms of lists of triples, rather than a 3 axis array, since that is the
simplest and most efficient representation in PROLOG.

The planner
The program consists of a number of sequentially run sections. The first section, the parts expansion, generates an
enormous record of all possibilities. The general solution finder boils this down to a small record representing a

general solution. Subsequent sections then proceed to decorate this record with extra information until all the infor-
mation necessary to instruct the robot how to enact the assembly has been discovered. Finally, this is translated into
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a sequence of parameterised behaviours, a sequence of VAL2 call instructions.

Finding a general solution

The goal here is simply to find a way in which the parts fit together inside the shape of the assembly, without both-
ering about the details of how they might get into those positions. This stage corresponds to the design stage of an
exploded assembly diagram in manufacturing. The strategy chosen is based on the simple idea of putting parts into
the assembly one after another until they all fit in, or until one fails to fit in. If it fails in one position, then it is
tried in another. If it fails in all positions, then it is tried in another orientation. If all its orientations fail, then
another position of the previous part is tried. Once all those have failed, another orientation of the previous part is
tried. And so on. This kind of backtracking through the tree of possibilities is supplied for free with PROLOG -
one of the reasons for choosing the language.

That method is guaranteed to find a solution if one exists, but it is very inefficient. The first inefficiency is because
it recalculates the different rotations and translations of a part within the assembly again and again, every time it
needs them. So the first optimisation was to precalculate all the possible rotations and translations..of.a part which
fitted inside the assembly. Thus getting the next translation or rotation was simplified to getting the next item from
a list. The second optimisation was to notice that most of the parts had symmetries, i.e., some of the rotations were
equivalent to others. These equivalences were thrown away.

This third optimisation came from noticing how stupid this solution finder was compared to me: for example, it
would go on trying to fit the last three parts in all possible combinations, even though it had already, with the first
four parts, walled off one single cubicle, so.that a solution was clearly impossible. Some way of recognising this
kind of situation would help to prune the solution space a lot. A method was devised of analysing the remaining
space in the assemblage into separate walled-off sets. Since six of the parts contained four cubies, and only one
contained three cubies, then putting the three cubie part in first meant that each one of these walled-off sets had to
contain a number of cubicles exactly divisible by four, otherwise a solution was impossible. This was checked after
each part was put into the assemblage.

The fourth optimisation came from noticing that, after rejecting the symmetries, some parts had a lot more possibil-
ities than others. It helped to minimise the amount of deep backtracking required to try out the ones with least alter-
natives, and thus the greatest likelihood of being correct, first.

These four optimisations speeded up the solution search a great deal. The final optimisation did not speed up the
solution search, but it made it more likely that the solution found would be assemblable. It so happens that the most
important reason why a solution is not assemblable is because of finger interference, i.e., the robot can’t put the part
down because other cubies get in the way of its fingers. This is less likely to happen if the part has a single cubie
sticking up in the air. So after all the rotations had been generated, and the symmetries thrown out, they were sorted
into an order with sticking-up-single-cubies first. This meant that the first solutions found (there happen to be 240 x
24 solutions) are more likely to be assemblable than the last ones.

Although the actual symmetries are thrown out, the sets of different rotations which were found to be equivalent are
noted, because this proves useful later: if a part needs to be rotated in a certain way, which proves unpossxble then
one of the equivalent rotations may be possible.

Finding a gravitationally stable order

Having found out how the parts are disposed in the final assembly, the first constraint is to select a gravitationally
stable ordering, so that-every stage of the assemblage is stable under gravity. In general manufacturing assembly
the sequence of assembly would be decided, at least in general terms, during the design process. This general
sequencing involves knowledge of what kind of things can be expected to be done without difficulty in the assem-
bly stage. So this stage can be seen as the validation or rejection of suggested assembly sequences. In general
terms making the sequence of assembly gravitationally stable implies that the necessary base to support a part
stably (uncertainty near boundary cases makes this sometimes more than one cubie) must be a subset of the cubies
of the part which are actually supported. But there are practical considerations which simplify this.

It is a rule that all parts will be introduced into the assemblage from above. The implication of this is that when
each part is sitting down in its final place, there must be no empty space underneath it - else how would that space
be filled? -
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So the general stability requirement simplifies to the requirement that every cubie which could be supported, must

] | be supported; and a cubie which could be supported is simply a cubie which does not have another cubie of the
I 1 4= part beneath it.

It turns out that there are often several dozen of stable orderings of a solution. It takes a few seconds to compute a
stable ordering. No steps were taken to optimise this in a look-ahead fashion, but, as explained in the next section,
it proved to be most advisable to implement failure-directed backtracking into this stable ordering from the put
down grasp planner.

I sometimes refer to this stage of assembly planning as ghostly assembly, since it is a manipulatorless assembly
plan, suitable for psychokinesis. The general solution can be regarded as an assembly plan which requires direct
materialisation of the parts in the final positions. ‘

—

The put grasp planner

Given a stable ordering of the parts, it is not always possible to devise a grip with which they can be put in :place.
The main problem is allowing for finger clearance, i.c., there must be empty cubicles on either side of the gripped
cubie to accommodate the fingers. This is a sufficiently serious constraint that it is possible for only a minority of
solutions.

o =p lan zl

The assemblable solutions behave rather like number factoring problems, where impossible assemblies are
represented by prime numbers. Most possible assemblies fall out very quickly and simply, and could be done in a
variety of ways; whereas impossible assemblies require a great deal of thinking to be quite sure that they are impos-
sible. And there are always some few solutions which are nearly impossible. This suggests that only a few solu-
tions would be missed by implementing boredom - skipping to the next solution as soon as the search became tedi-
ous.

vecp

There are two minor extra problems to take into account. The first is gripper clearance, as opposed to finger clear-
ance. This demands that nearby cubies do not stand above the level of the gripped cubie. Of course this is a ques-
tion of the relative sizes of gripper and cubie, but it proves to be a very minor restriction, so the simple and general
rule is adopted of no cubie anywhere in the assemblage standing proud of the gripped cubie.
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The second problem is that it will sometimes be impossible to find finger clearance for the last part - always in the
case of the cube. This is most easily seen if you consider the problem of the finished cube: where is the cubie
which could be gripped so as to remove a part? So the last part is permitted an alternative method of assembly - it
can be put down in an offset position so that the offset allows the necessary finger clearance, and then, once the
fingers have been withdrawn, the part can be pushed sideways into place. This means that the last part has an exira
freedom as far as gripping is concerned: it need only have space for one finger. This involves an extra constraint as
far as motion is concerned: not only must it be possible for it to move into place vertically downwards, but it must
also be capable of moving into place sideways along the finger axis.

Now if this offset put down and nudging into place is allowed for the last part, then why not make use of it for
other difficult situations as well? Since this would add complications to the planning process beyond those needed
just for the last part, the answer to this question depends on how many assemblable solutions can be found without
making this extension. Since the answer is about half of the total general solutions, I did not implement this exten-
sion. The last part is the only one for which this offset put down is permitted.

Failure directed backtracking from put grasp failure

It must always be the case that if finger clearance does not permit a part to be gripped, then it must be an earlier
part, already in the assemblage, which is in the way. Note that if two parts forbid finger clearance on either side,
then the important culprit is the older one (the one which was placed in the assemblage first). Backtracking to find
the next possible stable ordering will not succeed in avoiding this obstacle until it has succeeded in re-ordering the
culprit. Given the large number of stable orderings, i.c., the bushiness of the tree, a great deal of fruitless re-
ordering and grasp planning can be avoided if the stable ordering clause can be directed to backtrack back to the
point necessary to re-order the culprit. The culprit is the youngest of all the parts in the way of the fingers.

The other reason for failure of a put grasp is gripper clearance, i.e., this part requires to be gripped at a level below
the top of the assemblage.
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In cases where gripper and ﬁnger'intezferenée co-exist.' the culprit (i.e. the backtracking level) is taken to be the

older, because either obstacle damns the assembly. p+"
fn e B .
rarler B = - B w
Regrasp planning W , . .

- In some carefree cases it so happens that a part can be picked up with the required grip to put it down. This hap-
pens in those cases where the part only rotates between initial and final configuration about the vertical axis, or
where symmetry permits an equivalent vertical rotation. In all other cases the part must be regrasped. A little table
is provided for this purpose, to make regrasping from all angles as simple as possible.

_The grasp planner can provide alternative grasps. If finds the grasps nearest the centre of gravity first. The regrasp
problem is to find a gravitationally stable orientation of the part on the regrasp table in which one of the get grasps
and one of the put grasps are both possible - suitably rotated. This was solved by generation and test. First would
be discovered a rotation which the robot was capable of making from the put down grasp attitude. This would be
failed if the rotated part was not gravitationally stable. Once a stable and reachable attitude had been discovered a
get grip would then be selected. All possible rotations of the adept from this get grip would be generated and
checked for conformity with the orientation of the part on the regrasp table.

If this process failed to find a solution, for any of the rotations possible from any of the put grasps, then the planner
would repeat the process through the list of axial rotation equivalences discovered in the initial symmetry discarding
- phase. Rt Gpanelty (At rofetous)

' This process covered a lot of ground, and could take several seconds in a bad case. A most interesting problem
arose if a part turned out to be impossible to regrasp. Was this part impossible to regrasp because local finger
interference prevented a successful grasp, or was it that this orientation of the part was impossible to regrasp under
any circumstances?

This planning of regrasping, with its associated failure directed backtracking, not only had the largest and most log-
ically complex clauses of any part of the problem, but also it was extremely difficult to understand. I had to write
a simplified regrasp planner first, and get it working, before I was capable of understanding the general case. This
kind of experimental development is typical of Al programming.

Failure directed backtracking from the regrasp planner

In order to discover whether a regrasp failure was general or not, the analysis would be repeated, but omitting from
consideration the rest of the assemblage. If it proved to be possible under this circumstance, then the regrasp
failure was due to finger clearance problems, and treated as such.

If on the other hand it was impossible even without the rest of the assemblage, then this part was unregraspable in
this orientation, and backtracking had to be forced back into the general solution finder to pull out a new orientation
. of this particular part.

These various forms of failure directed backtracking, from finger and gripper failure into the stable orderings, and
from regrasp back into stable orderings or rotation selection, greatly improved the fruitfulness of the search for
assemblable solutions, by leaping over dead areas in the solution spaces. The cases where the planner still seemed
to behave stupidly were where it got locked into cycles involving three parts. The planner would backtrack to one
of them, whereupon all three would change places, thus fooling it that a new situation had arisen, wheres in reality
it was running round in a circle until it had enumerated its way out of all possible combinations of ordering of the
parts younger than the threesome.

I didn’t bother to attempt detection of threesome cycling. The computationally much simpler implementation of
boredom would also have handled this problem.

Spacing out the assembly to contain the uncertainties

The rule is that there must exist, between every pair of horizontally mating faces (i.e., coming together along a hor-
izontal axis), a small space. This is known as a pad. A pad is a behaviourally-determined unit (i.e., the size is not
the concern of the planner), in practice about 1/8th of a cubit. The purpose is the isolated containment of the
~ errors of positioning of the parts, as they are brought into the assemblage. One could suppose each part to repel its
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neighbours to a constant distance. The problem is that in some cases the space must be larger, consisting of more
than one pad, due to other chains of faces pushing this one further apart than its own repulsion dictated.

The information required by the planner is not the location and number of these pads, but the offsets, in terms of
unit pads in the x and y directions, of the parts from their nominal positions in the assemblage.

Since there there is no interference between the x and y axial pads, each axis can be considered independently of
the other.

A horizontal adjacency between the faces of two parts requires that one part must be offset from the other; the
offset of one must be at least one pad unit greater than the other, or, the other must be at least one pad less than
the one. Since each relationship implies the other, we may choose to consider only one of these relationships (either
greater or lesser), without loss of information. Thus the problem can be simplified to considering one relationship,
in one dimension at a time. Trying to consider both "<" and ">" relationships makes the problem tediously and
unnecessarily complex - it turns it into a net, whereas with only one sense of relationship it is a tree.

The method chosen is to discover all of the (say) xward adjacencies of a part, and to pursue all the similar adjacen-
cies of the adjacent part(s), until no more are discovered. This is a tree structure. No more are discovered when a
part is arrived at which has no xward adjacencies, and consequently has no need to be offset in a -x direction. This
part is assigned a zero offset along the axis under consideration. The number of nodes in the tree which must be
traversed before arriving at such a zero offset leaf will vary. The largest number of nodes traversed before finding a
zero leaf is the offset required for the initial part required in order to accommodate all of its relationships.

Translating the final solution record into behaviour calls

This should have been largely a question of a transformation of representation: from a PROLOG list structure to a
sequence of VAL2 parameterised behaviour calls. In general fairly straightforward, the foreseen complication was
the need to translate between the chosen rotation representation in the planner - lists of absolute axial rotations -
and that required by VAL?2 - lists of relative rotations, with a couple of strange bugs in the implementation. Spatial
reasoning masochists can find the details of these in appendix 2.

The unforeseen complication was that the output of the planner was not complete. This was due to a confusion

between deciding the feasibility of the plan, and providing all the details necessary for its enacting. All the rotations
necessary at every stage of the part’s journey into the final assembly had been elaborated, but I had forgotten that
the rotations of the robot were not programmed explicitly, but deduced by its controller from the difference between
the source and destination position sextuples.

While the difference defined the translocation of the part, the sextuples themselves defined the orientation of the
grips, since each motion took place between two grips. This was not a problem when one of the grips was unambi-
guous, but downward grips were ambiguous - the planner had not bothered to distinguish between 180 degree rota-
tions of the gripper - and so motions terminated at both ends by downward grips were ambiguous. Unfortunately,
although left ambiguous in the plan, only one of these alternatives was actually possible.

So this final stage of planning - dividing the A to B rotation spec into a location A rotation and a location B rota-
tion, incorporating the gripper orientations - was performed at the VAL translation stage. Of course it should have
been put into the grasp and regrasp planners, but since PROLOG lacks general record specifications, that would
have meant a great deal of error-prone record format editing.

Conclusions
There are three main conclusions to be drawn:
* Behaviours have so far fulfilled their promise.

* There is great benefit in implementing a complete planner: despite my best intentions to the contrary, every
stage of development (with the notable exception of the last) discovered omissions, sometimes serious, in the
work of previous stages; thus a complete planner provides a more robust perspective on the whole problem than
any amount of "paper" speculation. -

* The soma world is an excellent toy domain for isolating the complexities of the assembly problem.
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Testing resourceful programs

I did not at first appreciate the special problem of testing a resourceful program, that it was capable of coping with
its own bugs just as well as the constraints of the problem.

The problems of large and irregular solution spaces

The solution space is so fiendishly irregular that I was often tempted to conclusions based on what later turned out
to be an unrepresentative set. This usually took the form of deciding, after discovering a problem, and scrutinising
the cases to hand, that a fully general avoidance strategy was not needed. Such decisions were nearly always wrong.

The general conclusion that this experience has led me towards is that it is worth while trying the most sophisti-
cated strategies conceivable. They have nearly always tumned out to run even more slowly than I had feared, but
nevertheless always to be effective.

The triple generality of good behaviours

The behaviours were implemented as VAL2 programs. These were general in three distinct ways. They were gen-
eral in terms of program structure, in the conventional computational sense. They were general in terms of the
assembly operations which were a side effect of the programmed motions. And they were general in terms of the
variations of form and position of the component parts which they could cope with. These are distinct generalities
in the sense that any one can be achieved without the others.

It was this triple generality which made these VAL2 programs into behaviours. The computational generality
meant that they could easily be combined. The operational generality meant that this computationally simple inter-
face could be simply related to suitable terms in which to reason about the planning of the assembly. And the gen-
erality over variations of form and position meant that the planner did not have to think about uncertainty. This
both greatly simplified the planning task, and ensured that the plan would work reliably in the real world.
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