. Expért Systems & Knowledge Acquisition: 1

Chisis Thomton ~ January 11, 1989
~ POP11 PROGRAMMING 1 (expressions and commands) -—-

The course involves looking at many computational techniques. We need a genexal
Ppurpose programming language,

Needs to be

- high level

- easy to read

- good for expert systems
- good far leaming systems
Candidates .‘,5 ‘A '
C, Pascal - too low level U

Lisp - difficult to read DGP\M ﬁﬂ "
Prolog - too high level (DFS is not a useful primitive in ML)

Popl] (scconding to Laventhal, 1987 Shucle
- structure like Pascal -
- starage allocation like Lisp 9&7 bftj& (i 0‘@(4’1‘!0”\
- argument passing like Forth
Popl1 is interesting in itself :
- widely used for Al work in UK 1

- not committed to any particular Al paradigm
- implementation language far Poplog Al environment

“’opll references \
‘Darrett, Ramsay & Sloman 1985; i

Burton & Shadbolt 1987; ' :
Laventhal 1987; l
Pountain 1988; - rave review in BYTE;

Ramsay & Barret 1987;

Yazdani 1984; :

- Statements, expressions and commands ~—--—-—--— '

A Popl1 program is a sequence of statements separated by semi-colons. Statements are
cither expressions or commands. .

Expxmswns are just statements which have a value (actually, one or more valnes).
are which do not have a value,

Initially, we don’t need to make a distinction between compiling and nmmng a Popll
program. We can just talk about "doung some Popl1 code.

This can mean either (i) typing it in a top-level (Popll prompt is the colon) ar (i)
marking and executing a range of text in an editor (e.g. Ved).

~ Numerical exp and simple command

2+ 2 ==>;

g is is a litle Popl1 program made up of two stat ts - an expression ("2 + 27) and
xnmand ("==>") called the "print arrow™. It produces the response (i.e. outpat)

w4 '

10US.

The print arrow acts like a semi-colon. Thus the blans are

24 2=>
‘.4

Note that white space is ignored.
2
+
2=>
sy

Popl1 puts two asterisks before anything printed using the print arrow.

Expressions can be constructed using all the the usual mathematical operators (plus
some extras).

add two mumbers
subtract two numbets

-
Ko K

e AL AR
»

the
divide !Lnt nurber by s
ide X by Y and xetum xminder and quotient.
returns gst the quotient
returns the :m!.nder on dividing X by Y
returns the modul

PET T I ARYIY
gg SN

“x
<

Expressions can contain expressions and the usual operator precedences are imple-
mented.

2+3%44 6=
..?D

"
—-r

Ex can also in function calls, A function call has the form

3

<name of function> (<argumentl>, <argument2>...)
There are a mumber of built-in functions.

sqrt(25) ==>
5.0

min(3,2) * 6 =>
=*12

max(3,2) + 2 ==>
=5

abs(4.3) ==>
*43

abs(-4.3) =>
**43

- Variables
vars mine;

Named variables are set up using the "vars” command. They can be initialised to some
value by following them with an equals sign and an expression.

vusminc=2+2;

The name of a vadable is treated as an expression whose value is the contents of the
variable.

mine ==>
¥ 4

vars yours =minc;

To assign a value 10 a varable we use the "assignment arrow” (works left to xight,
unlike Lisp, Pascal, C, etc.)

3+ 2->yours;
Pop11 first puts the value of "3 + 2" on a stack data structure (the "user stack™), then it
takes it off the stack and puts it into "yours”. Itis possible to make Popl11 copy some-
thing off the stack without removing it. This means that one value can be assigned to

two or more variables at once,

2+ 6 *4 /6 ->> yours -> mine;

yours ==>
*6
mine =>
*»6

A Pop11 program made up of four statements (two expressions, two commands):

10 -> mine;
mine * 2 ==>

The output produced is

» 20

~ Boalean expressions

- Expressions can have truth values (called boolean values). These are contained in the
variables called "truc” and "false”. Pop11 prints boolean values thus.

true ==>
** Strue>
false w=>

e cfalse>

Pop11 has all the usual boolean operators. By using these we can wnm:ctexpuuums
with boolean values; e.g.

3m2m=>

** cfalse> i

3<2=> .

** <false>

- Other boolean operators:
X =Y 4is true if X has the same value as Y
X>Y X is ater than ¥
X<y x is ess than Y !
I X > Y ater than or equal to'Y

X <= Y xia ess than or toY '
X and Y X and Y both have the value true
XorY either X or Y has the value true
not (X) X is false

-.Popl 1 also provides a large number of boolean functions. For example
snumber(3) => .

** qrue>
isboalean(true) ==>
** ame>

isboolean(3) =>
** false>

— Webd cnprord

Xp
mine ==>

Popl1 treats the "mine” bit as an expression whoscvxluemtheomwm.s of the variable
called "mine", What happens if we want to use the word itself? ;

- To do this we construct a special expression (2 word exptessxm) whosevalueua
ward object. A ward expression is just a of ascii ct d in dou-
ble quotes. Thus

*mine” ==>
** mine

Word expressions can contain underscore charactess.
.:ny__wcrd" =>

wwss my_word
Word' expressions effectively construct data objects called words. Some booleans
expressions involving word expressions make sense:

"mine” = "mine” =>

** qtrue>
Some don’t.
"mine” > "mine” =>
3 MISHAP - NUMBER(S) NEEDED
st INVOLVING: mine mine
34 DOING : > compile nextitem compile

(Variable names are actually word objects.)

- List expressions

List expressions effectively construct objects which arc made up from sequences of
values. A list expression has the form

[<valuel> <value2> ...]

ie. it is a sequence of arbitrary values enclosed in square brackets. The expressions
normally need to be separated by spaces.

When constructing the list, Popll does not evaluate the individual items in the
sequence; thus

[2 4 2] mm>
**[2+2]

We can construct lists of words as follows. Because the things which go between the
square brackets are values, we do not need to put in word quotes.

[foo bang ding] =>
#* [fo0 bang ding]

— Single hats

Often we want a list to contain the value of an expression. To get this effect weneed to
tell Popl1 1o evaluate the expression in question. We do this by enclosing the expres-
sion in brackets and preceding it with the "hat" operator (**"). Thus

[foo bang *(2 + 2)] =>
** [foo bang 4]

If the expression is just the name of 2 variable, we don’t need the round brackets.

[foo bang “mine] ==>
** [foo bang 10]

We can get a sequence of expressions evaluated just by including more things in the

round brackets. The sequence of expressions is treated just like a little Popl1 program,
30 we have to scparate the expressions with semi-colons.

[foobang (2 + 2; 3 + 3)] ==>
** [foo bang 4 6]

An altemative notation involves enclosing the Pop11 code to be evaluated in percent
signs.

[foo bang %2 + 2; 3 + 3%] =>

** [foo bang 4 6]

~ Double hats

Lists can contain arbitrary values including the values of list expressions.
[foo bang ding] -> mine;
[1 2 "mine 3] ==>
** [1 2 [foo bang ding] 3]

If we want the sequence of values in a list to be spliced into another list, we usc a vari-
ant of the hat operator called the "double hat".

{1 2" mine 3] =>
** [1 2 foo bang ding 3]

If we try to use the double hat on an expression whose value is not a list, we get a
mishap.

{1 2% yours 3] ==>
s+ MISHAP - LIST NEEDED

3 INVOLVING: 6
3 DOING : null dl compile nextitem compile

- List functions

Pop11 provides a number of functions which work with lists.
vars mine = [foo bang ding];

hd(mine) ==>
** fo0

tl(mine) ==>
** [bang ding]

last(mine) ==>
% djng

member("bang”, mine) ma>
** qrue>
I ako.allow-;usw access the Nth clement of a list. To do this we treat the variable
ea\uixﬁngdwlinuifhwuafmcﬁonwlﬁchukalnmnczicugumun.’l'hisil
called "subscripting”.

mine(2) w=>
e b‘ng

“hello” -> mine(2);
** hello

ming se=>

#*# [foo hello ding]

— Complex commands

Both the assignment arrow and the print arrow are simple commands. Pop11 also pro-
vides complex commands. These always have a block structure of the foom

<name-of-command>
<code>

m:qume-of-comnnnd)

~ Conditionals

foand. 12l 0y

p d in Popll is the "if" command. This is the main
ditional construct. It has the foom

if <expression> then <code> endif;
or, Mnﬁvdy
if <¢xpression> do <code> endif; '

In either case, the <code> will oaly be done if the <expression> doés not have the
value <false>.

if 2 <3 then 10 => endif;
s 30

if2> 3 then 10 ==> endif;
Note that any expression whose vakoe is not <false> is considered to be ‘<true>. Thus

if 2 + 2 then 10 => endif;
% Io

"if" commands can have "elscif” parts and one "elsc” part. There can be any number of
vars result;

5{3 <2then
.!3;>mult; ‘ '

elseif 1 <2then i
1 +> result;

clseif 0=1 then
0,-)!1:8\11!;

else
false -> resul;

endif;

result =>
O‘l

- Popl1 works down through the cornmand until it finds an expmsmn whose value is
not <false>. It then does all the code which follows, up until the next "elscif™, "else” or
“endif™. . B
There is also an "unless” command. This works just like an inverted "if".

unless <expression> do <code> endunless;

If <expression> has the value <false> the <code> will be exccuted.

There are several complex commands in Popl1 which produce looping behaviour. A
simple example is the "repeat” command. This has the form

Tepeat <expression> times <code> endrepeat;

The <code> is done a certain
g

ber of times depending on the value of <expression>;

repeat S times 2 + 2 ==> endrepeat;
produces the output

.&4
g
2eq
g
oy

<code> can be an arbitrarily long sequence of statements.

repeat 2 times
2+2=>
3*3=>

endrepeat;

‘84
9
a4

**9

-- The quitloop ¢« d

1t is possible to obtain infinite Jooping by just leaving out the "N times” part from the
first line of the repeat command. In this case, looping can be terminated using the
"quitloop” d. This d causes the looping to be stopped immediately.

varsn=0;

repeat
n+l->n;
n=>
if n > 5 thea quitloop endif;

endrepeat; |

=]

-‘2

003

=4

bad-]

bl]

The quitloop command can be used even if the "N times™ part is present.

— The while and until commands ===

Instead of using quitloop inside repeat commands, we can use the "while” or "until”
command.

repeat
quitif(<expression>);
endrepeat

produces the same behaviour as
while not(<expression>) do
m:i.whil:

and

until <expression> do

m:i.mtil;

~ The for command

- A very uscful looping command is "for”. This can be used in a munber of different
ways, The command arranges for 2 special variable (called the loop variable) to be set
1o a new value each time around the loop. The name of the loop variable is inserted
immediately after the "for™. Thus '

vars n;

forn from 1 to 6 do n ==> endfog;
s

-y

ss 3

ey

s 5

g

forn from 12 by -2 0 3 do n == endfor;

% 12 I
**10
.‘8
.t6

- 4

- The for command can also be used to iterate over the items in a list. In this case,
each time around the loop, the next item of the list (working forwards from the front)
is assigned 10 be the value of the loop variable.

vars num, list = [one two three foar]; i
for num in list do oum = endfos; '
e one
**two

— ** three

[2= |

Also:

for num on list do mum ==> endfox;
** [one two three four]

** [1wo three four]

*¢ [three four]

** [four]

— nextloop v. quitloop

- Note that the quitloop command can be used inside repeat, while, until and for loops.
It cin also be used in the case where onc looping command is contained inside
snother. To quit the Nth enclosing loop, we do quitloop(N). Thus

vass list number;
for listin [[1 2 3])[4 5 6)[7 8 9]] do
for number in list do
if number = 5 then quitloop(2) endif;
number ==>
endfor;
endfor;
% l
% 2
00‘3
- 4

‘—whcrus

for list in [[1 2 3][4 5 6)(7 8 9]] do
for number in list do
if number = 5 then quitloop endif;
number =>
endfor;
engdfor;
L L l
e 2
3
% 4
- 7
g
.l'9
A relation of quitloop is "nextloop”. This works just like quitloop except that instead
of bringing the looping to an end, it simply causes Popl1 to jump to the next cycle of
the loop without doing anything more in the current cycle. \

- Using loops to construct lists —--—-—- S

Wh Popil
means that we can

1p the value of an expression it is put on the stack. This
lists by inserting expressions into loops, thus.

[(for item in [7 18 49] do item * item endfor)] m=>
** [49 324 2401]

[%for item from 1 to 20 do item endfor%) ==>
*£1234567891011121314151617181920]

Expert Systems & Knowledge Acquisition: 2

Chris Thamton - January 11, 1989

~ POP11 PROGRAMMING 2 (procedures) ———
-ﬂei'proce&u:e'eonmmdixuedwdeﬁnenew, dures and fi It has the
structure of & command but actually wm'ksmomhkcmapxunmmtismuy,'
huavuluemdthevalneuupmedmob)eu.ApmcedmmPopll is just a
sequence of statements which can be run as a unit.

vars next number = 0;

procedure; i
mmber + 1 -> number,
mmber ==>

endprocedure -> next;

- If we put round brackets after a variable which contains a procedure, Popl1 responds
by running the corresponding sequence of commands. This is referred to as “calling”,
“running" or "executing” the procedure,

next();

‘.l

next();
_s 2

next();

..3 :

- If we want we can sct up procedures which take inputs. To do this we simply insert 8
mence of varable names in round brackets after the word "procedure” in the
inition. In this case, whea we call the procedure, we put a corresponding sequence

of values inside the round brackets in the call. Popl1 responds by pumng cach value

into the corresponding variable in the definition.

pmecdnm(‘mcmnml).
number + i >
number ==> i
endprocedure -> next;

next(3);
L1 7

next(S);
*» 12

procedure(increment, n); t
number + increment -> number;
number * n -> number;
mumber ==>

endprocedure -> next;

next(2,3);
42

- define

pommally when setting up procedures in Popl1, the "definc” command is used rather
7.n "procedure”.

define mine(x) ... enddefine; :
is short for

vars mine;

procedure(x); ..

- retum

. endprocedure -> mine;

- We can make a procedure behave like a built-in function by including a “retum”
command somewhere in the definition. This command causes Popl1 to (a) stop doing
the statements making up the procedure and (b) put the value of the expression which
appears in round brackets after the "retum” on the stack. This allows pxocednn: calls to
be treated in the same way as calls on built-in functions.

define square(number);
number * number -> number;
retumn(number);

enddefine;

square(3) ==>
L 9

square(26) ==>
e ! 676

vars yours = squarc{4);

yours ==>
* 16

Altematively, we can set up an explicit output parameter for a function by including

another named variable after a "->", thus.
for wapatle > relums

defin be) -> answes
e e > S Sl varl €le.

number * number -> answer;
enddefine;

-- Recursion —

Procedures can make usc of themselves recursively. For instance, we can define the
factorial function as follows.

define factorial (num);
if num = 1 then
retumn(1)
else /* recurse */
retum(num * factorial(num - 1))
endif
enddefine;

Note that text appearing between the strings "/*" and "*/" is ignared by Popl1.

factorial(4) ==>
=2

-- Local variables

4 head

- Varizbles appearing in p lines are local to the procedure in questica.
Thnsmunsthal!heymsmwdwmupamcuhru]lofthcpmeedme. Alocal
varable can have the same name as a vadable which is declared ap
definition. However, as far as Popl1 is concemed, the two variables are qmte distinct.
We can sct up extra local varisbles by putting vars commands inside procedure
definitions.

vars temp;
10 -> temp;

define d
vars temp;
number * 2 -> temp;
retum(temp * temp)
enddefine;

ble_then_t f

4 Al

double_then_square(3) ==>
- 36

temp =>
% 10

In the case where a procedure calls itself recursively, each call bas its own versions of
the local variables. All versions of a given local variable are distinct.

-- Applist

Sometimes programs need to process the elements of a list using a single function. For
instance we might want to write a program which prints out welcoming messages for a
group of people.

vars people = [chris fred ruth];

define say_hello(person);
[hello “person, nice to meet you] ==>
enddefine;

applist(people, say_hello);

** [hello chris , nice to meet you]
#* [hello fred , nice to meet you]
** [hello ruth , nice to meet you)

-- Maplist
A close relation of the applist procedure is "maplist”. This takes a list and a function
and retums the list which is constructed when the function is applied to all the ele-
ments of the list in tum.

maplist([4 16 23 89), sqrt) =>
*+[2.04.04.79583 9.43398)

maplist({4 16 23 89], double_then_square) =>
*% (64 1024 2116 31684)

-- Syssort

- Syssort is a built-in function which works a bit like maplist. Calls on syssort have the
form '

syssont(<list>, <boolean_function>)

The first argument is a list, the second argument a boolean function which takes two
items and remums a boclean result. If E1 and E2 are elemeats of the list and the value
of |

<boolean_function>(E1 E2) :
is not <false>, then E1 will not come after E2 in the list which is retumed by the func-
tion. Thus, -

define smaller(numas, mumb);

retum(numa < numb)
enddefine;

syssort([S 38 9321 4 2], smaller) ==>
**(123458932] o

~ Matching

- One of the most powerzful features of Popl1 is the pattem-matcher. This facility is
packaged in the form of a boolean operator which wsts whether two lists nmch" The

-- Restriction procedures ——————-—esreereemem
~Tbelmglo-mddoubl&qucmbenudlogxutaﬁectmkpllpmym(uwc
will set) for "digging owt”™ bits and picces from list str
uscfulness is increased still further by a feature known as mmmonpmeduxu The
use of restriction procedures can be illustrated by considering the way in which a
built-in function such as “isnumber™ might be used to influence the result of a match
process. The "isnumber” function takes a single expression as input and tests whether
its value is a mumber, If it is, <true> is retumed; otherwise <false> is retumed. Thus

isnumber(2 + 2) ==>
** crue>

isnumber(3) ==>

isnumber([foo bang]) =>
** <false>

- Let us imagine that we want to test whether some list begins with a numbex, ends
vmhlheword"foo mdhzsmubxmrynmbcrofdanmumbawm We can

"matches” oya-nonsusmllypmulled!he" er” and "matches™ exp are
just called "match expressions”.

¥f we want to test whether two lists are exactly the same we can use the “=" opezator;
cg 1

[123)=[123] ==>

** arue> '
"--(;xzsx-(zzal-:» '
** cfalse> '

However, if we want to test something a little less categorical like wbdhcr ornot a list
ends with a certain two elements we can use the matcher thus,

[2 2 3] matches [=2 3] =>

* Qrue> !

-Themnchzummeﬂhllm'='inthcsecmdlincmmtchanh=ﬂintheﬁmlin,
no matter what that item actually is. (Note that you cannot put an "="in the first list.)
There is another symbol called the "double-equals™ which the matcher assumes can
match a sequence of arbitrary items in the first list. Thus, if we want to check whether
some list of arbitrary size ends in a certain two elements we might type

{foo bang ding 12 3] matches [== 2 3] ==>

** qme> ;

- As far as the her is ¢ d, the double-equals matches any ber of items
in the other list. We can put single-equals and double-equals wherever we want; e.g.

[foo bang ding 1 2 3] matches [==bang =1 ==3] =>
** arue>

[foo bang ding 1 2 3] matches [==bang == 1 =3] =>
o ..
*= Note that by putting two separate single-equals after the "bang” in the second list we

have effectively stopped it from matching any list which has "bang” md "1 but caly
one clement in between.

Very often, we will be interested to know what things the single-equals and double-
equals matched against. The matcher allows us to find this out by using two varants of
the equals signs called the "single-query” (written "?") and the "double-quary (written
"??")

[foo bang ding 1 2 3] matches [?mine bang =1 == 3] =>
** Qrue>
mine ==>
- foo
- As 1 side-effect of matching "?mine” against "foo”, the matcher has put "foo” into the

variable called "mine". If we use the double~query, then a list of the elemeants which
have matched is put into the corresponding variable; e.g.

[foo bang ding 1 2 3] matches [??mine 1 23] ==>
** ane>

mine ==>
** {foo bang ding]

GJIVtvat(évt" ks U 7
U X

“

G

2-

pl ﬂusmusmgthemnchaufonm
vars list;

[1 ding bong foo] -> List;

list hes [mines 5
* <true>

= foo] ==>

- By writing "disnumber” afier the "?mine”, we tell Popl1 (in effect) that the first ele-
ment of the list can maich against the "mine” variable provided that it is a number.
Note that if it is not a number, the matcher retums <false>,

[ding bong foo] -> list;
list matches [?minezisnnmber == foo] =>
** cfalse>

- Technically, putting ":" followed by the name of a function tells Popl1 that the vari-
able can match an element provided that, when the function is called with the element
provided as input, it does not retum <false>. We can illustrate this by defining a new
function which retums boalean values as shown in Figure 0-0. This function can then
be used in match expressions as follows.

define is_silly_word(w);

if w = "foo" or w = "ding" then N -
remm("silly”) &Y e \"ve!ﬁ k /wd
else abeh,
return(false)
endif
enddefine;

list matches [Pmine:is_silly word =] =>
** rue>

[seasible ding bong] -> list;

list matches [?mine:is_silly_word =] =>
** false>

-- Restriction procedures can have side-effects ~—-—--—

- If the function whose name we write after the ":" retumns a result which is not equal to
<false> but not equal to <true> either, then the value is assigned to the varable in the
place of the element which was actually provided as input. Thus

mine ==>

** silly
- Integer restrictions —
- As well as function names, we can also put integers after any calon which follows a

double-query ar a double-equals. The idea here is that the integer forces the matcher to
match the givea variable against a sequence of a given length. Inserting an integer N

‘makes sure that the variable will only match against a sequence of N elements. Thus,

typing something like

list matches [= 7?nun=] =D
** <true>

This has the side effect of putting a list containing all the elements of the matched list
into the variable "mine”. Whereas

list matches [== ??mine:2] =>

Can fore walkthe € Scanln

“;mup

retums <rue> and has the side effect of putting a list containing just the final 2 ele~
ments into the variable mine.
mine m=>

** [ding bong]

- Lists which contain symbols which mean certain things to the matcher are usually
called pattems. Note that, for o , 3 match expression whose arg ts are
not list expressions warks just like an "=" expression. Thus,

2 matches 3 >
** false>

"foo” matches "foo" ==>
** qroe>

s e wakder avd
{:Wowsawaﬂ e replt

- As we have seen, the Popll matcher can have useful side-cffects. In some cases we
may know that a list will definitely match a pattem but want to obtain the side-effects
of the match anyway. In this case we can use a command "-->" which is called the
“matcher arrow”. An expression featuring the matcher arrow between two list expres-
sions works just like a match expression except that it does not have a value. Thus

teh

~The

arow

{foo 23] ~> [?mine:is_silly_word =];
I
gets the word "silly” assigned to the vaziable called "mine”.

mine ==>
- ‘my \

‘!,’mu‘vdy. we could nse the matcher amrow 1o assign values to the vaziables called
*minie” and "yours" simultaneously. .

{1 2} => [?mine ?yours];

mine =>
O‘l

yours ==>
2

— The datat

- As has already been shown, Popl1 is a good language for dealing with list structurcs.
Bmuse,pmyamswﬂloﬁmneedwmupmdthmpmassmmydﬂmmhm the
hngmgepmv:desagmenlpheemwhxchhnscanbenmednndawtssed.'lhuu
called the "database™. In fact the database is itself a list but normally, the lists that are
of interest arc the ones which are in the database list. Popll provides simple com-
mands for adding lists into the database, for taking them out and for finding all exarm-
plsofhslswh.\chmuchacmmnpam To create a new database from scratch we
can use an ordinary list expression and an assignment; e.g.

[{1 2 3] [foo bang] [noddy bigears]] -> database;

The nomnal way of adding lists into the database list, involves using a Popl1 cam-
mnd called "add”. An "add" command consists of the word "add" followed by a list
‘pression appearing between round brackets.

[] «> database;
2dd([Chxs Thomton Brighton Sussex]);

- Thlis causes the list in brackets to be added to the database list (wlﬁéh is initialised to
be an empty list). Since the database list is stored in 2 variable called "database”, we
can print out the coatents of the database using the print arrow in the usual way.

database ==>
*# [[Chris Thomton Brighton Sussex]]

We can 2dd more lists by executing a sequence of "add” commands; eig.

add([Fred Bloggs Lewes Sussex]); ' '
add([Simple Simon Dover Kent]);
add([Margaret Thatcher London]);
add([John Smith Brighton Sussex]);

- Present

-Weunnsethebmh-m"pmmt function to test whether there is a list in the data-
basc which hes a p ‘The value of a call on “present” is <true> if there
ulhnmthedlubuemtchmgthepampvmuﬁmmpugmddnh»ahme.
Thus

present([== Brighton Sussex]) m=>
** ctrue>

present([== Surrey]) ==>
** cfalse>

If we want to check that the database contains & set of pattems then we can use the
function "allpresent”, thus.

allpresent({[Chris Thomton ==](Fred Bloggs ==]]) =>
** rue>

w h

- F

- Another very useful command is "foreach”. This is Jike “for™ except that instead of
ncnungomevuydanemofnhsgnmu over every element of the database
which matches a certain pattern. Every time it finds a match, it puts the list in question
into a special varisble called "it". Thus

foreach [= Brighton Sussex] do it ==> endforeach;
*+ [John Smith Brighton Sussex]}
#% [Chris Thomton Brighton Sussex]

foreach [== Sussex] do it => endfareach;
*+ [John Smith Brighton Sussex]

** [Fred Bloggs Lewes Sussex]

*& [Chris Thomton Brighton Sussex]

If we want the "fareach” command 1o iterate over the sublists of same other list we can
use a command of the form

foreach <patiern> in <other list> do <commands> endforeach;

- Note that there is version of "present” called "isin™ which works for otdinuy lists.
This is actually an op wr Jike " hes™; ions involving the "isin" operator
have the value <true> or <false> depc\dmg wbethcr the list (Le. the value of the list
expression) which appears on the right can be matched with one of the sublists of the
list which appears on the left. Thos,

[=2=]isin [[4 5 6][7 8 9][1 23]] =>
** <true>

- Tracing

- There is a command which tells Popl1 to print out informaticn each time a procedure
is called. In the case where a procedure calls itself recursively, this printing can be
very helpful.

To ask for information to be printed out every time "factoral” is called do
trace factoral;

- This is referred to s "tracing” the function.
factorial(4) =>

>factorial 4
1>factorial 3
11>factorial 2
I1!>factorial 1
Ill<factorial 1
<factorial 2
I<factorial 6
<factorial 24
=24

- Once we have traced a function Popl1 responds to calls on that function by printing
out certzin information. When we type

factorial(4)
Popl1 prints out

> factorial 4
- The ">" indicates that Popl1 is starting to evaluate 2 call, the word is just the name
of the called function, and any items which appear after are just the inputs which have
been provided in the call If in the process of evaluating the call, a new call on a func-

tion is made, then Popl1 acts virtually the same way except it precedes all the printing
with an exclamation mark. This indicates that the new call is nested inside the original

call. For each Jevel of nesting we get onc morc exclamation mark.

- If ever we want to stop Popl1 printing our information about function calls we can
use the “untrace™ command. This is handled in exactly the same way as the “trace”
command: we type the word "nntrace” followed by one or more function names.
Pop11 then tums tracing off for these functions; i.e., it stops pmducmg trace output
every time they are called.

~ Showtr

- The trace feature allows us to display the structure of a sequence of nested function
calls. Popll also provides a useful feature which allows us to display and inspect the
structure of a list. As was noted abowe, lists can contain lists as elements. These nested
lists can contain other lists, which can contain still mare lists. If we have such a struc-
ture we can see what it looks like by using a Popl1 command called "showtree”. This
command simply creates a graphic description in which the nesting structure is shown
nttxeemcmformsmsthnwmbwomeobwws,tbcmndwaysdnwn
upsnd:-down with its root sticking wp in the air. Note that, in most nnplemmuncu, to
make the "showtree™ command available we need 1o type a special "lib" command as
follows.

lib showtree;
[foo
1 1
ol e S | \\sw‘f,%
2o e
] :
LI
' |pang| |ore]
= |
@ 51
) Iding| kbang |two]
b Wl

A possible interaction using the "showtree™ command is shown above.

~ Readline

- Another useful function which is bailtin to Popl1 is "readline”. This takes no inputs
at all. When it is called it prints out 2 single question mark and then makes Popl1 wait
until you type something. It lets you type in whatever you want but whea you press the
<RETURN> key the function collects up all the words which you have typed and
yetums them in a list as the result of the original call on "readline™. Thus we can type

readline() -> mine;
7 here are a few random words

mine =>
** [here are 2 few random words]

to something or not. In this case we can use the built-in function "yesno". This takes
list as input. It prints out the list, and then calls "readline” to read the user’s response.
If the user responds either with "yes™ or "no", the "yesno” function returns <true> or
<false> respectively. If the user types anything other than "yes”™ or "no" the function
s out & complaint and goes through the whole process again. It wxll keep daing
¥, until the user types either a "yes™ or a "no". Thus

-Qni\edimwewillwmnouse'md]ine"inordumﬁndomwhcthetheusaapj/

== Tutarial excrcise (for tutorial in week 2) ~-———-

To do these exercises you will find it useful to read up to the end of chapter
3 of Barrett, Ramsay & Sloman (BRS) OR read to the end of chapter 3 of TEACH
PRIMER (POPLOG teach file) or to the end of chapter 3 of Laventhol

1. Unng enmples explain the diffi in gb the following

op S g o g, o ek frowe precaduve |
@) -> (i) => (i) ->> (v) ==> (v) - (vx) (vu)>

prin e)p/m . .
2. Explain the diffc the following five obj

i SMW AU Co~ woatly
) "a" (i) "2’ (i) ‘a*) a (V) [a] (k.

3. What is the difference between in meaning of the following three
expressions
a 1
M1+2*3G0)(1+2)*3GH)1+(2*3)

4. Explain the difference between the following eight

(including MISHAPS if any)

) Cyk (1)) sqierl _
gl e D s2) 0 s
v) 5 Vi, vii) 5q viii) sqrt
Miblr hgsded, NS pmedure zot?

5. What do each of the followmg twelve mean? If any are incarrect, explain
why. (If you know what MISHAP message is created in 2 particular case, explain

MspAced EALESon (164

that too.)
@ 44->fred; — Hecleses ﬁfd 4“
Gi) 44 ->fred; w5t Eplyuter))
(i) 44 ->fred; SW(d«r il avy«m"rmﬂ'
Gv) sqr(49) -> maryjane; 7,(“(:,,, lncagjéve = 3.0
) &qri(49)-> maryjane;
(vi) sqn(
49
»>
maryjane

Y0
(i) sqridyomary e MAGSig o
(viii) sqn(49) ->mary_jane; (lgclas w/u.{e waa, Jewv

?,;) zn("%;mry jane; < com'mmj alt b sou el epdaler
X, -> "fred” o powdwe 2
(xi) fred ->36; ‘ WMM% eﬁ’m"‘“ Yy -’)d-»
(xii) 7->sqn(49);

== Other i

1: Simple pr

For these exercises you will need a telephone list in the following
general form, possibly with further entries:

[(mary jones] 479625 [fred smith] 249371 [mike fret) 567923] -> telephones;

1. Write four different versions of a procedure named print_phonelist that
takes a telephone list as argument and prints out on 2 separate line each
person’s name and their telephone mumber. The procedure should not retum a
result. The four versions should make use of:

(i) repeat ... times ... endrepeat (i) for ... in ... do ... endfor

(iii) until ... do ... enduntil (iv) while ... do ... endwhile

/2. Write two different versions of a procedure get_name that given a telephone

ymo([do you agree that the world 3s flat?]) -> mine;

** [do you agree that the world is flat 7]

7 what 2 stupid question .

** [please answer either yes or no}

** [do you agree that the world is flat 7]

71 would prefer not to

*# [please answer cither yes or no}

** (do you agree that the world is flat 7]

7 ok, yes

** [please answer either yes ar no] !

** [do you agree that the world is flat 7}~ '

Tyes
X ‘

| |

mine ==>

»e <ane>

: | v

o

-4-

number and telephone list as arguments retums the corresponding name as its
result e.g.

get_name(249371 telephones) =>
[fred smith]

One version should use (i) the matcher, the other (ii) any looping construct.

3. Write a procedure named get_first_name that expects the same arguments as
get_name (in Question 2) but simply retums the person’s first name. The new
procedure should call get_name as a sub-procedure.

4. To demonstrate the idea of "garbage in garbage out" write a procedure named
average that takes a single argument, a telephone list, and retums the

arithmetic average (to the nearest whole number) of the telephone numbers it
finds!

5. Write a procedure named find_average_person that takes a telephone list as
argument and retums either the name of the first person who happens 10 have
the same telephone numbser as the average, or if such a person camot be found
retums the list {no luck] as its result.

6. Write a procedure named get_nums of no arguments that makes use of readline
to interactively build up a telephone list in the form above and when complete
retum it as its result. When the user types "no more” it should stop e.g.

C ¥
Ve
...—-n £
get_nums() -> newlist;
** (name)
7 mary haddock
** [number] :
712345 ’
** [name] !
7 jack sprat
** [number]
12222
L] (mme]
7 no more
newlist =>
*# [jack sprat] 22222 [mary haddock] 12345]

== Other exercises 2: Using the database

For the following exercises you will need stare telephone entries in the,
POP-11 database. Each entry should be of the following general form

[t of p

c,

,][anﬂpﬂuna]p(]lephone b h

-‘>][<in: >])

sy jonesfemale 477238 MAPS]{welding yogs dnce axchery]
* {[fred alfred smith)[male 345262 COGS][yoga cooking prognnnniing]]
™ sk higin{mle no_phone EAPS] dance i ces]
* [[susan augustina lovise bloggs][female 12345 COGS][football]]

‘/1. Create 2 POP-11 database with at least 10 such telephone entges, either by
assigning a list containing sub-lists as above 10 the variable database, or by
.'mg the procedure add or the procedure alladd.

2. Write a procedurc show_details that takes two arguments namely gender and
school. The procedure should pnm o all the entries in the database, one
v per line, which have both the given gender and the given school. e.g. '

show_dctails("male”,"COGS");
** [[fred alfred smith][male 345262 COGS][yoga cooking pmgranmng]]

3. Wite a procedure add_clients that prompts the user for details of a new
client, checks to see if the client’s name is not already in the database, |

/pranpu for the geader, telephone numbx hool and i and then adds
the entry to the database. The procedure should loop until the user types
nomore in response to the request for a new client name. e.g.

add_clients(); -

** [what is the name of the next client]

? mary jones

** [we already have details of this person]

*# [what is the name of the next client]

? mark brown

** [what is the gender of mark brown]

7 male

*¢ [what is the telephone number of mark brown]

734567

** [what is the school of mark brown]

7 AFRAS

S* [what are the interests of mark brown]
ang_gliding raffia reading

“# [what is the name of the next client]

7 nomore

Check that your procedure adds new entries to the database in the correct
form. '

4. Write a procedure called find_friend that takes a list ofimerw.sasi;:s
only argument and prints out, one per line, every entry in the database that
has at least onc interest in common with the list supplied e.g. '

find_friend([food yoga knitting]);
** [mary jones 477238}

[fred alfred smith 345262

** [jack higgins no_phonc]

'S. Wiite & procedure called pairs that prints out the names of every |
compatible pair of persons in the database. To be compatible each person of a
pair must have at Jeast one interest in common with the other person. A
person cannot form pair with him/hezself. e.g.

pairs(;

** [mary jones AND fred alfred smith]
*# [mary jones AND jack higgins]

** [fred alfred smith AND mary jones]
** [jack higgins AND mary jones]

v

-5.

== Other exercises 3; Writing recursive procedures --

1. () Write a recursive procedure called count_down that given an
integer as argument counts down from that integer to O e.g.

count_down(4);
- 4
% 3
. 2
28 1
s

(i) By adjusting count_down make a nev:v procedure count_down_up which first
counts down to 0 and up from 0 to the given numbex.

2. Write a recursive procedure named i that takes two lists as
arguments and returns another list which contains only those elements which
occur in both the input lists, If there are no such elements the procedure
should retum []. e.g.

intersect([tom dick harry],[mary susan jane]) =>

intersect(fabed ef],[efga]) =>
**[aef]

3. Write a ive proced d check that takes an arbitrarily

deeply nested list as its argument. The procedure should retum true if there
is any integer anywhere in any of the lists or sub-lists and otherwise return
false. e.g.

check([a [b ¢ [[e f]lg] hi)) =>
** False>
check([a b c [[ef]}5] hi)) =>

** arue>

4. Write 3 versions of a procedure called cubeall which takes a list of
integers as its argument and retums 2 list containing the cubes of
all the numbers e.g.

cubeall((4 26 1]) =>
**[6482161)
v v

(i) using maplist (ii) using recursion (iii) using iteration

5. Adjust your answer to question 8 to produce a recursi d
named censor. It should take the same kind of ugumem as check but
rather than return simply true or false, it should retum the nested

list that it was given with any integers replaced by the word
"censored”. e.g.

check([a [b ¢ [[ef]lg] hi]) =>
**fabcllefl]ghi)

check({a [b ¢ [[99 f115] hi]) =>

*# [4 [b c [[censored f]] censored] h i}

