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Expert Systems & Knowledge Acquisition: Orientation

Chris Thomnton — January 11, 1989

-~ Covemge

The colrsc will cover some peripheral topics in expert systems and look at the three
main techniques for automatic knowledge acquisition.

- Assessment

One practical (worth 20%) and one exam (worth 80%).

- Timetable

Lectures: Tuesdays and Thursdays 2-00, F10,

Tutorials: Thursdays, 1-(2, E6

wk lecture 1 lecture 2 oxorcise due
1 orientation popll (1)
axprassions
& commands
2 popll (2) mycin-like
procedures system
popll
3 manual information
knowledge theory and the
acquisition expert system
. . 4 intro. to the classification
knowle algorithm
k acquisition
—
5 implementation version spaces
of classification, dntngaé].imintation
windowing a.lqorithm

6. focussin .
set practical-1

the aq algorithm

7 the aqll conceptual ... .
family clusr.eri.nq .

8 unimen ebl submit
. practical-1

9 lax the problem of

abstract classes

— Topics

es0l
- MODUmON, Definitions of an Expert System, Distinctive features

es02

-- POP11 PROGRAMMING 1 (expressions and commands), Popll references,
Statements, expressions and commands, Numerieal expressions and simple commands,
Functions, Varables, Assignments, Boolean expressions, Word expressions, List
expressions, Single hats, Double hats, List functions, Complex commands, Condition-
ale_The repeat command, The quitloop command, The while and until commands, The

7 mmand, nextloop v. quitloop, Using loops to construct lists
es03

-- POP11 PROGRAMMING 2 (procedures), define, retum, Recursion, Local vari-

ables, Applist, Maplist, Syssort, Matching, Restrction procedures, Restriction pro-
cedures ‘can have side-effects, Integer restrictions, The matcher arow, The database,
Preseat, Foreach, Tracing, Showtres, Readline

es04

== IMPLEMENTING A MYCIN-LIKE SYSTEM, Fuzzy sct theory, Seiting up the
knowledge-baso, Implementing the inference engine, Implementing certainty-factors,
Forwards or backwards, Reading, Excrcise

es05
-- MANUAL KNOWLEDGE ACQUISITION, Stages of KA (altemative version),
Some rules of thumb in KA

306 ' y
-- INFORMATION THEORY, Uncertainty reduction, Measuring uncertainty, The
additive property of information, The link with successive halving, Entropy, Informa-
tion and content, Information and knowledge

es07

-- INTRO, TO AUTOMATIC KNOWLEDGE ACQUISITION, Why not just use
statistics?, Bayes theorem, Problems with Bayesian statistics, Machine Leaming,
Expentisg as classification, Informal v. coupled representations, The neighbourhood
representation scheme (NR) |

cs08
-- INDUCTION OF DECISION TREES, Classical concepts

-1-

g A i A T TR e T

es(9
- ID3, The infarmation-theoretic heuristic, Minising the entropy of the distibution

eslQ

‘= VERSION SPACES AND CANDIDATE ELIMINATION, The need for a richer
description language, Generalised descriptions, Generality orderings, Version spaces,
The Candidate-Elimination algorithm, Tree-based description languages

esll
- FOCUSSING

csl2 .

-~ THE AQ ALGORITHM, The disjunctive-concept problem, Multiple-
neighbouthood representations, Leaming disjunctive concepts using Focussing/CE,
Multiple convergence, Least disjunctions, The AQ algorithm

esld
- DISCRIMINATION RULES

esld
— CONCEPTUAL CLUSTERING

esl5
- UNIMEM

eslé .
-~ EXPLANATION-BASED LEARNING, EBL in theory, EBL in practice

esl7
- THE LEX SYSTEM, Version space heuristics, Processing eycle in LEX, Problems
with EBL

csl8
- THE PROBLEM OF ABSTRACT G_ASSES
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Expert Systems & Knowledge Acquisition

Chris Thatnton = January 16, 1989
~ IMPLEMENTING A MYCIN-LIKE SYSTEM —ssomer—=es

Mycin-like expert systems
ordinary backwards-reasoning
+ query-the-user
+ explanations ;
+ canned-text diagnoses / 1
+ certainty factors

- Mycin is 8 backwards-reasoning, goal-driven expert system which ng diag-
noses (and advice on treatment) for some infectious diseases, Rules have certainty fac-
tors associated with them.

The lecture will look at & simple, Popl1 implementation.

— Certainty-factors: some background -~

A major problem in implementing a Mycin-like system is working out how to cope
with certainty factors. Fuzzy set theory (Zadeh 1965) states that, for ordinary conjunc-
tive inference rules the certainty of & given conclusion is just the minimum of the cer-
tainties of the "premises”

— This seems to make reasonsbly good inmitive sense. If our cevtainty that the pressurc
is high is 0.6, and our certainty that the clonds are alto-stratus is 0.5, then it seems
quite acceptable 1o say that our certainty that the pressurc is high and that the clouds
arc alio-stratus is the lesser of the two figures, namely 0.5.

" ~aI- can we compite overall certainty of a goal given N different ways of satisfying

= )
- Shortliffe, in his work on the MYCIN system (Shortiffe, 1976), proposed the follow-
ing mezhod. If H is 3 goal which has previously been shown to have cestainty C1, then,
if we find 3 way of showing that it also has a certinty C2 (using & different proof wee),
then the overall centainty of His '

C1 +C2-(C1 * C2) if C1 and C2 are both positive
Cl +C2+ (C1 * C2) if C1 and C2 arc both negative
(C1 +C2) / (1 - min(abs(C1), abs(C2))) if C1 and C2 have different signs

- These rules seem 1o provide the sort of effect we are looking for. For example in the
case where we have derived two different levels of (positive) certainty fora given con-
dusion we would like 1o somehow add them together 50 as 1o get an increased Jevel
oversll But we cannot just add them together. In general this will give us a probability
that exceeds 1. Shortliffe’s first nule above allows them to be added together in a wey
which will increasé the level of certainty but not cause it 1o exceed 1. The other rules
take care of the other cases in a similar way.

- Unfortunately, it is not clear whether Shortliffe’s nules can be given any principled
foundation. As Forsyth notes (Farsyth, The Architecture of Expert Systems 1984, p.
56) "Shortliffe docs atempt a theoretical justification for these methods, but in my
view the rationale is somewhat shakey. The important point is that this sct of tech-
niques has served well in a significant program, MYCIN, and its successoms.”

‘wmg up the knowledge-base —mrm-mm-m——-

Use: Popl 1 database. Each entry is 2 nule associated with a certainty value, Rules taken
from (Ramsay Barrett 1987, chapter 3).

{ [{+ason winter] 1 [month december]]
[[s=ason winter] 1 [month janvary]]
[[$eason winter] 0.9 [month february]]
[[season spring] (1.7 [month march]]
[[season spring] 0.9 [month april]]
[[season spring] 0.6 [month may]}
{[season summer] 0.8 [month june]]
[[season surumer] 1 [month july]]
[[season summez] 1 [month august]]
[fseason antumn) 0.8 [month september]]
[[season autumn] 0.7 [moath october]]
[{season aumumn) 0.6 [month november]]
[[pressure high] 0.6 [weather -_yesterday good]
[stability_of_the_weather stable]]

[[pressurc high) 0.9 [clouds high]]
[[pressure high] 0.9 [clouds none])
[{temp cold) 0.9 [season winter] [pressure high]]
{{iemp cold] 0.6 [scason summer] [pressure low]]
[[wind none] 0.3 [pressure high]]
[wind <ast] 0.3 [pressure high]]

. [[wind west} 0.6 [pressure low]]
{[temp warm]-0.8 [wind south]]

{liemp cold) 0.9 [wind east] [clouds none)
[season wintex]]

[{temp wanm]
0.9 [wind none] [pressure high] [scasan summex]]
{[rain yes] 0.4 [whereabouts west]]
[(temp cold] 0.4 [whereabouts north]}
{[rain no) 0.7 [whereabouts east]]
[rain yes] 0.3 [season spring] [clouds low]]
{irain yes) 0.3 [season spring] [clouds bighl]
[{temp warm] 0.7 [season summer]]
[[zain yes] 0.2 [scason summex] [temp warm]]
[[rain yes] 0.6 [pressure Jow]]
[[rain yes] 0.6 [wind west]]
[{rain yes) 0.8 [clonds low]]
[{temp cold] 0.8 [scason autumn] [clouds none]]
[{temp cold] 0.7 [season winter]]

]-> database;

- The second-to-last rule here captures the proposition that the probability of it being
cold, given the fact that it is aummn and the fact that there are no clouds is quite high
0.8). .

- Many other itions are captured by this rulebase; e.g. the fact that it rains more
in the west, the fact that it is colder in the north and the fact that high pressure and no
wind arc usuzlly associated with warm weather.

-- Implementing the inference engine —-—————
NB. rules are of the form

[<goal> w}f, <subgoall> <subgoal2>.]
rather than

[<goal> <subgoall> -csuﬁgle:» J

- must implement backwards-reasoning procedure 0 a5 10 take account of the fact that
the rules are written left to right. .

First, implement an inferencing procedure which ignores certainty values.

-Givmsmgoﬂﬂﬁspmdmshouldchwkthemlebasemmifthmmmynﬂa
(ar facts) which might satisfy that goal, and if not, asks the nser whether the goal can
be assumed to be "given by assumption”. This invelves calling the database function
"present” to check whezher the desired entry is present and then, if it is not, calling the
interactive function "yesno".

define Hst_to_string(l);
1><"

enddefine;

define snﬂsfy[ﬁt-:;ls);

vars poil © ig]oalssubnﬂsmmhnunc;
i es [7goal ?other_goals]) then /+ goals = [} */

elseif present([”) ==]} thi
fm?fwi: Egmimlﬂ; ?;:':]%go?l.ls] do)
58 &‘ - E&e

Ll s

other_tree) then
) ~mree] “other_tree])

mdfoma’ch.;
clscif yesnof{is “(goal(2)) the value of “(goal(1))])
and (satisfy(other_goals) —>> other_tree

d?}“-‘m(%fﬁﬂ._m_slﬁng(gmn) USER_RESPONSE] “other_tree])
endif:

retum(false);
enddefine;

- Note that we have introduced & call on the function list_to_string” into the Tist
expressions which are remmed by the function. We have to do this for the same reason
we had to do it in Chapter 2: goals in this scenario are lists not words and this means
that if we went to get "showtree” 10 print out our search spaces propealy, we have to
convert all goals (i.&. all nodes) to words inside the inference engine.

- Note also that in the case where the rulebase contairis no mle which will enable the
satisfaction of the given goal, the function "yesno” is called. In effect, the function
asks the user whether the goal can be 2ssumed to be satisfied. If the user responds with
a "yes", the "yesno” function retums <true> and the overall result is a list with the
word "USER_RESPONSE" substituted in for the solution tree.

- Testing the inference engine on the goal [rain yes] produces the following behaviour.
(Words typed after the *?" prompt are user input.)

VATE [Tee;
satisfy([[rain yes]]) -> tree;

>satisfy [[rain yes]]

t>satisfy [[whereabouts west]]

*# [ic west the value of wherezbouts)
?no




’E’r

<satisfy <false>
I>satisfy [[season spring] [clouds low]]
M>satisfy [[month march]]
*# [is march the value of month]
Tno
Ylesarisfy <false>
11>satisfy [[month april]]
*# [ig april the value of month]
7yes
M>eatisfy [
W<satisfy ]
1l<satisfy [[month april USER_RESPONSE]]
1>satisfy [[clouds low]]
## iz Jow the-value of clouds]
7 yes
1>gatisfy [}
1l<sauisfy [}
MN<satisfy [[clouds low USER_RESPONSE]]
I-<satisfy [[scason spring [month april
USER_RESPONSE]] [clouds low USER_RESPONSE]]
1>satisfy 1
I<satisfy ]
<satisfy [[rain yes [scason spring
[month april USER_RESPONSE])
[clouds low USER_RESPONSE]]] i

- We assigned the result of this call into the variable. "tree”. Thus we can get the tree
printed out using the "showtree” command, .

showtree(hd(tree));

.“ |rain yes|
- |

I |

|clouds low |

|season spring|

' d
|month april] USER RESPONSE

USER RLPDHSE

- In a libersl reading of this solution tree we might say that the inference engine
showed that it is rining by showing that it is springtime and the clouds arc low. It
showed that it is springtime by showing that it is april. And it showed that it is aprl
and the clonds are low by asking the user. '

— Implementing certainty-factors
- We can now concentrate on the taking care of the certainty factors. This involves
arranging things such that the inference engine can combine centzinty values together
in & manner which reflects the dictates of Fuzzy set theory (and the implementation of
the MYCIN program).

- The approach here involves changing the fi such that 1 d of retuming the

solution tree (proof tree) for the input goals (conclusions), it returns a certainty value

@ 1o In the case where the function obtains one certainty value ¢f for the subgoals

e current goal, and another 2 for all the remaining goals, it should simply mmulti-

~ply ¢1 by the cenainty factar for the search rule in question and then rem the

minimum of the result and ¢2. This will lead to a comect application of the Fuzzy set
theory formulae.

- Obviously, in the case where & goal is satisfied by querying the user, the goal can be
assurhed 1o have been satisfied with perfect certainty; ie. with certainty valne of 1.
The overall certainty value 1o be retumed is therefore just the ¢2 value, ie. the cer-
tainty for the remaining goals.

define centainty_of(goals); '
oals tree other_treef ¢ ¢l c2 certainties;

vars goal subg g
if not(goﬁg matches [Jgoal 7lother_goals]) thea /# gaols = [ #/
elseif prmmt(g'&glod ==]) then

foreach ["goal 7¢ 77subgoals] do

if (certainty_of(subgoals) —»> ¢l)
_and (centainty_of(other_goals) —>> c2) then
return(min(cl * ¢, c )]
dsgfd?m&h ~(goal(2)) the value of “(goal(1))])
el ool o e Vo ) e
remm(cl)

endily
retumn(false);
enddefine;

e

Testing this function on the same goal leads 10 the following behaviour. Note that the
user responses are identical.

certainty_of([[min yes])) ==

>cenainty_ef [rain yes])
I>centsinty_of [[whereabouts west]]
#* [is west the value of whereabouts)
Tno

t<cerxinty_of <false>
I>certainty_of [[season spring] [clouds low]]
>centainty_of [[month march]]

*# [is march the value of month]
7no

{l<certainty_of <false>
1>certainty_of [[month apil])

#+ [i5 april the value of month]

7 yes

Hi>certainty_af 1

!l <certainty_of 1

ll<certainty_of 1

l>certainty_of [[clouds low]]

#+ [is Jow the value of clouds]
7yes

>certainty_of []

1l <certainty_of 1

Vl<certainty_of 1

I<certainty_of 0.9

I>centainty_of [1

|<cenainty_of 1

<certainty_of 0.27

(.27

- Thus, the [rain yes] conclusion is derived with a certainty of 0.27, ie. with a fairly
low degree of certainty given the evidence provided.

— Forwards or backwards —————-——e—-mm-—-

- The search strategy employed by MYCIN (and the function constructed above)
employs backwards ing; ie. I ing backwards from goals to known facts.
This is inevitable given the assumption that all facts are provided directly by the user
in query respounses. If there are no facts in the rulebase, then there is no basis on which
a forwards-chaining scarch cem be initisted. Howeves, atthoagh the interactive
behaviour of MYCIN is incompatible with forwards-chaining search, the probabilistic
aspect of its behaviour is not. It is quite possible for a forwards-chaining inference
engine to implement the Fuzzy set mules in exactly the same way as the backwards-
reasoning function.

There is an interesting control strategy which combines forwards-chaining and
backwards-reasoning, A system using this strategy might initially accept some basic
facts (e.g. symploms). It would then work bottom-up until some hypotheses have been
developed. From these hypotheses it could work top-down so 45 to generate a new set
of primitive goals which can be presented as queries to the patient The patient’s
answers constitute satisfaction of the primitive goals; thus another phase of botiom-up
search can begin. Eventually, this bi-directional strategy will tend to isolate a single
high-level conclusion representing & diagnosis.

This strategy is adopted by Intemnist
-- Reading

The main reference for MYCIN is (Shortliffe, 1976). Chapter 3 or Ramsay and Barrett
(1987) provides a discussion of, and a POP-11 implementation for a MYCIN-like sys-
tem. Charnizk and McDemoit (1985, chapter 8) provide an excellent discussion of
ways of dealing with uncertzinty in expen systems. Volume 2 of the Al handbook
(Barr Feigenbaum 1982) covess most of the more important expert sysiems. Forsyth
(Forsyth, The Architecture of Expert Systems 1984, pp. 51-62) discusses the process-
ing of certainty factors.




"Expert Systems & Knowledge Acquisition: 5

Chris Thomton — January 20, 1989

~ MANUAL KNOWLEDGE ACQUISITION
Knowledge acquisition is difficult

. seldom descrbed in any detail (cf. Feigenbaum & McCorduck 1984). '
This is the "botileneck™ in expent systems development :

== Definition

Knowledge acquisition is the transfer and transformation of problem-golving expertise
from some "knowledge source” to a program.

Knowledge sequisition is not the same thing as asking an expett to explain what hefshe
knows, i

Most expen knowledge is
- unconscious
- heuristic
- imprecise
Knowledge acquisition is not the same as "finding the rules”

= Typical MYCIN nile

IF 1) the stain of the organism is gramneg, and
__7) the marphology of the organism is rod, and
.'. the acrobicity of the organism is aerobic

THEN: there is strongly suggestive evidence (0.8) that the
class of the organism is enterobacteriaceac

1980 version of MYCIN has:
13 context types each with 13 properties
450 rules classified into types '
200 clinical parameters (attributes) classified

into categorics, each with 13 properties

="The 3 stages of knowledge acquisition (M. Bramer) ——

1. Determine structure of the domain

2. Determine first working system

3, testing, debugging and iterative refinement of system

NB. gtages are not necessarily separate

= Stage 1 T
1. Find relevant entities
{c.g. patients, cultures, organisms, drugs)

i relations amongst them
g- cach culture has 1 ar more associated organisms)

2. Find the attributes of each eatity
(c.g. name, scx, age, allergies, diagnosis - for patieat
site - for cultures
identity, acrobicity - for organisms)
& their possible valnes

3. Break the reasoning down into stages, if possible
(e-g. find whether infection is "significant”, identify
infecting organism, select appropriate treatments,
select best treatment for patient)

== Problems
- unenthusiastic expert

- hMlc expert

- hc:k of communication between knowledge engineer and expert
- lack of understanding of field by knowledge engineer

- the "inarticulate” expert

- expert can be over-infiuenced by initial choice of represeatation

== Stage 2 - deternine domain nules —-
Rules need s structure to fit into
- the more accurate the better
BUT NB, stage 2 may reveal that the domain structure needs refining
Eliciting knowledge
- interview

- observational techmique

==Using interviews
Experts are usvally bad at explaining, rather than daing
Ask specific guestions to elicit specific information
Avaid
- general thearising by expest
- vague, unstructured questions
But also avoid
- *ovenstructured” interview, Timposing” the initial
view of the domeain structure on the expert
== Psychological evidence ——-
Psychological studies of interviewing show
- "oncued recall” is patticularly hard +g‘ivi.ngmc: helps, but
- "recognition” is much more accurate and camplete; therefore ask "recognition-style”
questions if possible
- giving action required when specified conditions hold is much easier than vice versa

== Observation

- recording expert at work (may take considerable time)

- recording of pmtmoﬁ

- "critical incident analysis® (specific previous incidents)

- setting artificial problems (working through typical cases, questioning about reason-
ing and proposed actions)

Othertectut

- Repertary grid analysis
- Comparative case analysis

— Estimating probabilities

People are very bad at estimating probabilities

Indirect methods are better (e.g. classifying on S-paint scale annotated with comments)
"Delusion of accuracy” problem (c.g. 100-point scalc)

Using probabilities at 21l is suspect

== Stage 3 - testing, debuggging & iterative refinement -
Involve expert in criticism/debugging, as aid to fusther knowledge acquisition and

motivation

Importance of
- building and testing mitial system early

- good user interface in early versions




W= Awmomatic aids to refinement

- explanation facility

- consistency cé.:n:king

- autamatic checking of pre-slored cases
- inductive inference

etc.

— Stages of KA (altemative version) —
{F&gﬁb&m & MecCorduck 1984)

1. persuade human expert to agree to devots the considerable time it will take to "have
his mind mined"”

2. Tmmerse seIf in field of expestisc (read college textboaks, articles and other back-
ground material); pick up jargon ete.

3. At first interview ask expert to describe what he thinks he does; also - ask him how
he thinks he solves problems. (Urge expert to choose a fairly difficult problem to
examine. Should take a few hours to solve.) .

4, Bring information back to other members of the team. Allow knowledge engineer
1o decide which problem solving framework to use.

5. Get initial system up and rumning. Use it to get expert interested in project.

6. Record expert's reactions to behaviours of prototype system.

‘T‘cﬂs on mistakes, Get expent to walk through problem verbalising each step.
WP, v hether sicps are justified by data which is actually attendedto

8. Construct second version of system.

*One of the diffcultics of writing knowledge based programs is that at least two par-
ties are constantly shifiing their points of view: the domain expert and the knowledge
engineer, As the knowledge in the program accumulates ahd the problem becomes
better clearer, the knowledge engincer may find better ways to represent and process
the knowledge. teh resulting behaviour of the program may inspixe the expert to tshift
his view of the problem, creating for the knowledge engineer further problems to be
salved. Development of expert programs involves a process of finding = workable
relationship between experts and programmers and slowly evalving a program stru-
crture that will work.” (H. Penny Nii)

— Some rules of thumb in KA

(Feigenbaum McCorduck 1984, pp. 111-112)
You can't be your own expert.

From the beginning the knowledge engineer must count on throwing efforts away.

The problem must be well-chosen. Al ... isn't ready 1o take on every problem the
world has to offer. Expert systems work best when the problem is well bounded

.)u want to do any sezious application you need to meet the expert more than half-
WP if he's had no exposure to computing your job will be that much harder.

If noae of the tools you normally use warks, build 2 new one.
Dealing with anything by facts implics uncertainty. Hearistic knowledge is not hard
and fast and cannot be treated as facmal. A weighting procedure has to be built into
the expert system to allow for expressions such as " strongly belicive that. . . or "The
evidence suggests that .
A high-performance program, or a program that will evenmally be taken over by the
expent for his own use, must have very casy ways of allowing the knowledge to be
modified so that new information can be added and out-of-date information deleted.
== KA - the state of the art — —_
1. Building expext systems is an experimental activity
?._Knlowlcdgc acquisition is a craft, not an exact science

- no established or general methodology

- litle detailed information in the literature .
3. Need to clicit "domain structure™ as well as heuristic rules

4. No clear division between stages - don"t compartmentalise

-2-

5. Don"t trust what experts say - observe in action if possible

6. Start building sysiem easdy (to put initial ideas of structure and of rules to the tesi
and to aid motivation of expert)

7. Crucial importance of iteration (involving expert) -

-bep:epnmdto:ewﬂeoﬁ,gimlsymmmullﬁm&

== KA - issues

How can a knowledge acquisition method be chosen?

. How can knowledge from different expents be cambined?

Do shells salve the problem?

==EA - where next?

Need for more research into knowledge acquisition as an activity (including compara-
tive smdies). Insights into selection of methods may be gained from:

- sysicans analysis
~ cognitive psychology
- questionaire design
-ete.
Need for & wide repertaire of shells & selection criteria

Autamatic induction of rules from examples?

== Tutarial exercise for Thursday, 26 of January
The tutarial will involve a knowledge acquisition "role-play™.

Onepmoninthegmupwi]lukethemleot’upmmmwi]lmunptw
encourage the expert to articular hisfher knowledge and then to re-express it in the
farm of & mlebase; ie, they will act as knowledge enginesrs. The main aim will 10 see
how robust the guide-lines suggested above actually are.

The "expert” should have detailed knowledge of some faidy complex mechanism (e.g.
a bicycle, computer, sewing machine etc.). Everyone should come to the tutorial
prepared to take on this role. This may invaolve some preparatary research.
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Expert Systems & Knowledge Acquisition: 6
IV THE SV A S -

" Chais Thoemton — January 20, 1989

~ INFORMATION THEORY

Expert systems work by exchanging information with the usez, Dunngt.he interaction
information is provided byﬂacmhtﬂmmdof!}mmmcum,wﬂmad informa-
tion (e.g 2 dizgnosis) is provided by the system.

Is there an information theoretic story for this exchange?
~ Uncestainty reduction

Dats originating from some "source™ can provide differing amounts ofml'omtmn o
some "receiver”.

How can this information be quantified?

A basic notion in information thu:ynthxlmfm‘mmmmbed;ﬁmd 'as uncertainty
reduction.

- Seems to make sense. Assume the receiver is some mechanism ctpablcofexpmm
ing unéertainty with respect to some particular outcame.

The more the data (henceforth "the message™) reduces the receiver's uncertainty Wt
the outcome, the mare infarmation £ must contain,

Ormustit...?
_There is a huge, ongoing debate aboot this.
Prasuring nncertainty ———————————--—-=

If information is 1o be measured in terms of uncertainty reduction, we need some way
of guantifying uncertainty reduction.

Assume the source is some process ar mechanism capable of producing any one of N
different messages (ie. outcomes) and that the a prior probability of it prmdumng [
particular message is always 1/N.

Eg. 2 folled dice is capable of coming to rest on any one of its six faces and the 2 priori
probability of it coming to rest on aoy one is just 1/6 (0.166).

- the 1 priod probability of ndamly picking & specific card from s full pack is 1/52.

Assume the receiver is some mechanism capable of seeing which cau-d is picked ran-
domly from a selection of N playing cands.

‘What is the receiver's uncertzinty with respect to the outcome?
It is obviously related to the size of N. But how?

Information theary says the convemient way of measuring the uncertainty (and there-

fore the information) is
\nverse GL wﬁm L{'J )

Le information in the message is related 1o minus the log of the 2 pnmi probability
P: message. !

I(s) = wlog2 IN

-log2(0.1) =>
*+3.32193

-log2(0.25) =>
1] 2‘0

10g2(0.8) =>
& () 321928

10g2(0.99999)=>

exty of informarion Wj:t{pe\cl(

Two main a.rgm-nml.s forusing a 'Logm:hﬂuc relationship. .
— 7 fom) \.N% L
It givés information an additive pmpc:ty

— The additiye Prop

Consider two messages 51 and s2.

P(s1) =02
P(s2)=03

P(s] &£2) =024 03 =006

fuguttrit. ok [l e
hiow tuch o receieh-
k- veaud g-uﬂﬁ@{euf

1(5;)-1032 Pi

How wuuch wovle wiit b take

-10g2(0.2) + -10g2(0.3) ==> PNAI:C[" [}*){/UGL @‘Ueu\t’ M“ fv‘lﬁ p

»s 4,05889 kg‘gm lawed = o }‘EF) oi fnncwb
10g0.06) ==> =
000 “

Sez also (Shannon & Weaver 1949, p.32)

ive halving _%

There are N equiprobable possibilities for a particular outcome.

— The link with

How much work does it take to discover which of the possibilities is the real one?
_szj clip > k5% -

\ ]
s ¢ sk ek watl
by W
¢ Wwosen
~ Entropy Gonormlies when cuents ave

- Note that the intuitive mf.erpreuum of the information cquaum invalves a transfor- AQT
mation of perspective. The receiver who assumes an & priori probability of Pi for an eq
event Ei, is re-construed as a recsiver confronted with a range of 1/Pi equiprobable
events. The receiver’s uncertainty with respect to Ei is, then, simply the amount of {7
work it would take to discover which in the range of possibilities is actally the case. -

In effect, this interpretation blurs the distinction between assuming an a prior p.&oa-
bility of Pi for an event and being confronted with 1/P{ equiprobable events. This is all

to the good, since it makes it possible to apply the information equation as .an uncer-
tainty measure in the case where the receiver is really confronted with a range of
equiprobable events. But of course the question is raised

Using successive halving (binary chop) it takes
ugzm rounded upw the nearest whole number.

[y 2(N)= Loy 2)

Information(s)
= Uncertsinty with respectto s
= The amount of "work" it takes to find out if 5 is the outcome

Jm{vf

How should we measure uncertainty in the case where the receiver is canfremted with a
range of possible events which are not equiprobable?

- To cope with this situation we need to generalise the basic equation. The basic meas- -
re states that the receiver’s uncertainty with an event Ei which has an a priori proba-

bility of Pi is simply W
X P=1
)

- 50 to calculate the overall uncenainty when there are range of possible events all hav-
ing different a priori probabilities, we simply work out the average or "expected”
uncertainty [Watzanabe, 1969].
The probability of the uncertainty being exactly

-log, Pi

is simply Pi. So to ge2 the overall (expected) uncenainty we simply multply &ll the
possible uncertainty levels by their corresponding probabilities. Thus we take the sum

)

for all i This expression makes up the right hand size of Shaonon"s generalised
eatropy of information” equation, referred 1o as the negentropy equation by Brillouin

[Brllouin, 1962]: L k/ b/ &, " [\
o Pilog. B oy, ot WKe
ZPI%P - \f\ﬂ Mk;\ Cdd

fukiopy

- Information and content -~—--—-———-———"——

Shannon (and countless other writers) have cautioned people not to confuse "informa-
tion" with "content” or "meaning”.

However, lots of people have attempted to confuse/link the two

There are at least three ways of reading Shammon’s caveat.

1. Information is & quantitative measure of content but quantitative measures cannot
1}l us anything about qualitative properties. Meani.ugf’conl.mt is a qualitative property
therefore information tells us mﬂung about meaning.

2, Infanmnnn is a qummmvs measure of something (some statstcal property,
pethaps to do with signal processing) but NOT content.

3. Content is & purely qualitative property which cannot be quantified.

{ C{,@“\’ ocCu WL\ CéCr)QC{/{’L-ui :{/
G f L;’}v Lxlphﬂluj [/ e evenk (L(Ej\,x"/o(tum\( Go(/{}

Jﬁo*‘ Tﬂmt{ﬂ.wj
eve  igncer buin 30(/5{9‘& fle woedo P lecrvan

W Ho erol dogsat Wi -




. i

1f a message has content, then it must tell the receiver something.

I it tells the receiver something then it must, in same sense, reduce the receiver's
sncensinty w.r.L some range of possibilities.

Therefore 1 is right...
But...

A receiver may not be able to estimate the 3 priori probability of & given message.
(What is the a priori probability of a specific English sentence?). :

A specific message may be given M different (possibly ovedapping) interpretations by
the recciver. If cach interpretation forms ane point in 2 space of possible (mumally
lusive) interpretations then the message has M different infarmation contents.

— Information and kmowledge

Information theory is interested in how much information is obtained by the receiver
of a message.

- It suggests that the amount of information can be calculated by looking at the
receiver's estimates for the a priori probabilities for the various possible outcomes.
Thus information theory is (fairly) neutral with respest to the status of the message
itself. I T sec & dice Jand on a particular face thea the amount of information received
is 2.584 bits even if, without my knowing it, the dice bas been fixed so that it always
lands oo the same face. L

But séme philesophers, notably Fred Dretske (1981), interested in knowledge, and
how we can be said to have knowledge of the world, have tried to adapt information
theory so as to make it say something about the relationship between the source of the
message (e.g. the world) and the receiver of the message.

pproach hére invalves talking about (i) an actual realisation of just one of & set of
~ possible outcomes and (i) the perception of same by the receiver.

When the perception perfectly matches the actual situation, information is said to have
flowed from the source to the receiver. "Noise™ (information perceived but not pro-
duced) and "Equivoeation” (information not produced) can interfere with this process.

Dretske also persues the linc that quantitative measures can tell us something about
qualitative properties. The idea scems to be to try to specify 2 particular meaning in
terms of its particular information content.

= Information and Expert systems

So what about Expert Systems?
There are various questions we can ask.
‘What is the information content of the diagnosis produced by an expert system?
This is just minus the Jog probability of the diagnosis. :
But what is the log probability of the diagnosis for the receiver? !
1t all depends on the receiver’s "knowledge”. Also, the probability may.vary during the
interaction s a result of the receiver making inferences about where the questions are
leading...

"
What is the information content of 2 single response to 2 query?
This appears o be 2 slightly more stable quantity. Provided that the user dossn’t tell
lies, the log probability of & single response is the log probability of the state of affairs
referred to in the response.

How many questions should an expert system need in order to be able to produce a
diagnosis? -

In the ideal case it should be zble to reduce the possibilities by half with each question
(cf. 20 questions), Thercfore the mumber of questions should not greatly exceed the
number of bits of information contained in the final diagnosis.

,:jw Dretske 1981

Baierlein 1971

Bar-Hillel & Caxnap 1953
Bas-Hillel 1965

Brillouin 1962

,.pﬁaﬂin 1972

Glick & Corter 1985
Jackson 1953

ones 1979
MacKay 1953
Mackay 1969

Shannon & Weaver 1949
Watanabe 1969

“Thomton, Links Between, 1988
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Chis Thoenton — January 31, 1989 i
— INTRO. TO AUTOMATIC ENOWLEDGE ACQUISITION -~

Manual knowledge acquisition is hard, for lots of reasons. In some cases, it may be
impossible.

People fecl that the solution may lie in the development of programs which automatically
acquise expen knowledge; Le. leaming programs. .

Quite a lot of work is now gaing on (cf. Bratko & Lavrac 1987). This focusses primmily
on two families of algorithms. The ID3 family (derived from the CLS system) and the
AQ family (dezived orginally from the Candidate-Eliminstion algorithm and Winston's
ARCH program). The remaining Jectures will concentrate on these two families of algo-
xithms.

— Why not just use statistics?

Isn't there an easier way to antomatically acquire expert knowledge?

Why not just use Bayesian suatistics?  \[Qy| CGW\O &M}aﬂa\ .

In the classic medical diagnosis example a certain patient P shows a symptom S and we
want'to know to what extent this evidence justifies the conclusion (Le. diagnosis) that
they have discase D. We know what the probability is of a patient showing symptorn $

given that they have disease D but not the probability of them having D given that they
are showing S. The probability information is back-to-front.

‘qus theorem

.é:yas theorem provides 8 way of transforming information relating to the probabilities
of premiscs (bits of evidence) given certain conclusions into the probabilities of conclu-
sions given certain premises. :

Take the case where we have the discase D and the sympiom S. Assume that we know
thcnmbqufpmplcwhosuﬁa&uunmdwcknwhowmypea;ﬂ.cﬁncm
overdl This means that we can work out the proportion of all people who have the
disease D and therefore the a priori probability of having D. It is just |

P(D) = <number of D suffercrs> / <aumber of people>
Am}j\ml::hltwcalsoknowthepmpmﬁm of D sufferers who show symptom S. That is to
say, we know the conditional probability of someone showing S given that they have D.

P(SID)

Now, the probability of being someone who shows S because of having I is just the pro-
bability of being someone with D multiplied by the probability of showing S because of
having D.

B(D) * P(SID)

The people who show § through having D are  subset of the et of all people who show
S. The probability of being in this subset, given the fact that you show S, is just the rato
between the number of people in the subsct and the mmmber of people in the superset
Thus the probability of showing § through having D must be

.Pgn) * P(SID) / P(S)

- This is Bayes thearem.
- Problems with Bayesian statistics ——————

- In principle, Bayes theorem provides & way of deziving probabilities for conclusions
from probabilities for premises. Thus, it provides a way of constructing the sort of
rulebase we need in order to be able to implement expext reasoning in domains where we
only have access to daia giving probabilities of premises. Unfortunately, a simple-minded
application of Bayes theorem in this sort of situation leads directly into difficulties.

- Let us continue to think about conclusions and premises in terms of discases and symp-
toms; and let us assume that we have data which show, for any asbitrary symptom, what
the probability is of showing that symptom given that the patient has some given discase
D. We would like to dezive from these data 2 rlebase in which given sets of symptoms
justify given conclusions with given certainties. In effect, we need to work out what the
probability of having some given disease is, givea that the patient has a certain set of
Eymmploms. '

Note that for each possible combination of ane symptom and one disease there is one ver-
sion of the formulz. If there are 3000 possible symptoms and 500 possible diseases, that
means over & million formulae. .

Notmally we will be interested in the conditional probability of someone having &
disease given that they arc showing several symptoms. If we stant trying o construct all
the relevant niles we will need to evaluate one version of the formula 'for all the differeat

s = &Mfe;} [éﬂmmj 53;%8!/'4

possible combinations of symptoms. In this scenario, the number of computations nesded

" 1o deal with a certain case rises very fast indeed (see Chamiak and McDemmost, 1985, pp.

-1-

461-462)

The genenl conclusion is that simple-minded exploitation of Baycsian statistics for the
purposes of automatically generating expert sysiems is not a practical proposition.

- In fact the situation it not quite as bad as it seems. I it is known that in same cases
there is no link between a given sympiomn and a givea disease (ie. if it can be assumed
that the variable representing the symptom and the varizble representing the discase arc
statistically independent), then all the formulae which try to deal with that Jink can be
dispensed with. Explu&ﬁng:ﬁsidummke&yadmnnﬁsﬁutmﬁﬁinpmpmiﬁm
again.

- Sutistical independence plays a very important role in many basic theorems in proba-
bility theory; &g the fundamental rule that the probability of two events A and B both
occuming together is just the probability of A occurring multiplied by the probability of
B occurring is anly valid if A and B arc statistically independent. If they are not statisti-
cally independent ~ if for example the occurrence of B marginally increases the a priori
probability of A - then the formula is invalid.

— Machine Learming
So, back 1o machine leaming.

First some definitions of leaming:

"Leaming denotes the chenges in the system that arc adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population more
effectively the next time.* (Simon, 1983, ML, chapter 2)

"When & computer system improves its perfformance af & given task over time, without

Te-programming, it can be said 1o have leamed something.” (Forsyth & Rads, 1986,
chapter 1)

"] eaming refers to the change in a subject’s behaviour 10 a given sitiation brought about

by his repeated experiences in that sithation, provided that the behaviour change cannot
be explained on the basis of native response Lendeacies, maturation, or temporary stales
of the subject {e.g., fatigue, drugs, etc.). (Hilgard & Bowez, 1975, p. 17).
*Learming is making useful changes in our minds.” (Minsky, The Society of Mind, 1988)

*[Learning is] ... theary formation, hypothesis formation, and inductive inference.” (Dies-
terich et al, 1982, HB3, p. 327).

"Leaming is constructing or modifying representations of what is being experienced.”
i, Und i cha

(Michalski, Understanding 1986, ML2, chapter 1) Mgk pi'fpmed LN

— Expertise as classification — CC& ﬂ)p)

We re only inerested in leaming processes which might be useful for the mtomatic con-
struction of expert sysiems.

ESs typically do some kind of diagnosis.
Diagnosis can be viewed 2s classification.

- Can view the problem of leaming expextise as the problem of leaming 1o classify data
in the correct way.

- Look at strategies for leaming representations of classes.

— Informal v. coupled representations ———————————

|representation|
|
| |
|informal| | coupled|
|
J I
|generative] |classificatoxry|

detetmlnistic pro| listic detemlnistic pro listic

ML:  Macug, lewm.éj_
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D =some data
R = representation of D

- I there is no computationsl relationship between R and D, R is an “informal” repressn-
1ation.

- If there is a computational relationship betweea R and D, R is a "coupled” represesta-
ton. ;

-If R is a computer program which generates D, R is & "generative” representation.
-lfRulpmgmuwhmhocnwﬂyc]mﬁudmudD R is a “classificatory™

:epmmtatlm

- A genenstive (ar classificatory) representation which generates (dmﬁu) D perfectly
is "deterministic”,

- A generative (or classificatary) rqxumuum which gencmates {chmﬁns) D to some
given (satisfactory) level of sccuracy is "probabilistic”.

- Thc neighbourhood representation scheme (NR) ——

The behaviour of many leaming mechanisms anhcthmglnabotnmm of the con-
struction of coupled representations of a certain type — namely nﬂ.ghbmﬂwod Tepresen-

tations™ (MRs).
Basic assumptions -

. L is the description space; i.c. the set of all possitle datz elements. Th.e'datz].mm
is 3 formal specification of L (e.g. & grammar).

D is the subset of L which we are interested in representing.

Amp]cdupmunmRmnpmgnmwhdigmwdd-mﬁﬂDmlpvad
. - ECCUTACY.

will have & declarative part (RD) and a procedural pact (RF), D is just the result of mun-
" ning RP on RD. :

R conrits a a neighbourhood representation it
- it treats the set of possible data clements as an N-dimensional space L
« defines D as the st of points enclosed in M neighbourhoods of L. -

= 'Enmp]c

]rnlg:u:: that a data element is a 2-tuple with the first clement drawn from the list [huge
vast big tiny med micro] mdtheswmddanﬂdnwnﬁmtb:.hn[moped bike jet car
prop rocket]. Possible data elements are
[huge car]
[big bike]

D is a list of 9 data elements.

vars D = [[big prop] [big car] [big moped] [med prop] [med car] [med moped] [tiny prop]
{tiny car] [tiny moped]];

== A representation for D

_IfLExunﬁgmbdul?pdammmalspwe,qu:msmmmecmt&kethefmofl

'I of 2-mples: '

vars RD = [{[tiny moped] [big preplll; ;

define interpret (RD)
‘vars X wr?rrnicro tiny med big huge vast],
y = [bike moped car prop jet rocket], )
s v 51 vl 52 v2 result = []7 )
RD —> [["sl 2vl] [?52 2v2]1;
for s in % do

m‘??ﬁfm rop) [blg car) [big moped)
*» ro) car g mope
& l? gpedl [tiny prop)

RPgenerate (RD) = D ==>
** <true>

(med
[tiny catog: Itiny moped})

define RPclassif{ (input, RD};
return (member (input, RPqenerate(RD}H
enddefine;

npclassifyt[big car], RD) ==>
s <true>

RPclassify([tiny jet], RD) ==>
*+ <false>

== Neighbourhoods identified by R e
- The function RPgenerate and its input List RD form a neighbourhood representation. It
"works” by armanging the dats elements into sequences and combining them together to
form a 2-dimensional space L. In this context, D can be represented in texms ofasetaof 4
*boundaries” in L. Put together these form a rectangle which encloses all the points
conaspmdingmelunmuufD.Dmﬂmmfmberwmmuuudjuﬂbyinmpohﬁng
between the boundaries (see the two "for™ loops in "interpret™).

micro
———luﬂnu FEREEEEE Hlulﬂ!
tiny § .dl dz d3 4 x
med ] ds a6 4
big § a7 de v F
FEEREEFEESRREFFEH HHHH o
huge
vast .
bike moped” car prop Jet rocket

- RD it just an identification of the 4 boundarics — "big" is the lower borizantal boun-
dary, "tiny” is the upper horizontal boundary, "moped” is the lefimost vestical boundary
and "prop” is the rightmost vertical boundary. Put together, these boundaries form 2 rec-
tangle which encloses all the points (Le. 2-tuples) in D.

== Multiple-neighbourhood
Different RDs represent diffcrent bodies of data.

ntations

RPgenerate([[[tiny bike][vast moped]]]) =
** [[vast moped] [vast bike] [huge moped] [huge bike] [big moped]
[big bike] [med moped] [med bike] ftiny moped] [tiny bike]]

RDs can identify multiple neighbourhoods; in the present case, this means that they con-
tain multiple sublists.

RPgencrate{[[[tiny bike] [med moped]][[med prop][huge rocket]]]) =>
** [[med moped] [med bike] [tiny moped] [tiny bike] [huge rocket]
[huge jet] [huge prop] [big rocket] [big jet] [big prop] [med rocket]

fmed jet] [med prop]}
micro |
FECEEFERAERISEEES
tiny 1 l
# FRECEREREENRTNGTEEREREIEEE
med # j §
FEEFHECERARRERRERE # 4
big : !
huge ; ;
vast’ $ . H
SIS FEEESFTEEERESSNILREIES
bike moped car prop jet rocket

'‘nextunless(s = sl or s = 52 or x matches [== 51 = g == 52 =]}}

for v in y do
nextunless(v = vl or v = v2

or y matches [== "Vl == "y == "y2 ==]);
[["s v] ~"result] —> result;
endfor
endfor;
‘return (result);
enddefine;

define RPgenerate (RD);
return (maplist (AD, interpret < explode)})
enddefine;

% ey gevenhe cpawwar

R
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~ INDUCTION OF DECISION TREES =-ssrmeremereseere A I A\ﬁ A brick sphere wedge

Differcnt forms of NR are constructed by different types of leaming mechanism. A very
simple ‘case involves a type of NR which is closely relsted to what psychologists call the
"classical concept definition™. This type of NR can be constructed by, a fairdy simple
mechanism. A slightly more sophisticated variant is constructed by a well-known and fre-
quently used SP leaming mechanism - the Classification algorithm, which is derivied
from Hunt, Marin and Stone”s Concept Leaming System (CLS). This algorithm forms the
main component in Quinlan’s ID'3 program.

- Disjunctive ots

T

- Recently, the classical view of concepts has been under attack. People have pointed ont
that there are many concepts which cannot be represented using a classical definition.

Emagine a game involving little, coloured objects. Objects have different values accord-
ing to their shape and colour. 5 different objects are all worth 10 points:

— Classical concepts .
{[blue brick)[bloe sphm]}_gmm wedge]fred wedge][blue wedge]]

Any object from this set is a "tenner”.

- A concept identifies a class (or category) of entities. The entities may be cither concrete
or abstract; they are said to be "covered” by the concept. Technically, a concept is 2
predicate which retums true only for elements which are covered; i.e. it is a classficatory,

coupled representation. Can the concept "tenner™ be represented as a classical concept?

Aristolle on concepts: . No — there is rio feature which is shared between all the examples. In texms of D, there

is no rectangle which encloses zll the points ponding to but excludes all the
points corresponding to non-lenners.

- The representation of a concept (in the mind) is a summary description of the eatire

dass | futiey than A Crmdierabion

- The representation is made up from e et of features which are shared between all

members of the class M il lage )é . ; . . . ) .
- The features that rep: x pt -are singly 1y and jointly sufficient 10 red b o | o | P P\':F{DP lia fMA
define that concept. . . P .
_ : green "l n p n p! P‘. {ia &m@ﬂ. )
.__s:” ', classical concept definition is just a set of shared feamres. Is this a NR? plue } > | b | b .
.‘.ﬂ.ming Jlassical concepts ' brick sphere wedge
D= dlau (or description) language . _ .
le r D‘* D viewed 25 4 space ' == Multiple NRs
C=data el ts (or class) to be represented L e .
8= gmcnt?:lm (or cm:;:ncfc _ The tenner concept could be defined in 1emms of a disjunction: [blue] OR [wedge]. This

would correspond to an identification of two rectangles.
vars € = [[medium red brick] [small green brick] [large blue brick]];

define g(C); . ' I e e L
vars f, element, result = [], features = maplist(C, explode); . red n E n : P :
for f in features do . green n ! n # p 4
if length(["(fareach [="f =] in C do it endforeach)]) : FEEEFREREREERIRROTAEORNG
=1ength(C) Bl PP PP PO PP PP T
and not{member(f, result)) do . ) brick sphers wédge
[*“result °f] -> result; '
endif;
endfor; . . . )
renim(result); ' — The Classification algorithm --—-——s———-—v
enddefine; N
; The main algorithm for deriving this sort of disjunctive representation is called the Clas-
g(C) => . siﬁcat.im algorithm. It was originally presented by Hunt, Marin & Stone as the Concept
** [brick] i Leaming System (hence the acronym CLS). It produces 2 representation in the form of 2
I ) decision tree (¢f. TEACH DISCRIM). "(@MW
g(([medium red brick] [red small brick] [red large brick]]) => L
** [red brick] COLOUR
Tlassical concepts as NRS =om--msmuramemmemees -
. blue green red
Imagine any feature belongs to & set of mutually exclusive features
colours: red, green, blue o SHAPE SHIPE
sizes: large, small, medium, . wedge wedge
S S

Each set of mutually-exclusive features forms a dimension of a n-dimensional space !

. If a concept definition does not specify a feature from 2 given dimension then members ’ N
of the concept can have any feature from that dimension (according to the definition...). Equivalent to disjunction: [blue] OR [green wedge] OR [red wedge] -~ ie. 3 rectangles in
The concept “definition therefore identifies a single rectangle (in general, 2 hyper- D. NB. this is not the optimal NR.
rectanigle) in {3 The boundaries of this hyper-rectangle in any "unspecified” dimension .
enclose the entire dimension. The boundaries in a "specified” dimension just enclose the '

specified feature - ==Main sieps in the algorithm - ———smmm-rmr
Initialise C to be the set of clements &LQW“",
== Example . .
- ¥ all dlements in C are positive then create YES node and halt CL\OGE ﬁ[‘SP O{ne N
Coneept definition: [brick] .
Covered elements: [[red bhck] [green brick] [blue brick]] -1f all elementis in C are negative then create NO node and halt
This forms a NR -- it identifies a single region of D. . - Otherwise select (perhaps using a heuristic) a feamre F with values v1, v2, v3.. vN.

Partition C into subsets C1, €2, C3 ... CN, according to their values on F. Create a
branch with F as parent and C1 etc. as child nodes.

- Apply algorithm recussively to each child

1 ”ifdbl' Is ﬁé %f'@ﬁ lnsteugs il each
szue  nsed  as heig g e Class (p)
Reb i e clas (. o



— Some trends in Jeamning research ——-—-—--m—-—- —

Behaviourist learning

50s

605 -

70s

80s

Dartmouth conference

{Learning is a behaviourist enterprise...)
AI through simulated evolution/Fogel et al

perceptrons
ANALOGY

Minsky & Papert

problem of
new terms
Winston
cand-elim=alg
connectionism Lenat
disjunctive A M

concept prob.

EURISKO

Hopfileld
B M
focussing Richie &
Bundy/Young Hanna
generalised
delta rule &
BP 10-yr
encye.
proiect

McCarthy:
look-ma-—
no~hands
L E X Michalski:
! need for
general
E B L pripciples
K-rich
systems

2.
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ID3 is an extension of CLS.

CLSwwptsamofpmiﬁumdneglﬁveinmmésufmnhu and builds » decision

tres (classificatory representation) for the class, It does thic by repeatedly splitting the :

instances on a selectod attribute,

From'a decision tree it"s easy to derive a decision mule. The rule is just 'the disjunction of
conjunctions constructed by tracing paths from the oot node to "yes” nodes.

== CLS implementation
/* CLS.p - implementation of Classification algorithm %/
|

wars data_clements decision_tree;

define setup;
vars i
[ [size large medium small]
[shape sphere brick wedge pillar]
[colour red blue green yellow] ] -> database;

[ [medium-blue brick “false] [small red wedge “false] '
[small red sphere “true] [large red wedge “tue] !
[large green pitlar “wue] [large red pillar “false]

[lerge green sphere “false] ] -> data_clements; .
(for i from 1 to length(dats_elements) do i endfor)) -> decision_tree;
| eT.ddefine;

ed.

define clements_with(value, elements);
vars clement result = [J;
for element in elements do ;
if member{value, data_elements(element)) then !
. [‘element “result] => result
endif;
endfor;
rehimn(result);
enddefine;

define ispositive(element);
retirn(data_elements(element) matches [== "true])
end d;ﬁne;

define isnegative(element);
return(data_el (el
enddefine;

nent) h

== "falsc])

define make_node{elements); '
Yars X;
if not{elements matches [== 7x:isnegative ==]) then
retum("YES")
elsedf not{elements matches [= Txdspositive =]) then
. retum("NO™)
W]
S ccoco( (e splode(elements))))
endif;
enddefine;

"R

define extend_tres{tres) -> tres;
wvars artribute values attribute_name elements database nombers;
if isvector(tree) then
rﬁcxplods(uu))] «> numbexrs;
database --> [[7attribute,_name 7values] 77database];
[“(attribute_name;
for value in values do
if (elements_with(value, numbers) ->> elements) /= [] then
 ['value “(make_node(elements))]
I endif
endfor)] -»> tree;
elseif islist(tree) thea
flush(("(ree() =]y«
maplist(tree, extend_tree) -> tree;
endif;
enddefine;

define go;
extend_tree{decision_tree) > decision_tres;
showtree(decision_tree);

enddefine;

v

. —ID3main loop

define num;
until database = [] do go(); enduntil;
enddefine;
»= Interaction
setup();
800:
|s1zE|
|
| | |
|large| |medium| |small]
| | |
{7 65 4} N O {3 2}
= Splitting on "SHAPE"
go0s
|s12E|
|
| | |
|large| |medium] |small]
J | ]
| sHAPE | N O | sHAPE |
I |
l I i | I
|sphere| |[wedge| |[pillar| [sphere| |wedge]
NIO Y!’.S '{5|5] Y!’.S ‘NIO
- Splitting on "COLOUR™
go0i
{512E:|
| \
! | L %
L! |large| |medium|y |sma1l] =
| | |
Vi |sHRPE] WO B

S N S
[ | I | |

{ |sphere| ||wedge| q |pillar| \|sphere| |wedge|\

L,

I
NO Yls\k|oom| Y

l I

[red] [green|
NIO Y é 5

Disjunction: [large wedge] OR [large green pillar] OR [small sphere]

NO

Quinlan’s ID3 algesthm is an extension of CLS which is suitable for applications in
which C is very large. The main steps are as follows.

- Select a random subset ("window™) of size W from C

- Use CLS to form & nule for W

- Sean through rest of C to find exceptions to current rule

- Form new window with some of new exceptions plus old elements
- Repeat whole rovtine until no more exceptions




=

i

SYUAGS LT[

-- The information-theoretic heuristic -w—esmeeeee

- ID3 uses an information theoretic heuristic for deciding which aurbute to split
instances on in any given case, The heuristic allows ID3 to choose & feature that best
discriminates between positive and negative elements (ie. sorts them out into even-size
bundles)

Imagine that we have some partial decision tree (leaf nodes are not hamogenous) and are
given some arbitrary instance to classify,

We cin estimate the probability of it being positive or negative by finding the {2 leaf
node which contains it and working out the ratio of positive to negative instances at that
node,

If P+ js the probability that it is positive end P- is the probability that it is negative, thea
the information content of a message (from an aracle) which tells us which it is
' /

-+ 10g2 PY -/P- 1og2 P-)

cf. entropy equation; - L Pilog2 Pi
— Maximising information gain (& minimising entropy)

We want to reach a stage where the message from the oracle has no infarmation content
(because the decision tree tells ns what the class of the instance is). So choose which
attribute to split the instances on next 50 a5 to minimise the cxpected information content
of such a message. This is the same 25 maximising the information gained.

- We gan talk about how much information we stll need for @ pariicular leaf node of the
decision tree (i.e. what the information content of a message about an instance at a partic-
ular leaf node will be). And we can work out the overall expected information content by
multiplying information contents for particular nodes by the probabilities that an arbitrary

.ance will be at that node (estimating probablities using relative frequencies as usual).
So, at each stage, chose the next attribute 5o a5 to
- minimise the information content of a message from the oracle, or
- mazimise our inforrnation gain

Shorteut -

At cach stage choose next attribute 50 as to minimise the entropy of the distribution of
positive instances across leaf nodes (cf. LIB CLASSIFICATION).

= Reading

Thompscn & Thompsan, 1986 (sice BYTE aricleso D3~ &n[«a,:sb )
Smith & Medin 1981, chapter 3; t

—t> Bundy Silver & Plummer 1985; ﬂ.T: Toarnal

Hunt Marin & Stone 1966; ]

=== Quinlzn 1979; Quinlan 1983; W\{ {gqmoz\l? !n,[,, hmyeh Vewnst .

Bratko & Lavrac 1987 (reports some
Section on CLS and ID3 in HB3, pp. 406-410;
TEACH CLASSIFICATIO] CH DISCRIM;

heodiol w0l
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- VERSION SPACES AND CANDIDATE ELIMINATION —-—-—

In the'last lecture we locked at a quite simple form of NR where

« Dis aspace with dimensions ranging over scts of mutually- exc].uswc features

. thc represcntation identifics M neighbourhoods )

* cvery nclghbourhood is of the same form -- & boundary in a g;w.u dimension either

covers the entire dimension or just a single value.

This form of neighbourhood can be easily defined as a list of all thn covered single
values; o.g. [bluc] defines the nclghbaldmod shown below,

B P o o

NH!N ERERARRERFEREGEE !i"lll
brick wedge cyllinder sphere

- The'classical concept leaming algorithm can form NRs identifying a single neighbour-
hood of this form, Tha Classification algorithm (CLS) can form NRs identifying multiple
neighbourhoods. It actually constructs a decision tree but ﬂu com.spond: to a sct of clas-

sical concepta,

- The need for a richer description 1anguage sseesssemssmmmssmmmsn

..n:lginu '

vars € = [[blue brick] [blue wedge]]

rad
' greaon \
blue | di dz | '
brlck wodge cylinder sphere

Ilow can we construct a NR which includes d1 and d2 but not [blua cylinder], [blue
siphero] ete.? In tarma of concept loaming -- how can wo form the concopt [blue block]?

-+ Ueneoralised degeriptions se-essressammsmames —

Imagino that the data language includes clements liks
[blue block]

and ll'llll there is a covers (or "generalises™) function

covers([blue block]) s>
e mﬂun brick] [blue wedge}]

~~"Ihen the clement [blue block] forms a representation far the set [{d1,d2}

But how could this sort of representation be implemented or leamed?

- Generality orderings
We can define a generality ordedng

[red block] more_general_than [red wedge] ==>
** Qe

[red wedge] more_gencral_than [red brick] mwc>
*# cfalse>

in tcr%ns of the covers function
defins 7 di more_general_than d2;

retpm{subsct(covems(d2), covers{dl)))
mdd:cl'mc:

-+ Version sp

Given'-the-generality ordering it-is possible to represent a sct of descriptiong jn terms of
its most general member(s) and its most specific member(s). '

This is essentially a classificatory representation.

- Given some set C of (generalised) descriptions represented in tezms of its most-general
member and its least general member, we can decide whether some new description d is
in C simply by testing whether d is less general than (or-as general as) the most general
description and more general than (or as general as) the least general description,

Mitchell has called this representation of a set a "version space” (Mitchell 1977; Mitchell
1982).

The set of most general elements is called the "general boundary” -- written "G".
The set of most specific elemetnts is called the "specific boundary™ — written "S".
Normally G and S are singleton sets.

NB.

+ The version space is a set of descriptions.

+ Generalised descriptions cover other descriptions
« Primitive descriptions cover just themsclves

- The Candidate-Elimination algorithm

Find some description which covers all of P and excludes all of N, where I? is a set of
positive instances (clements describing positive instances) and N is a set of negative
instances (elements describing negative instances)

.. Candidate-Elimintation algorithm:

-]~

Initaliso the version space. Set G to be the set of most general descriptions, Set § to be
the sct of most specific descriptions.

For each new instance
« ifit's posilive then update S so that all deseriptions cover the new instance

» itit's negative then update G so that none of the descriptions cover the new instanse,

If ever G = S thea exit. Any further refinement of the version space will result in 2 maxi-
mally specifie clement becoming more general than 2 maximally general element (or vice
versa).

== Tree-based descriplion languages s==-seeesesnseaens

In the simplest case, tho dats language Is defined in terms of N gencralisation hierarchics;
cg.

|undef_sized| |
S N N
| | | |
| small]| |1arge] |plane|

| ! | |

mit!:ra tJ.ny mtlad blg vlst hlt:ge

| |
blke moped car prop je1-.t gl].der

- A description (data element) is a sequence containing onc node label from cach tree,
The clements covered by a given description d1 are just those clements which can be
"grammatically derved” from dl (ef. Utgoff, Shift of Bias 1986); ie. all the clements
which can be constructed by pairing up the leaf nodes which are in the subtrees belonging
to teams in d1.

Elements made up purely of leaf nodes only cover themaelves (these are primitive
descriptions).

covers([tiny bike]) ===
** [fuiny bike]]

Other descriptions cover multiple descriptions (thesc are gencralised descriptions).

covem([small bike]) ==>
** [[tiny bike][micro bike][med bike]]




==|'ree hased descriplions as NRS «oseescesmemmereaes

» A dcscﬁ'plim such as [small vehicle] can be scen a3 a neighbourhood representation for
the set of covered instance descriptions.

{small vehicle)
covers micro
[{micro bike] [micro moped] [micro car] _ tiny
[tiny bike] [tiny moped] [tiny car] ‘ : med
{med bike] [med moped] [med car]]
. big
i
- A given descdption "marks” & node in each generalisation tree. These marks can be huge
seen as defining a region in 2 2-dimensional space. The cells in the region comespand 1o
the covered descriptions. vast
tranTport
| : '
] veh| cle plalne
| | ! I
bike moped car prop jet gllder
NAERARFFRENRORN BRI BRENERFRY -
—— micro # ]
i §
— # small— tiny # ! '
—_— ' )
undef_sized FERGRERIGRERRIRRRRRRINRINETY

£

large— huge

vast

- Implementing version spaces using tree Marks —--—m—-——ew—--— - .
We can represent a singleton G and a singleton S (making up a specific vession space) in
tenns of two sets of marks, )

- The node marked by G will always be above the node maked by 8 in hy tree. So we
can talk sbout G's marks as "upper marks” and §'s marks as "lower marks”, This way of
representing a version space is used in Focussing (sce next lecture).

A description is in a given version space if it can be constructed by pairing up nodes
which are between the upper and lower marks in the relevant trees. .

|undef_sized]| | transport |
_ | ]
e | .

R U —_
|mall| |1arge| |vehicle|
| | I : i

L e b he Dl o ol |
é'-ro- tiny med blg wvast huge bike moped car prop Jet glider

e

Lower

|plane|

S = [big moped], G = (large vehicle)

Vim {[lnlrgu vehicle] [large moped] [big vehicle] [big moped]]

= Version spaces 18 NRE -meemmmrmsemssen R
Assume Gl =1 and IS = 1

] 1
S is thén the most specific description which covers all the positive instances, G is the
most genoral deacription which'excludes all the nogativa Instances.

-If we view G and S as NRs in L (see above), then G is just the biggest feasible rectangle
which docs not enclose any cells corresponding to negative instances. § is the smallest
feasible rectanglo which encloses all the cells comresponding to positive instances. A
feasibld rectangle Is Just a rectangle whose boundary in any dimension encloscs all the
descendants of a specific intemnal node, i

-Tho VS consists of all descriptions which aro no less general than 8 but no more general
then O, A description slways corroaponds to a rectangle in S, Thu tha VS a effectivaly
the sat-of all fensiblo rectangles which can be inscribed between the rectangle for G and
the rectangle for 8. I

VS = [[tiny vehicle] [small vehicle]
{undef_sized vehicle] {undef_sized moped]]

1

$8 C SERRUFERNRUNUNERERNUEY

o0 5 00000
o

————0000000000

i
¥
'
¥
!
H
§
'
L ]

S AR SR G S

FEENIEA NI RO AR RDART
bike moped car

prop

jet

glider
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.- FOCUSSING

‘hiers are various ways in which the CE algerithm might be implemented. A common
variant involves a process known as Focussing (Young ot al, 1977; Bundy Silver &
Plummer 1985). This is closely related to Winston's ARCH leaming miethod {mewn
1975, Winston, Antificial Intelligence 1984).

CE algorithm consists of two responses:
+  Aflter presentation of a positive instance, generalise S as necessary

«  Aler prescatation of a negative instance, specialisc G as nocessary

If the data language is implemented using generalisation hierarchies and the VS is

represcated using upper and lower marks then geaeralising § involves mising lower c{\ﬂ .

marks, and specialising G involves lowering upper marks,

= So, afjer presentation of a pouilivu instance, the algorithm has to raiss the lower mark in

cach treo xo as to make suro that every description in the V8 covers the new instance. - a

“Thiis aclually involves raleing the lower mark until it is above the leaf which Is spocifiod
In the Instance description.

- After presentation of & negative instance, the algorithm has to lower ﬁq.a upper mark in
cach tree 5o as to make surc that no description in the VS covers the new instance. This
sctually just involves lowering the upper mark in one troa 5o a8 to ensura that it docs not
have any leal specificd in the instance description descended from it, If thero is moro than

onc way to do then the instance is referred to as a "far miss”™. Hmmuju.n ono way, 1.hc :

nce s a "near miss”, :
" Initialization nf the'algodthm involves placing upper marks on all lha root nodu md
lower marks on the leaf nodes identified by the first positive instance.

- Implementing mark-manipulation

/* CE.p - implementation of Candidate-Elimination algorithm */
uscs showtree;

vars valuo clement data_cloments trecs upper_mark lower_mark G §
myshowiree = crasc;

define isncgative(clement); ;'dum(llat(clmt) = falsc) enddefine;
define ispositlve(clement); retum(last (clement) = truc) enddefine;

define parent_of(node, tree);

vars subtree parent subtrees;

if tree matches [== “node ==] or tree matches [== [*node ==] ==] then
retum(trec)

elseif tree matches [= 77subtrees] then
for subtree in subtrees do

if parent_of(node, subtree) ->> parent then retum(parent) endif;

endfor;

endifi

__retum{node = trec);

lefine;

define subtreo_of(n); .
if ["n =] isin parent_of(n,[0 “‘trees]) do retum(it) else return(n) endif;
mddcﬁpc;

* . :
/* a node which is in 2 tree must have a parent */
vars containg = parent_af}

definc above(nl, n2);
retum{contalns(n2, subtrec_of(n1)));
enddelifne;

define covers(concept, clement);
vars i} . !
for i from 1 to lengthitrees) do
unless above(concept(i), clement(i)) do retum(falso) endunless;
endfor;
retum(truc);
enddefine;

‘f.

v G

_ define raise(trec);
while parent_of (lower_mark, trec) matches [?parent ==]
and above(upper_mark, parent) -
and not(above(lower_mark, value)) do
parent -> lower_mark;
endwhile;
retum{above(lower_mark, value))
enddefine;

dcﬁ.m: lower(subtreg); s
, if contains(lower_mad, subtres)

< ' and noj(contains(valus, subtrec)) then .

4. - J* reset upper_mark appropriaiely #/ . :

i if not(subtres matches [Tupper_mark .=.]) do subtree -> upper_mark cnchf
. retam(true)

nlm.fsubt:rca matches [= m] then
for node in U(subtrec) do if lowcr(nudr.) lhm retum{(truc) endif endfor;

- endif;
“ remmffalse);
mddcﬁ.nc.
R d;:ﬁ.nn _TICW_ dﬂnml(:!m‘lml), N -

vars tres update i newQ = copylist(G), now$ = copylist(S), success;

If isnogative{alement) do lower > updato clso raiso «> updats endif;

-+ fori from 1 1o length(irecs) do
; [(G(), 5), element(i))] —> [fupper_mark Tlower_mark Tvaluc];

" if updato = Jower do subtree uf(uppcr_mu.ﬂt)dsn trees(i) endif «» tree;
update{tres) > success; )

) upper_mark > newG(i); . o

¥ - lower_mark <> newS(Q); « v v

1.+ - quitif(isnegative{clement) and success); .

v if no!.(lmcgtuvc{clmmt]) and nm(success] then rclum(fnlse} eadif

¢, endfor; -

‘o ,“ if success do nmﬂ ->G; :mwS -> S mum([“(} S]} clsc mlum(false) cnd1i'

e mddcﬁnc, . e,

t . [
: i

‘:_-, !‘ a

. define add_marks(tree);
) VRIS X ¥ mark;

if upper_mark = lower_mark and tree = upper_mark then
retum({“upper_mark U L))

alscif Lreo = uppar_mark then
retum({ upper_mark U})

clseif tree = lower_mark then
retum({Tower_mark L})

elscif islist(irec) then
retum{maplist(ires, add_marks))

rc:tum{um)
_ enddefine;
define add_marks_in(i);

(GG, S()]} ~> [Tupper_mark Tlower. _ma:.’n:]
add_marks(trees(i));

" enddefine;
" define conven, _trees;
vars i;
remum([*(for i from 1 to length(trees) do add marks_;l.n(l) endfor)]}
enddefine;
" . .

" define sez_marks;
vars clement;
+ . data_clements —> [Telement 77data_clements];
element ~> [775 =];
maplist(trees, hd) -> G; -
' enddefine; '

. define set_default_trees;

t
[undef_sized -
[small micro tiny med]
[large big huge vast]

[transport
[vehicle bike moped car}
[plane prop jet glider]

1

]-> trees; o .
- enddefine; ) '




vars set_trees = gel_default_trees;
o

" defing CE(data_clements);
gel_troes()
sck_marks();
while data_elements matches [Pelement 77data_slem

unless process_new_clement(clement) do return(false) endunless;

endwhile;
return([*G "8]);
cnddefine;

/
defing sctup;

set_trees();
[ [dny moped “true] [tiny car “true] [big jet “false]

== Processing [big jet "false]

800
Sprocess_new_clement [big jet <falscs>)
<process_ncw_clement

ents] do

|undef siro|

| {transport U}]
N S
| |

|ivehiclo L] [plano]

1
| 1arge]

N R A S

|{=mall U}

[med car “true] [med jet *false] ] -> data_elements; e JH G m--lmml--ulmnlimnn HeEg
3""-«"“"5,‘"0: tiny g 3 L]
myahowtres(convert_trecs0) =4 S nan i unebaamam

enddefine; big
Tuge
define go(); vast
il data_clements matches [Telement 77data_elements] then bike  moped car prep Jot  glider
if process_new_clement(clement) do
myshowtree(convert_trees()) = Processing [med car "truc]
clro
[ecannot process “clement] s> 200
Imdil’; >process_new_element [med car <tme>]
clso rocess el t
[G = "G > [ = "§] s> . process_new._clement
endif;
enddefine; |undof_sire| | {transport U}|
| |
define nun; : . | | |
rr——. . ||m1|1 vl IhTmI !{whsrlsl- 1] |pm|w|
ntil data_clements =[] do go() endumtil;
mddcrmc; nan l‘.J.H'y nLl bL’ h\l:gu N‘Lt bl.ln n)lad elr pr jlt qlldn:
= [nferaction
selp(); : pa 200 T T T T
First positive instance: [tiny moped] il s
big 2 PIRERRRRpARRRARRIRRRRIRR R
|tundef_alze Uj| J{transport v}] ° huge
| | vast
1 | 1 l bike  moped car  prop  Jet  glider
| amall] - |1arge| |vehicle] Ipl..lnﬂl
I ! ! |l . == Processing [med jet “falsc]
nlLv tr..!.l\y L} a\L hL hL- er. hL. {m:pL L} gL PEW )L gJ.LI“- 300;
I I >process_new_clement fmed jet <false>]
== Processing [liny car “trug] . <process_new_clement
go()’ - S
>process_new_clement [tiny car <true>] |wf L%l
<process_new_clement | |
| {L s=all D} |Large| | {1 vohicle L}| |planeo]

| {(undof_size v)|

. famat|

|Large|

| {transport D}

| {vahicle L}]

fplane]|

B R e R

S o T R B A

L

o 8 odc
nicro o o
| tiny o a
mod o o
big
[LR-RTUT R T HI R e
atere § 0 THHI : inge
ooo §
tiny o vast
mod bike moped  car picp Jot glider
big !
hy
et 8o0;
L e e L R T T T AT T AT *# [G = [small vehicle]]
blhe moped car prop glid
! == Reading

Mitchell, UtgofT & Banerji, 1983; «- describes ono of the most successful applications of
CE/Focussing (a eystecm called LEX which leame to do symbolie integration problems), -
Also talks about the "inadequate description language” problem (sometimes called the
"problem of new terms™).

Winston, 1975; Winston Antificial Intelligence 1984; -- describes the forerunner to
CE/Focussing: the ARCH program.

Bundy Silver & Plummer, 1985; -- theoretical analysis of Focussing/CE.



. —
Wiclemaker & Bundy, DAI Research Paper 262 1985; - full discussion of tree-hacking
technigue. ;

Murray 1987; Utgoff, Shift of Bias, 1986; -- other ways of dealing with unleamable (dis-
juncive) concepis. : :

TEACIH/IIELP/LIB FOCUSSING - interactive Focussing package

== Questions
Can the first clement presented to the Focussing algorithm be cither positive or negative?
If not, why not? '

What is the search strutegy implemented by the "lower™ function shown above. Is it the
ideal stratcgy. Would & breadih-first strategy be more effective. Why?

-3-
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- THE AQ ALGORITHM

Effective disjunctive concepts (Le. multi-neighbourhood representations) can be leamed
by the Classification algorithm if data elements mdﬁm’bad in terms d‘simpl: festures,

If the data languege allows descriptions to include terms which genmhu (cover) ather
terms; e.g.

vducl: covers "lorry” and “car”

confunctive concepts (single-neighbourhood representations) can be c:msn-nn:d in the
form of descriptions with penenlised teoms. A description di comtaining generalised
teans covers all other data elements which can be grammatically degived from di. The
Candidate-elimination algorithm is the standard mechaniem for dedving this sort of
representation.

transport
§ veh%cle . plane
- | ] | | |
bike moped  car prop : Jjet glider
i FREEEEREIDRESTEEEEEEEESE -
| — micro £ H
~— § small— tiny ¥ 5
— med ; ;
undef sized FEEEEEFRIEFErREErTasoEds
! T —— big
—— large— huge
vast

Instance descriptions covered by [small vehicle] :

= The disjunctive-concept problem

Unfortunately, it is ofien impossible to represent & body of datz C in teoms of 2 wu,]usc-
tive cbneept (single-nesighbourhood representation).

|eolour| |block|
I |

rld gn!.-en bJ.ue brick spi'llere uengze

Type 1 situation Type 2 s%tuation

red | red i ' |
=N green| n P
.e p p n blue | p l ! |
brick sphere wedge brick  sphere wedge

- TYPE 1 SITUATION: 2 set of positive clements P cannot be represented as & canjunc-
tive concept (single-NR) if there it no ancestor nods of the leaf-nodes featured in ele-
ments of P which is not also an ancestor of & leaf-node festured in an element of N (the
negative elements). P can become representable if the structure of the dats Lingusge is
changed (e.g. by tree-hacking).

|colour| |block |
| |
[
red green blue |[xxx| |yvy]

br[ck sphere wedge

.1-

- TYPE 2 SITUATION: & set of positive elements P cannot be represented as & conjunc-
tive concept if every element of P shares at least one lezf-node (coordinate) with an ele-
meat of N.

- (NB. There ix an even mare extreme sitnation which occurs when positive elements are
represented in texms of muldtiple sets of leaf-nodes.)

'I‘hrsemsmumsmbothmples of what is often called the "disjunctive concept
problem™.

= Multiple-neighbouthood representations «—--————————n—

vars datz_elements =

[ [micro moped “tue]} [micro car “tue)
[big moped “false] [vest jet \ruc)
[big prop “Falss] [huge bike “true]
[huge moped “true] [vast car “false]
fhuge jet “true] [med glider “false]
[big jet “tme] fmed bike “troe]

I

C = <positive instances>

micro P o] n
tiny
med P
big n n o]
huge P = P
vast n <)
bike moped car prop jet glider

There is no single-neighbourhood representation for C (type-1 DC problem) -- it is not
possible to constmct & rectangle in D which encloses alt the positives but excludes all the
negatives. But there ir 3 multi-neighbouthood representation for C.

FEEFEEEEETEREICOEIRERIEFFES
micro § =] o] i noe——
tiny H f .
med ; =] i
FEEFEEECEREEEEEETH1 H\iii!i!i—-—-ﬁ FEFFEEESE
big l n l—— n i p §
EEEEEEREsE RS ELERFERbREERE f §-
huge # p 2] H + p #
EEFEEEEFFrR bR bRREERERteisss 4 £
vast | T———deo—t—n | § p H
FEEREEREEd-
bike moped car prop Jet glider
Disjunctive cancepi definition

[small vehicle] OR [lmge vehicle] OR [large jet]
== Leaming disjmctive concepts using Focussing/CE —————

There are various ways in which Focussing/CE can be adapted for the task of deriving
disjunctive definitions:

= Run the algorithm on C several times 50 as to produce one component of the defini-
tion each time... But which subset of C should be processed in each run?

+ Run CE just once and whmcveri;bmnsmpomblc r.ocxp.md the specific boun-
dery without enclosing a negative element split the version space into two parts (two
G/S pairs) and carry on.

This technique, attributed to Mitchell et al. (1983), is called "rule shell creation” The
problem with it is that there is no infallible way to decide which version space (tule shell)
& new positive element should be 2ssumed to belong to. If 2 wrong decision is made, the
desired definition will not be derived. (cf. Bundy et al 1985, p. 167).




- '\-iuluple convergence

A vagant of shell creation called "multiple convergence” (Murray 198?) involves adding

_new positive elements to all version spaces. Subsequently, if any vemion-space is found
1o in¢lude & (new) negative element, it is specialised just enough to exclude the new els-
ment, This causes pesitive elements 1o be "purged”.

— Least-di junctions

Note that at any given point in the presentstion of new elements it is postible to eonstruct
a perfect disjunctive concept. This can take the form of a "least disfunction”™.

"A least disjunction is a disjunction of minimally specific descriptions in the language
such that each disjunct covers as many positive elements as possible without coverng
any negadve clements, and every positive clememt is covered by at least one of the dis-
Jjuncts.” (Utgoff, Shift of Bias, 1986, p. 124).

Geometrically, a least disjunction is just the set of neighbourthoods constructed when,
wherever possible, we put 2 -size rectangle around z group of p's.

To construct & "maximal dil‘;u‘n":ﬁlmﬁﬁwcmakc the rectangles as latge as possible; ie. we
make the disjuncts as general #s possible while ensuring that they do net cover eny nega-
tive elements,

- The AQ algorithm
Michalski 1975;

+  Assumes all negative elements are zvailable -- positives ammive 25 2 sequence.

» Uses K passes of CE to derive K definitions (version spaces, conjunctive concepts,
single-NRs etc.) covering & body of datz which cannot be represented as & single-MR

.Jscsz "seeding” heuristic — each time it stans trying to build & new definiden, it uses
mclem:mwhchhunotbcmmemdbymymwsﬁu:smd This helps 1o
ensure that disjuncts are far apart in D,

Sec ..ficach/course/eskaf/AQ.p

==:A§21q%‘ ion

/* AQ.p - implementation of Aq algorithm */

uses CE;

vers §_list G_list negative_elements positive_elements, myshowtres = Ierue.;

define get_clements(type);
retum(["(foreach [=="type] in datz_elements do it endforeach)])
enddefine;

define setap;
[ [micro moped “true] [micro car "mue]
[big moped "“false] [vast jet “oue]
[big prop “false] [huge bike "true]
[huge moped “tue] [vast car “falss] :
[tnicro jet “false] [huge jet “truc] ;
[big jet “wrue] [med bike “rue)
1.-3+ data_elements;
. 1_elements(false) - > negative_elements;
ect_clements(true) -> positive_elements;
enddefine;

define covered_by_oncaf(clement, descriptians);
vers description;
for description in descriptions do
if covers(description, clement) then retum(true) endif
endfor;
return(false);
enddefine;

defing nm;
wvars description; .
[} ->> S_list -> G_list; .
semp(); :
until positive_elements =[] do -
CE(["(hd{positive_elements)) “"negative_clements]) --=> [7G 7S];
G = G_list -»> G_list;
[% for element in positive_elements do
unless covered_by_oneof{element, G_list) do element endunless
endfor %] -> positive_elements; .
endunil;
G_hst ==>
caddefine;

== Sample run

nn();

> CE [[micro moped <true>] [big moped <false>] [big prop
false>] [vest car false>] [micro jet <falge>]]

< CE [{small vehicle] [micro moped]]

> covered_by_oneof [micro maped <tme>] [[small vehicle]]

< covered_by_oneof <arue>

> covered_by_oneof [micro car <true>] [[small vehicle]]

‘< covered_by_oncaf <true>

> covered_by_oneof [vast jet <true>] [[small vehicle]]

< covered_by_oneof <false>

> covered_by_on=of [huge bike <true>] [[small vehicle]}

<covered_by_oneof <false>

> covered_by_oncof [huge moped <true>] [[small vehicle]]

< covered_by_oncof <false>

> covered_by_oneof [huge jet <true>] [[small vehicle]]

<covered_by_onecof <false>

> covered_by_oneof [big jet <true>] [[small vehicle]]

< covered_by_oneof <false>

> covered_by_oneof [med bike <trmue>] [[small vehicle]]

< wva'ad_‘)y_(mc:nf <troe>

> CE [[vast jet <true>] [big moped <false>] [big prop <false>]
[wast car <falses] [micro jot <false>]]

< CE [[vast plans] [vast jet]]

>covered_by_oneof [vast jet <rue>] [[vast plane] [small vehicle]]

< covered_by_oneof <true>

> covered_by_oneof [huge bike <trus>] [[vast plane] [small
vehicle]]

< covered_by_oneaof <false>

> covered_by_oneof [huge moped <true>] {[vast plane] [small
vehicle]]

< covered_by_oneof <false>

> covered_by_oneof [huge jet <true>] [[vast plane] [small
vehicle]]

< covered_by_cneof <false>

> covered_by_oneof [big jei <true>] [[vast plane] [small
vehicle]] )

< covered_by_oneof <false>

> CE [[huge bike <arue>] [big moped <false>] [big prop
<falzes] [vast car <false] [micro jot <false]]

<CE [fhuge transport] [ruge bike])

> covered_by_oneof [huge bike cm.w.:r} [[huge transport]
[vast plane] [small vehicle]]

< covered_by_onsof <rne>

> covered_by_oneof [huge moped <true>] [[huge transport]
[vast plane] [small vehicle]}

< covered_by_onecof <rue>

> covered_by_oneaf (hage jet cre>] [[huge ransport]
[vast plane] [small vehicle]}

< covered_by_oneof <true>

> covered_by_oneof [big jet <mues] [[huge transport] [vast
plane] [small wehicle]]

< cavered_by_onsof <false>

. > CE [[big jet xrne>] [big moped <false>] [big prop <false>]

[wast car <false>] [micro jer <false>]]

< CE [[big jex] [big jet]]

> covered_by_oneaf [big jet <trues] [[big jet] [huge transpont]
[vast plane] [small vehicle]]

<covered_by_oneof <true>

** [Thig jet] [huge iranspor] [vast plane] [small vehicle]}

== Neighbourhood representations —-——-—e-—-—emmmemn
FEEEFEFEEEEEEELEFSREFEEEE4E
micro 4 + + £ -
§ 4.
tiny ! #
med ; + ;
EEEEERESFTEFFESEEEEFEFE44£84 ‘f;i!i!}iv
T fassoe]
EEFCFRERIEREEFERFLRRRERES llifi“iﬁﬁf“HlﬂIHGH
huge § + + l £ §
FEEEEFESSFREEFESEES f#ﬁ‘{fi! #iifixﬁixﬁﬂiHf!”f“ﬂii
vast | | i+
FEEEEiFEEf—u
bike moped ear prop jet glider
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- DISCRIMINATION RULES X

Muthods for constructing disjunctive definitions can also be used to learn discrimination
nides, "

fmagine

C.decomposcs into K classes ENGESSmR (|, €, (3 @fz,

* we want a mechanism which will construct nules to decide which, class an arbitrary
data clement is a member of.

'
A-simple approach is to take each class in tum and learn a maximally generalfspecific
conjunctive definition (a single-NR) of it by pretending that all the clements of all the

utherelasses aro negative clements,

By wepeating the process for cach class we will derive K definitions, Each ong furms 2
elussification rule (a classificatory, coupled NR) for the class in question.

-~ Rulke learning methods ----s —-—ee v mme e

‘Ihere nre a number of variations on this theme

+  leim moximally specific definitions (this produces rules whu:h will provide 2 uniquoe
classification of a small number of elements)

+ leamn maximally general definitions (this produces rules which will pmducc &.nct
.

 neeesserily unique classification of a large number of clements)
« leam both &I{?(-‘He on m&.n'ai'i L {’u wie Y S !até'i/ d{ﬂt\’; .

- Another poasibility is to leam maximally general definitions but to pretend that each
leanied definition is a negative clement (a negative concept?). This will ensurs that a

unigue classificaton is always generated. However, the arder in whmh definitions are -

leamed will make a big difference (sec HB3, p. 424-425).

An extension of AQ called AQ11 constructs "discrimination rules” usmg all four methods
deseribed (ef. HB3, pp. 423-427).

-8 wficachfeonrseleska/AQLLp -

atlon

ww AQI Impl

f* AQI Lp - implementation of AQ11 algorithm */ .

vass classes aules G_list S_lisy;
usex CE

defing getup;
set_trees();
l

~ elasst

[med bike "truc)
. [micro moped "tue]
- [micro car *true]
1
[class2

o [wast jer "true] )
[huge jet “true]
[big jet “true] i
y i
[class3
[
[huge bike "truc] .
[huge moped “true] i
1

] <> classes;
[] - rules ->> G_list ->> §_list -> mles:
enddefing;

defineinegative_of(Jescription);
vars x;
description matches [??description ?x:isboolean] ->;

retum(~description “lalse]);
enddefine:

define form_ncgative_clements_from_other_classes(class);
vars othcr_qlass clements result;
[ foreach (Pother,_class Telements] in classes do

if other_class /= class do applist(elements, negative_of) endif

endforcach %] -> result;
retum(result); "

_enddefing;

.:-

== Sample un

) dofine ; nun;

vars class, rule clements other_ cIssscs ncgauv::s

scup();
foreach [7class ?clunmts] in classes do

form_negative_clements_from_other_classes(class) -> negatives;
CE({“clements “(applist(G_list, ncgative_of)) “negatives]) --> [7G =J;

"G G_list -> G_list;
[["class rule "G] ~rules] -> mules;
endforeach;
mles e
enddcfine;

Sciting up involves stating which positive instances arc in which classes.

define sctup;
sct_trees();

[class{

[‘{mcu bike “true)
{micro moped “truc]
[micro car “true}

.

[class2
[ .
[vast jet “truc)
[hugs jet "]
[big jet “truc)
)i}

[class3

[huge bike "true]
[huge moped "truc)
Bl
] -> element Jists;

11 o> 8 _Ji=t «> rules:
anddefine;
s Leaming a rule for class] <-amemmmecmemmemmaeeeeenes
run();
> form_negative_clements_from_other_classes ciass]
1> negative_of [vast jot <true>]
l< negadve_of [vast jot <false>]
1> negativa_of [huge jet <tmic>)
< negative_of [huge jet <fulse>)
1> negative_of [big jet <true>]
l< negative_of [big jet <fnlses]
I> negative_of [huge bike <true>]
l< negative_of [huge bike <false>]
1> negative_of [huge moped <truc>]
1< negative _of (huge moped <false>]
< form_negative_elements_from_other_classes [[vast jet

<false>] (huge jet <false>] [big jet <false>] [huge

bike <false>] [huge moped <false>]]
> CE [[med bike <true>] [micro moped <trie>) [micro car

<truc>] [vast jet <false>] [huge jet <falsc>) [big

jet <false>] [huge bike <falre>] [huge moped <lalse>]]

< CE [[small transport] [small vehicle]]

==Leaming 2 mule for ¢lags2 mrmmrmermeseee s -

> form_negative_clements_from_other_classes class2
I> negative_of [med bike <true>] -

I< negative_of [med bike <false>]

1> negative_of [micro moped <rues]

1< negative_of [micro moped <falsc>]

I> negative_of [micro car ctrue>]

I< negative_of [micro car <false>]

I> negative_of [huge bike <true>]

1< negative_of [huge bike <false>]

1> negative_of [huge moped <trues]

l< negative_of [huge moped <false>]

< form_negetive_elements_from_other_classes [[med bike

-y




F<false>) [micro moped <false>] [micro car <false>] : -=- Questions -
[huge bike <false>] (huge moped <false>])

> negative_of [small transport] . Why is the arder of element presentation important?
< ncgative_of [small transport <false>] : .
> CIZ [[vast jet <true>] [huge jet <true>] [big jet <tnic>] ' What difference does it make if data clements correspond to multiple sets of leal-nodes;
[small transport <false>] [med bike <false>] [micro : i.c. if a data clement has the form
maped <false>] [micro cur <false>] [huge bike <false>] i
- fhuige moped <false>]] [[large bike]{small bike]]

< CE ([large plane] [large jet))
== Leaming a rulc for class3 —-ememvesomsimom s

> forn_negative_elements_from_other_classes class3
1> negative_of (med bike <true>]
1< negative_of [med bike <false>]
I>negative_of [micro moped <true>)
I<negative_of [micro moped <false>)
I>negative_of [micro car <tcue>]
I<negative_of [micro car <falsc>]
I> negative_of [vast jet <true>)
I<nepative_of [vast jet <fulse>] i
> nepative_of (huge jet <true>] '
l<nepative_of [huge jet <false>] !
1> nepative_of (big jet <true>] i
I<negative_of [big jet <false>] \
< form_negative_clements_from_other_classes [[med bike i
<fa]se>] (micro moped <false>] [micro car <false>) i
[vast jet <false>] [huge jet <false>] [big jet <false>]]
> negative_of {large plane)
< negative_of [large planc <false>)
> negative_of [small transport)
< negative_of [small transport <falses]
> Cli[[huge bike <true>] (huge moped <truc>] [large plane
<fa)se>] [small transport <false>] [med bike <falses)
[miero moped <fulse>] [micro car <false>] [vast jet
p alsic>) [huge jet <fulne>] [big jet <false>])
13 [[huge vehicle] [huge vehicle]]

“* [[¢lass3 mle [huge vehicle]]
[cluss2 rule [large planc]]
[class] rulo [small transport]])

== Nu{ghbou;m_md Tﬂpl‘ﬂﬂllﬂi{)n R S

AQH constructs a coupled, classificatory NR for cach subclass of C,

FANURRNNEARARUA RN TRRRRORA R DAR RO flilull
micro # pl pl i
i
tiny : ]
meel ¥ pl i
ARRANPABOUNANRRAO BN RN BB NI RGN RORRERY
o 2 j o
l\“““ SRT1T11 %“%%Nc P ]
huqe ¥ p3 p3 p2 . o
BALALRLILRRLEAL MH%‘DG o

vast | p2
ooooooocooooooonwczoooocu
blke mopa car prop jat glider

defing cN(d, cluss);

varg rule class;
if [“cluss = 7rule] isin rules then
return{cavera(rule, d));
clic
return(fulsc) i
endil; .
enddefine;

eN([hig jet], "class]") s>
o0 sfalses

cN([big jet], "class2") =>
Qe

= Rc_adf_ng .....
|

Utgolf, 1986; Murray 1987; Bundy et al. 1985; — all discuss ways in iwhich disjunctive
definitions can be used 10 guide the introduction of new structure in the data language.

Michalski & Chilausky 1980; - how AQ11 learned rules for diagnosing soybean discascs,

\'hdialskl & Stepp, 1983; Lebowitz, UNIMEM 1986; Lebowitz Com:cpt Leaming 1986;
Lebowitz 1987; -- all discuss conceptual clustering systems.

1133, pp. 398-400 & 423-427; - discussion of AQ and AQ11.

2.
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- LEARNING BY OBSERVATION --ne-sesecesomcemmammen L.
' ;

All the leaming methods loaked at so far perform "leaming from examples™. They take

+ sequences of positive and negative instances of classes (usually just one class) and pro-

due¢ definitions of the coresponding concepts, They cannot work without the help of a

"teacher” or "oracle”. i

Tdeally, we would like to have lcammg methods which can vd:mrc  concept definitions
withiout this sort of assistance.

C - Sﬁpmiscd V. unsuperviscd leaming =sse——seeeeeee

Lcaxrungw;lh mchelpofa teacher is called supcruscdlmng Leaming m:hwtthe-

help of a teacher is called "unsupervised leaming” and and sometimes "learning by abser-
vation" (LBO). . .

How can we get a program to do unsupervised Ium.ing?'

- — Hierarchical (agglammtive} clus-lcziug

N

{plant_kingdom|

)

|animal_kingem|

Set G 1o be the set of smg]e:wn ws such r.hst each set contains a umquc data element.
Thm . .

) Unull{i!wldo-

Notg that all the leaming-from-examples (LFE) methods we have locked at assums that -
the instances covered by a given concept will be similar to eae another. LFE programs

produce definitions in various different ways but these are cffectively just the different
ways of capturing instance-similarities in a general rule, i

- Dcﬁnitlons produced in similarity-based leaming - :
|
" Classlcal concepts aro based on the idca that the instances in a c.llu are similar in the
genso that they all have certain features,

.Dcchim trees aro based on the idea that tho instances in a cliss can be split up into
subgroups whose members aro similar in that they all have certain features,

'

Rules (genoralised definitions) aro based on the idea that the instances in a clacs aro
similer in the sense that their features are all special cases of the (generalised)
‘features appearing in the rule,

P 'Ihu.:ﬂwtocl'uﬁqua we have looked at arc all bascd on the same ides -- that the instances
covercd by a given class are somehow similar to one another.

- Nilmerical taxonomy - el feﬂ‘:ﬁ I

The idea that concepts capr.um similaritics between instances leads fmly directly 1o a
method for dedving concepts automatically without the help of a mdwr :

R

Givena bud:,r of data D1 divide it up into subset of similar elements. Thcn produce a con-

ccpt covering each of the subsets.

The process can be recursively applied to the set ufcono:pu pmdu.wd The end p:oduﬂ. o

is then a hicrarchy of concepts; i.c. a taxenomy.
Question: how docs a taxonomy differ from a decision tree?

= Cluster analysis

"The problem of automatically creating such a [class] hicrarchy has so far received litdle
ntion in AL Yet mting classifications is a very basic and wide.ly practiced intellec~
I process,

Past work on this problem was done mostly uul.ﬂdn Al undec the he-admgx of numesical

taxoriomy and cluster analysis (Anderberg, 1973). Those methods are based on the appli-
. cation of a mathematical measure of similarity between objects, defined over @ finite, 2
priori given sct of object auributes, Classes of objects ars taken as collections of objects
with high intraclass and low interclass smuls.nty The methods assume that objects are
characterized by sequences of attributefvalue pairs and that this inforimation is sufficient
for crcalmg a classification.
i I

Numexical taxonomy is used mainly by natural scientists who require classificatory sys-
tems for sets of natural objects.

+ Form a matrix of sinu]mty valucn for aJl elemcnl.s of G (Bsmg some gwm metric --
sce below)

+  Mergothose groups Il'l.d wh.i.ch heve 2 maximum similasity value,

. The algorthm is very mmghlfnrw:rd However, the qucsuon of how to compulo the

. -Euclidemmd“ 1

similarity values is a complex one,

There are two issues: :

B

» how should we work out the similarity of two distinet data clements? -
* how should we work out thu umﬂhdty of two groups of duta elancnts

an dixl-mcas

If i‘ilta clements are juét vectors of numbers, then we can mmum their similasity by
measuring their closeness (inverse distance) in the data spacc. 'I'lus can done usmg. eg,a

euclidean metric or 2 cny—block mctnc

Euclidean distance dudz-.rz(d1 & )2
City-block (menhattan) dm Sl - d2.l

If we think about the dnta elammts as pomu in ! gwmctno spaca 'I.hcrl tlmu- cuclldcnn

. dlstmcae 15 just the same l.b]ng 2 their "real” di.slancc.

- Smglmhnkngo and om}iw.-hnhgo mothods meemies

The simplest mm.hods for computing thu m.rmlmty nf two smups aro the smglwﬂnkngo
method and the complete-linkage method, -

In single-linkage, the distmce between two gmups is dcl"mcd as the dxsta.m:c bctwc'.m
their two closest points, . - .

.

‘In co-mplw:-hnkagu, lhe da.sla.nm ‘wtwccn r.wo gmnps is dcﬁncd as thc dlsba.nc.c bcl.wm

The basic principles guiding biclogical classification wers lald down by .Lmnacm but

these arc now under attack from some quarters,

thu.rtwn most distant points. .- .

. In 11:1: ocut:md mcmod the dm:mcc betwc.m two groups is dafmed as r.he d:st.ancc

between their cemt:om‘.s.

The naive appmach of oompmg gmup d.tsiancc in terms of tha.-, avmgc of the distances
for all pairs in G1 x G2 is computationally cxpensm and not often used, (Ins often
called the group-average method.) .

There are m.an_\r other methods (sw [Vogt. Nagcl & Sal.or, 1987, pp. 29-36]}

mExampla - -
Using LIB CLUSTER (sco SHOWLIB CLUSTER.P)
vars data =

((126- 81[342»11[87-24][‘1104]

(5321)(-9-8-7-6) {2222){3333)
(4444)(9-99-9)(8000}9111));

showdendro(cluster(data));




{126-8)
- —————-3 4 221
——(-110 -4}

, (8 7 ~2
[53211

e '-- I-—-—-—-{Z 22 2}
{3 3 3 3}

————eeess{d 4 4§ 4]
i m{ﬂﬂﬂﬂ]

— ——{3 111}
{9 ~9 o g}
{-9 -8 ~7 -5}

— Conceptual clustesing wen
Continuetion of quotc from Stepp & Michalcki. :

"... The [clustering] methede do not tsks into considerstion and backgrownd Fnowledge
about the sementic relationships ameng objest attdbutes or global congspre that could ba

used for cheracierizing object configurations. Nor do they teko inte consideration pessi-
ble goals of clnssification thee might bo indicated by backgronnd kmowledge.

As a reault, clacsifications obtainad by weditional metheds exo often diffieult to inter

pret cﬂnucph.l.ally " [Stepp end Micheleki 1986, p. 472]

'I'hcsc ideas have lead o number of rescarchers to axperiment with e extension of nume-

icel taxonomy ealled "concepiual clusteging”.

The generel aim in conesptiat elustering ie the samé ne in mnnesieal m'xcmmy* 0 dezive

JQM}%WW :

.*Jrc.‘ucal clazsification. But in conceptual clustering there ix thc z&dnm aim that

node in the hicrarchy chould fomm 2 cchereat concspt.

Many techniques have been dwclapeﬁ 1Mot of them invelve mungmg t."ur:gpz such that
the construction of now groups (clustere) tzkes into uccount both thelr ﬂ:.‘nt.:c::c gimilaricy
and the degrze to which their union ferms o gc»od coneept,

== Reading

An excellent survay erticle on conceptuel clusterdng is [Fisher & Langiey 15857 -~ 1his is
npapér in DCAID,

The classie relerences for clmtmng and numavical tanonomy aro [‘:’-Ivemz 1574] um:l
[Anderberg 1973). /

Anothier seference of interest is [Fisher 1987], ) : s

b

Cn the wider epistemological staine of clustering rea [Good, 1977}, ¢ »

A very accessible mticle is [Michalski & Swpp 1983] md the fnﬁo-mb in MLZ [Michsl- -

sld & Stepp 1986].
Fore minlcey-mnuza introdustion to clustar anulysislﬁm [Rﬂméhmg iéS-iI.
[Sokzal 1977] is an asthoritstive sarvoy ardcle on clusterny sud clagsitidation, .

.

. ! ‘ . ' ;
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= UNIMEM

Conceptual clustering is a variant of the hicrarchical clustering process in which the for-
mation of new groups takes into account both their syntactic similarity and the degree to
which their union will form a "good” concept. ' '

"good" can mean a number of different things, eg \
TN L
+  cpmpact ~ . o ™
O Az & Cod™
~ b - L(’B YI.(‘IE‘L
*  mionothelic (or minimally polythetic) \.,m"; ric [dlab"

+ casily represented in terms of a definition or rule which has a natural interpretation
for humans

¢ c4sily transformed into a representation which can play some k.md of rale in the
achievement of gouls !
This lecture will look at Lebowitz's conceptual clustearing algorithm called Unimem.All
unlab_nllcd references are to [Lebowitz 1987). !

— Generalization-based IMCINOTY —wmemmmmmms e e

Normally, in conceptual clustering, wo (1) nitialse a set of singleton groups from the set
of data elements and then (2) repeatedly merge similar groups so as to produce good con-
cepts at cach stage, Unimem does something like this, :

"The task of Unimem is to take a serics of examples (or instances) that arc expressed as
“'-:Lions of features and build up a gencralization hicrarchy of concepts.” (pp.103-104).

“However, it does not do any explicit clusiering, Instead it attempts to process new
instan¢es by updating an existing hierarchy of concepts, which in Unimem is called the
generalization-bascd memory or GBM. Updating the GBM involves ddding in the new
instange at some point end updating cxisting nodes as necessary. .

"Ihe usc of a hicrarchy of gencralizations as a method of memory organization allaws

elficient storage of information since it supports inheritance, In addition, GBM allows the

generalizations and instances relevant for leaming to be found cfficiently in memory .."

(p. 109).

+- » The instance-processing loop in Unimem seemvem- -
; Cowest) ; )
* Scarch OBM depth-first for the most specific concept node(s) that the instance
mul-ches(CWﬂ95 .

+ Add the new instance to memory at or below this node, This i.ml'nI\-'i::s comparing the
new instanca to the ones already stored thero and generalizing if appropriate,

(Adapled from peoudue-code rlgordilim on p. 110)

A" Usilmom searchies down the concopt hlorarchy, foatures are gxldual!ly accounted for
by vardpus genenalizadons!

== Crogling Now CONCEPLS =sessemmcarenmmamesmmeaces '
)r point -

il the sum of the distances between the curreatly unaccounted-for features and those
of the cunent node is 100 great, then stop exploring this branch. i

+ Otherwise, explore relevant children,

The search process returns all the most specific nodes which explain (cover) the new
inslance,

Unimem then generalises each node 5o as to account for (cover) the new instance. Tt then
compares the now instance with all the other instances stored at each of the retumned
nodes, If it finds an instance which has cnough features in commeon with the new
instance, it creates a new subnode by gencrlizing the common features and it stores both
instances at the subnode,

Uniment includes Jots of kludges for making the whole process work as well as possible
(although Lebowitz does a fine job in making them sound like principled features), It also
requires fl3 parameters to be set by the user in any application. ;

o= Flag data .

[
/* Flag Stars Bars Strp Hues Xcrs Icon Hmns Word Num Typae /
Alabama 0 ) 3 . 0
Arkansas 29
Connecticut 0
Delaware
Florida
Gaorgla
Illinois
[Icwa
Lousiana
Maryland
Masachusetts 1
Mississippl 13
MNew Hants
New Jersea
New York
N Carolina 1
Ohio 1
Rhode_Is 1
S Carolina O
Tennesee 3
1
0
0
3

oo

w

CO0OMOO
L=]

1R |
[

Texas
Virginia
Wisconsin
Washington
¥

g

COoOOHNOOOHOCOOOHONOFRODOOO
COHFOOHPOORFRORPRPHRME R Ro0
COMNNOOCOOONNOOHOOOOOHMOD
CN&OO0OFOWHW-IOMOAHGWR A AINS
OFO0O0O0O0ACHPOOOCOONHONOOD
cocooaonaan gocacenacnncc

VOoOOoONOCOCOUNOOOWOOOoDOOODooO
PLLN Lo LR L L b O U LD L0 B B s G L S R R L
O000000CO000OOHOCOOoORHOOOR

==Toy implementation

/* unimem.p - basic implementation of Lebowitz’ Unimem learning algorithm */

,.%
Data structures:

<cancept_hierarchy> ::= [ <node> <subnode>* ]

<subnode> ::= <node> | <concept_hicrarchy>

<node> = { [ <instance>*] }

<instance> = <index:intcger>

<feature_vector> = [ <feature>*]

<featurc> 1= { <index:integer> <minvalinumber> <mazvalinumber> }

*
uses showtree;

vars )
coverngo,_threshold,
genenlisation_threshold,
concept_hicrarchy,
input_data,
input_jnstances,
feature_veciors,
number_of_features,
feature_maxvals,
feature_minvals,
subnodes =1l,
instanco = falso,

define instances_ai(node); hd(nodo)(1) enddofing;
define updaterof instances_st(node); -> hd(nede)(1) enddefine;

define addup(numbers);
if numbers =[] then 0 else hd(numbers) + addup(t(numbers)) endif
enddefine;

define feature_distance(f, s
((if 1(2) >= g(2) then 0 else g(2) - £(2) endil)
+ (if f(3) <= g(3) then 0 clse £(3) - g(3) endif))
/ {feature_maxvals(f(1)) - feature_minvals(f(1)))
enddefine; y

define appfeatures(unexplained_features, features, pdr);
vars feature, feature_index, unexplained_feature, distances;
[ % for feature in features do
feature(1) -> feature_index;
for unexplained_feature in unexplained_features do
if unexplained_feature(1) = feature_index then
pdr{feature, unexplained_feature)
cndif
endfor
endfor % ]
enddefine;

define sum_of_distances(features, unexplained_features);
addup(sppfc.amm(unaxphi.nnd_fcaLn:c.s, features, feature_distance))
enddefine;

define retm_if_explained_by(feature, generalisation);




il fedwire_distance(featwre, generalisation) = 0 then featuro endif
canddeling;

defing SUlL_unexpluined_features(databaso, fentures) - datubase;
applist(
appleatures(database, features, retum_if_explained_by), flush);
enddefine;

define search(node, unexplained_features) -> nodes:
vars subnode; '
if (sum_of_distances(features(node), unexplained_features)
/ -humbar_of_l'calums) > coverage_threshold then
[1 -5 nodes
else
still_unexplained_features(uneaplained_features, features(node))
->unexplained _features; '
[ % for subnede in subnodes(node) do
cxplode(scarch(subnode, unexplained_features))
endfor % ] -> nodes;
if nodes = [] then [["node "unexplained_features]] -» nodes; endif;
endif
enddefine;

define generalisation(feature_vectorl, feature_vector2);
vars I, {2
[ %o for £1 in feature_vectorl da
for 12 in feature_vector2 do

ifFF1(1) = £2(1)
and feature_distance(f1,£2) < coverage_threshold then
. { % £1(1), min(fL(2), £2(2)), max(f1(3), £2(3)) % }
endif

endfor;
endfor % )
cnddefine;

‘gl (orm_generalisation(instance, new_instance) -> node;
N ode = [{[“instance “new_instance] }J;
generalisation(feature_vectors(instance),
featore_vectors(new_instance))
> features(node);
enddefine;

define update(node, new_instance, unexplained_features) -> node;
vars instance, added_subnode = false;
for instance in instances_at(node) do
if (sum_of_distances(featurc_vectors(instance),
feature_vectors(new_instance))
{number_of_features) < generalisation_threshold then

form_generalisation(instance, new_instance) = t(node) -> d(nodc);

delete(instance, instances_at(node)) -> instances_at(node);
true -> added_gubnode;
eadif;
endlor]
if naldddetl_suhnnde} then /* add instance to current node */
new_instance :: instanees_at(node) -> instances_at(node);
endif;
enddefine;

define process_new_instance(instance);
vars nade, nodes, uncxplained_features;
scarch(concept_hierarchy, feature_vectors(instance)) -> nodes;
forcach [Tnode Tuncxplained _features] in nodes do
(B ‘aic(ncde, instance, uncxplained _features) ->;
ureach;
enddeling;

define sclup; /* flag data example */
vars valucs, i, value; .
0.075 -p coverage_threshold;
0.75 -> generalisation_threshold;
compile('flag_data.p”) > [77input_data:12 ==];
input_data(1) --> [= 7?valucs =J;
length{values) -> number_of_featurcs;
newproperty([),16,{],falsc) -> features;
newproperty((],16,999999,false) -> featuro_minvals;
newpraperty((],16,-999999 false) -> fealure_maxvals;
((0)] -> concept_hicrarchy;
[ % forgach [= ?7valucs =] in input_data do
[ % for i from 1 to number_of_features do
" values(i) -> valu;
min(featuro_minvals(i), valuc) -> feature_minvals(i);
max(feature_maxvals(i), valuc) -> feature_maxvals(i);
, [ %, value, valus % }
cndfor % )
endfdreach % ] -> featurs_voctors;

{ % for | from 1 to length{featura_voetors) do L endfor % } -> in puUmI.ln;cu;

enddefine:

define go;
if input_instances matches [7instance 77input_instances] then
process_ncw_instance{instance);
showbaretree({concept_hierarchy);

csa
[finished] =
endif;
enddefineg;
"
.y
dcfine run;
setup();
until input_instances =[] do go() endumil;
enddefine;
== Worked example
setup();
80
{0}
go()s
{Fl
{1 2]}
go();
{[1|3]}
{[1 2}
go(); [P )

{[3|fi]} {[11211

go();
{[5]}
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go(); i
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The best mfcrcnco for Unimem is [Lebowitz 1987] but see also [Lebownz. A.n O\rmmw.

1986] md [chowml.z Experiments 1987),
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- == EXPLANATION-BASED LEARNING =seascesasasmanaasenans

I np]unuu:m -bused Leaming (BBL) is cumrently one of the most active mmrch arcas in SP
lenming rescarch, '
Some penple and places
DeJong
University of Illinois at Urbana-Champaign
Carbonell, Minton
Camegic-Mellon
Hirsh .
Stanlord

Ani 1|11p<munl carly paper is [Mitchell, Keller and Kedar-Cabelli 1986). 'l'hc. most accessible
paper is (currenily) the one by DeJong in ML2.

== Background

L
Most of the SP and PDP,lcaming mechanisms we have looked at so far have used no built-
in knowledge. They apply some domain-indcpendent algorithm to input data so as to derive
represeatations of the environment frem which the data are drawn. People have noted that
there are at least two problems with this approach,

- In the 70s and 80s, Al researchers have tended to place increasing emphasis on the role of
background knowledge in cognition, Lenat has christened the notion that Al systems cannot
hope to'perform well without lots of background knowledge the "knowledge principle”; and
in Winston's text book [Winston 1984), the idea that the knowledge principle will always
hogaa(negative) impact on leaming mechanisms takes the form of Msmn s law” - you
ca J in something unless you almost know it already.

- Researchers have noted that human's froquently leamn how to solve a problem by observ-
ing and understanding how some other human solves it. This scems to suggest that power-
ful learing (e.g. the sort exhibited by humans) may depend on being ‘able to construct
explanations for the behaviours of other cognitive mechanisms,

-- EBL in theory

Owver the last few years, leaming rescarchers who are cither (a) very commited to the
kanowledge principle, or (b) very interested in micchanisms which leam how to solve prob-
lems {or both) have been developing the approach called prlamuon-ﬂascd Leaming (or
semetimés Explanation-Based Generalization).

Ideally, an EBL system is a program which lcams how to solve some problem by (a)
observing strategies by which the problem can be solved and (b) constructing explanations
about these strategies, and (¢) modifying its own behaviour with reference to these explana-
lions, In practice, the behaviour of EBL systems is a rather specialised version of this ideal.

= EBL in practice =s-r=-cee-cresrerasmmmsumen |
Ihere is not much point in a learning mechanism which can enly lcam 1o solve some prob-
lem if it'needs to watch a program which can *already* solve it. EBL systems therefore
gericrate and observe their own (flawed) solutions to problems.

‘Ihere is 'no robust definition of "explanation” as yet. So the explanation used by an EBL
5|j.s typically just the scarch space generated by the problem solving process.

‘The behdviour medifications which are intreduced with reference to the explanations arc
typically jusl alterations in the heuristic which guidcs the problem solving 'smmh.

"Almost all EBL problem-solvers learn by analyzing why 2 solution sucocc.ds in solving &
pmhlt; (Minton end Carbanell, 87)

- The I.I.X system

‘The EBL framework was given its first (7) clear articulation in the form of the LEX system.
‘This system is built around a problem solver which solves problems in symbohc integra-
tion, Solving a symbolic integration problem involves performing a series of syntactic
munipulations on a mathematical expression 50 as to get rid of an integration sign (cf. per
forming syictic manipulations on an cquation 5o as to get all the unknowns on one sidc),

T'o understand how LIEX works it is important to know that the mhlhumtic_:al expressions in
question form a data language which can be defined using 2 single gencralization hierarchy.

" :)9“‘!9’ 3@@55,-143 o |

mm A description Janguage for mathematical cxpressions

ffr int
—der
{op ix 1is)
affr (£fr affr)
(tr altr)
|————1(op ax ax)
ax: | afr
¢ {op € ¢)
cprim
{comb fr fr)
any ————————mon
pol———|
fr——— {(+ — pol mon)
abs
prim——— sin
|-—--—~ccs
trang Ltrig tan
——se
sec
cot
eln 1n
————axp
/
opr }
| Se—
e
+. |

Sce (Uigoff, Shift of Bias, 1986), p.121 for the compleie grammar,

In the data language defined by this generalisation hierarchy, data clements are N-tuples of
leaf-nodes - but N is not fixed. Thus a data element might be something like

x+y
or
sin(x + y)
In fact, in the implementation of LEX expressions were wrilten in a standard (LISP) nota-

tion so as to make the problems involved in dealing with arbitrary sized tuples less severc
(sce Utgoff, Shift of Bias, 1986).

== Integration OPerators s sesssesssasmsmsesenes
The problem solver component of LEX accepted en integration expression as input and
attempted 1o find a way of manipulating so as to get xid of the integration sign.

To do this it used a set of operators cach one of which defined a particular manipulation; ie.
showed how an expression of some paticular form can be simplified.

OP02 (power rule)
t:.cm\.fe:‘:f ,lxr dx
w i)

OPO03 (factor out a real constant)
convert [ rf{x) dx

i) r S i

OP06
convert Jsin xdx
10 -~ cos x
Oros
convert 1. f{x)
to flx)
OP10 4
convert [cos x dx
10 sinx
OP12 (integration by parts)
convert |udy
to uv-Jvdv
OP15
convert 0. f{x)
to 0

L‘Pﬂyk:
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= The problem §pace «emecvesmmmmmenem e

In any given situation, the problem solver in LEX has to select onc of the applicable opera-
tors 'and apply it. The sct of applicable opertors corresponding to some given expression
form the child nodes for the node corresponding to the expression in the search space which
is explored by the problem solver,

In L'I:'K each operator is associated with some information which 'suggests whether the
opertor is appropriafe in a particular case. The problem solver just tries the appropriate
opertors rather than all possible operators (iLe. it exccutes a hueristic scarch),

-- Version space heuristics =--mmeseemsmsmmemnes - |

This information about appropriatencss is actually just a version space definition (a G and
an S). i

Recall that a version space identifics a subsct of the possible data clements (i-e. a subspace
in D). Thus the appropriate cascs in which an operator can be defined as those data clements
which are in the version space associated with the operator.
Consider the operator
INT sin(x) dx ==>-cos(x) + C
Typigal heuristic (represented in English)
"IF the problem state contains an integrand which is the
product of x and any transcendental function of x, THEN try

integration by parts, with u and dv bound to the indieated
subexpression”

icimunwd us a verslon-space
" (INT 3x cos(x) dx s> apply OP2)
Gi (INT [1(x) £2(x) dx ==> apply OP2})

]
where "f1" and "f2" denote "some function™

== Another example «rsseememmme e e
G =/ f(x) g(x) dx ==> OP12, with u=£(x) and dv = g(x) dx

§=] 3x cos xdx =a>0P12, with u=3x and dv= cos xdx

-~ Processing cycle in LEX —--—-—vemmrmm s

——problem solver <—

critic problem N
generator

—_— generallsel‘—]
(o didett € ﬁ?l-u}.qq-I-m;‘

"inliy, LEX has a storc of intcgration operators. Each one is associated with 4 "null”
dstic; i.c. a version space which includes just the expression featured in the operator.

It then enters a loop in which it
- gm&atu an integration problem. (Problem generator)

- solvgs by exploring the space of possible operations using the version spaces associated
with cach operator to decide whether it is appropriate in any given case. (Problem solver)

- extrdcts from the trace of the search space generated all the operator a:ppucﬂionx lying on
the path to the solution node and all the operator applications lying off the path, (Critic)

- updnlal. oach version space using the Cundidate-Elimination algorithm so a8 to ensuro that
cuch ono covent sny applications (of the sesociated operator) which are'on the solution path
and excludes any spplications which lead away from it, (Generalizer)

- Problems with EBL

EBL is a knowledge-intensive leaming mechanism which is capable of producing very
impressing leaming performance. But the secret of its success is also its achilles heel. It pro-
duces impressive performance by exploiting the background knowledge (domain theory)
which 'is pre-programmed in to the system. But if this background knowledge is in some
way flawed (if the domain theory used is not perfect) then the leaming process may go
wildly' off-track. This dependence on a perfect domain theory is regarded as one of the
mujor problems with ER3L.

-2-

== Reading

Dejong, An Approach, 1986;

o
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- THE PROBLEM OF ABSTRACT CLASSES ---ms-mmrmeeen

All the leaming mechanisms we have loaked at assume that

- there is some description or data Janguage D
+ any concept which can be defined in terms of D can be defined in tems of a *subset* of

In other words they make the assumption that any concept which can be dcﬁned in terms of
some set df-':crlpuons covers a subact of those descriptions,

‘Iiis assumption tums out to be invalid,
== Abstract v, cONerele CoNCEpls =--s-sssemmmasmreen I
1Y = the set of pairs which deseribe playing cards
[ (3, hearts] [gueen, diamonds] [9, spudes] ... ) '
Risthe rgpmsm;adan language; i.e. the language in which instances are n;p:c.smtcd.

Rl

Cisthe class of all black cards, A concept covering C can be scletively dc!:ined: eg.

: inbluck(card);
Finatchen [wm spaces] or card matches [me clubs]

enddefine;

Contrast this with the sitvation where R is the powerset of D and C is the class of all
"struighty". A coneept covering this class has no sclective definition on D. '

Cuncepls which have selective definitions on some D are said to be "concrete” (with respect
1 1)), Concepts which can be defined in terms of elements of D but which have no selective
definition on I are suid 1o be "abstraet” (with respect to 1), '

<= Very abstracl COnCepls —-mesm=ssmsseesimamsaaman

C ix the glass of all "close straights”, An instance of this class is a set of N hands such that
they are kil straights with fairly cqual overall valucs. This class can be described in terms of
pluying cards but clearly not in terma of a subsct of playing cards. Thus it is an abstract
cluss wuh respect to I, The question is: "how abstract? .

Imagine I) is the set of all descriptions of complete poker hands (S-tuplcs on D). The class
of all smughls is abstract with respect to D but concrete with respect to D', But the class of
all close straights is abstract with respect to both. This scems to suggest that, in some sense,
the class of close straights is more abstract with respect to D than the class of all "straights™.

We need a way of defining classes (i.e. of building concepts) which pur.s 2ll this on a firm
foming. '

-- Generalised concepts ---— —

« ivdefinition of elass C is a pair containing an n-place function and an n-mple. The ele-
ments.of the n-tuple are cither all class definitions or 2ll members of D, The inputs to the
functibn are the outputs of the functions (or the clements of D) which appear in the n-
tuple. The functien produces <false> plus a range of other outputs all of which are inter-
preled as <true>,

- A cln;s definition whese n-luple contains only descriptions is of order l Otherwise, if the
n-tuple contains a class definition of order m, the definition is of at least order m+1,

The aiity of a definition is just the arily of its funetion.

== A definition of STRAIGHT —--eeme S

Fa €, 5 «es?

o<, ,,,2

Fb<, s ,/+>

value(T) If T forms a stralght '
Fb(T) =

false otherwise

1 if max(T) - average (T} » threshold

Fa(l) =
false otherwise

-- Higher-order classes? -mmmeem-mmeoecmasseamnnnnn

Class definitions always have a specific order and arity, But docs the fact that a class has a
nth-order, m-place definition say anything about the class itsclf?

For any extcnsional characterisation of a class (i.c. any enumeration of its instances) there
will be a range of possible definitions of that class amongst which there will, presumably,
be 2 minimum observed order and arity. So, define the degree of abstractness of a given
class with respect to some given set of basic objects in tezms of the minimum order and
arily of a definition of that class.

== A definition of SHOPPING-MALL seessemreamenmes -

= D is a sct of (descriptions of) blocksworld objects (a sct of triples of the form <name
colour location>),

R is the powerset of D.

C ig the class of all "shopping-malls”.

Fs is a function which takes a subsct of D and rctums a "structure number” (1 for an arch,
2 for a tower, ctc.) if the clements form 2 structure and false otherwise,

Fec is a function which takes n structure numbers and retums a “configuration number” (1
for & house, 2 for an arcade etc.) if they form & configuration and fulse otherwise.

Fm is a function which takes n configuration numbers and retums e if they are all 25,
false otherwise,

== A definition of CITROMOSOME —--meeeescosmcnmencas
Fe < e >
I
Fg < ... > Pg<!..>. .
€ s P < ...>» Fd<...>
Fp<...> Fp<...> Fp<...> Fp<...>..
Fn<...> Fn<...>» Fn<.,..> Fn<, .
Fa<...> Fa<...> PFa<...>» Pa<.,..>» Fa<...>...

-

D is the set of elementary particles (the set of descriptions of clementary particles). R is
the powerset of D, and ¢ is the concept CIHHROMOSOME

Fa is a function which takes a subset of D and retums an atomic number if the
corresponding particles form an atom, and falsc otherwise.

Fn is a function which takes n atomic numbers and retums a "nucleotide number” (i.c. 2
label for a nucleotide) if the corresponding atoms form a nucleotide, and false otherwise.

Fpis a function which takes n nucleatide numbers and returns a "polynucleotide number”
if the comesponding nucleotides form a polynucleotide, and false otherwise.

Fd is a function which takes n polynucleotide numbers and retums a "DNA number” if
the corresponding polynucleotides form a valid strand of DNA, and false otherwise.

Fg is a function which takes n DNA numbers and retumns a "gene number” if the
corresponding strands of DNA form a valid gene, and false otherwise.

Fe is a function which takes n gene numbers and retums true if the corresponding genes
form a valid chromosome, and false otherwise.




