®

Logic and Automating Proof

Jane Hesketh
November 1, 1988

This is not meant to be a complete introduction to logic. Just some scene setting and
notes on particular points. Some of the notes on the use of Gentzen Sequent Calculus
follow Gallier’s book “Logic for Computer Science”.

1 Propositional Calculus

The propositional calculus is a language for labelling events and combinations of events
which may be true or false, and then ascertaining the truth or falsity of the combinations.
The statements in the language are considered relative to tnterpretations, assignments of
truth and falsity to the propositions which reflect our understanding of what we intend
the symbols to mean.

1.1 Syntax
The calculus consists of:

¢ atomic propositions which we may label as we like: t is raining, there s nothing
good on TV tonight, etc.

e connectives: A, V, D,-,=, respectively and, or, implies, not and equivalence. Some-
times other symbols are used instead of these.

¢ Well-formed formulae built up from these.

e Also used sometimes are symbols for false and true: L, T. Brackets are often used
for clarity or to require precedence of certain connectives over others.

Not all combinations of symbols are legitimate formulae which can be evaluated.
Well-formed formulae are :

e Propositions
e ~P,PAQ,PVQ,P>Q,P=Q where P and @ are both well-formed formulae.
o Nothing Else

I will use letters like P and Q as variables, representing any formula.
Some connectives are deemed to bind tighter than others, from tightest to loosest
they are:

Note that for the purpose of description, it is often useful to use propositional vari-
ables, i.e. letters which represent some atomic proposition.

1.2 Truth Values of Formulae

Propositions may be assigned either the value true (T) or the value false (L). The truth
value of formulae are established recursively from the truth values of the argument(s) of
the dominant connective. So for some formula of the form AV B, it will be true if 4 is
true or if B is true. A and B may in turn be formulae.

The following tables show the truth value to be assigned to the overall formula ac-
cording to the truth values of the argument(s). (Vertical is left and horizontal is right).

AT IL] AR
TIT[L e
L Ll Eé(;___,.f-———-
-
VITIL] s | At
TT]T 717 :
- 1€
LTI 4L o i
DT L - ‘ -
Tl B e e
i {;-ﬁ Jé
e |l 1 |

1.3 Truth Values of Formulae

In general it is quite easy to work out the possible truth values of a formula for all
possible assignments of truth and falsity to the propositions in it. Each proposition

2

named in the formula may be true or false, so if there are 2 propositions, there are 22
possible assignments of truth values, and for 3 variables 2% possible assignments etc.
Two common ways of doing this are truth tables and semantic trees.

1.3.1 Truth Tables

Each column contains truth values for a formula depending on the different truth assign-
ments to the propositions occurring in it. On the left the formulae are propositions, and
to the right, increasingly more complicated formulae built from the formulae to the left.
Each row contains the truth assignments to the various formulae depending on the
truth assignments to the propositions. So if there are n different propositions, the leftmost
n columns record their combinations of true/false assignments, and there are 2" rows.

[PIQT-Q[PVRQI(PVQ)OP| ftrea

| = | -
| =] = -

2
1
L

| | =]
e

s

1.3.2 Semantic Trees

This is much the same sort of idea as truth tables. The tree is as deep as there are
propositions. Each level corresponds to assigning its proposition true or false for each of
the assignments already made to other variables. So each path from the root to a leaf is
a unique assignment of truth values to the propositions.

P - T _L‘

Q T 1 T 1
-Q T 1 T L
Pv-=Q T 1 T L
(PV-Q)> P T LT 1

1.4 Equivalences and Redundancies

Using such methods, you can see that some connectives and formulae have exactly the
same truth functional properties as other formulae. So some formulae are precisely equiv-
alent to others, and may be eliminated in favour of the others. This can be used to reduce
the number of connectives present in a formula. (In fact there are connectives such as
NAND, which I haven’t chosen to use here, which can express all the others when used
in the right combinations).

[—P[—P|-PVQ |P5Q[QOP|POQAQOP[P=Q]

=

R Y
|] =]l ©

|||
—| ||
|+

~| ||
|| 1|

==

Look at the columns for P and ——P to see their logical equivalence. Similarly P D @
and -PVQ,P=Qand (PDQ)A(QDP).

Other equivalences:

(PAQ)VR=(PVER)A(QVR)

(PVQ)AR=(PAR)V(QAR)

1.5 Satisfiablity, Falsifiability and Theorems

Using devices such as truth tables and semantic trees, it is straightforward to work out
whether some formula is:

o Always true, regardless of truth assignments to its propositions - it is are true in all
interpretations. This is called a tautology — these are the theorems of the calculus.
e.g. Pv—P

e Never true, regardless of truth assignments to its propositions - it is false in all
interpretations. This is unsatisfiable. e.g. P A-P

e True for some assignment of truth values. It is satisficble.

e False for some assignment of truth values. It is falsifiable.

Naturally these formulae with the special property of always being true are very
interesting, and the ones we want to know about.

1.6 Proof

Although it is possible to consider all possible 4 assignments of truth to all propositions,
the number of these increases exponentially with the number of propositions. Clearly it is
nicer to use our understanding of what a tautology is to avoid such expensive enumeration.
There are various possibilities such as

¢ using conjunctive normal form

e searching for falsifiability, in which case it cannot be a tautology, and at least you
can stop as soon as you find this.

e splitting the problem up into more manageable components.

4

1.6.1 Conjunctive Normal Form
A conjunction of disjunctions of literals. (A literal is an atomic propostion or the negation
of one). E.g.

(PVQV-R)A(SV-Q)A-P

A conjunction is a tautology if and only all its conjuncts are tautologies. Such a
disjunction is a tautology if it contains an atomic proposition and its negation amongst
its disjuncts. This is easy to detect, just check all the disjuncts. If any is falsifiable, the
whole expression is falsifiable.

To convert a formula to CNF:

1. Eliminate = and D in favour of A, V and ~ ‘
2. Drive all =~ down to propositions and eliminate ——
3. Use distributivity of A and Vv

E.g.

(P>Q)>(-@>~P)
~(P>Q)Vv(-Q>~P)
~(-PV Q) V (~Q > -P)

=(=PV @)V (-—QV-P)
(=P A-Q)V (-—QV =P)
(PA-Q)V (—QV-P)
(PA-Q)V(QV~-P)
(PVv@QV-P)A(-QVQV-P)

However all this still involves the overhead of normal forming. Using a slightly different
logical system, normal forming can be avoided. The next subsection will describe such a
system for propositions, and algorithms for searching in it.

1.7 Gentzen Sequent Calculus
A sequent is written as
Ai,...,Am — Bi,...,Bn
and corresponds to

(A1 A A Am) o (Bl V..V Bn)

— corresponds to a single top level implication. The left-hand list of propositional
formulae are considered to be ANDed together, and the right-hand list are considered to
be ORed together. So for any sequent:

e tautology means having the same formula on both sides of = e.g. P — P,Q. This
is called an aziom in this context. It is obviously not falsifiable.

e falsifiablity requires that all the formulae on the left-hand-side can be made true
and simultaneously one of the formulae on the right-hand-side can be made false.
EgP—-T

The left-hand-side is referred to as the antecedent, and the right-hand-side as the
succedent. You can think of these as assumptions and conclusions respectively.

Either the succedent or the antecedent may be empty. If m is zero, i.e. the antecedent
is empty, that corresponds to no assumptions being required to prove the succedent. If
both antecedent and succedent are empty, that is the inconsistent sequent, always false.

Proof is investigated using deduction trees like this one, which demonstrates that
(P > Q) > (=Q D —P) is a tautology :

—"Q)P_"P Q_’_‘P)Q
ﬁQ—)'P,_IP Q,"“Q-—)_IP
-—)P,—IQD—tP Q-—)—;QDﬁP
P>Q—-QD>-P
- (P>Q)>(~Q>~-P)

This tree demonstrates the validity of (P D Q) D (=Q D —P) because it is validly
constructed according to the inference rules (see below) and each leaf is an aziom. So,
it starts with valid sequents and each sequent is validly inferred from the one(s) above
it. Gallier’s book contains proofs that these trees are equivalent to truth tables in their
demonstration of validity and falsifiability, and that this procedure is sound and complete.
It is important to know that these properties can be proved.

The obvious way to grow a deduction tree is from the bottom. The bottom sequent
here can be thought of as the statement that no assumptions are required to prove
(P > Q) > (=Q > —P). Then use the inference rules backwards, to grow sequents from
which the ones below could have been derived. For each sequent there will be as many
ways of doing this as there are non-atomic formulae in the sequent. You can view the
growth of the tree as a search for all leaves being axioms, but if at any point you find a
non-axiom, you know the sequent is falsifiable, and so is everything below derived from
it. So there is a potential for doing less work than a complete normal forming, since you
may be able to stop short if you find a falsifiable sequent. It depends on how you grow
the tree. There are choices - breadth-first, depth-first, preferring one-premise rules to
two-premise rules, to delay branching as long as possible....

6

1.7.1 Inference Rules

I'A,B,A— A = AAA I'- A,B,A
T,AAB,A—A I'— AAAB,A
I'AJA— A I'B,A— A ' - AA B,A
' AvB,A—A I' - A,AV B,A
A— AA B,TA— A AT — B,AA
' A>B,A—A '—-A,AD B,A
A — AA AT — AN
I'-A,A—A F'—> A,-AA
' where I', A and A are arbitrary sequences of formulae, and A and B are propositional

formulae. Strictly speaking there are also some structural rules which permit you to re-
order the formulae on either side, and duplicate formulae for use with different inference
rules. Each of these rules is labelled with the name of the connective introduced and the
side of the sequent on which it is introduced.

The sequent(s) above the line is the premise(s) and that below the line is the conclu-
sion. Since these rules always reduce the number of connectives when applied backwards,
the growth of the tree backwards is guaranteed to terminate.

1.7.2 'Tree Exploring Algorithm

This is a sketch of such an algorithm in a Pascal-like language, there are two procedures:

procedure search(lT' — A:sequent; var T:tree);
begin
let T be the one-node tree labelled with T — A 3
while not all leaves of T are finished do

To := T H
.’ for each leaf node of T do
if not finished(node) then
ezpand(node,T)
endif
endfor
endwhile;
if all leaves are azioms
then
write(T is @ proof of ' — A’)
else
write(T — A is falsifiable’)
endif
end

procedure ezpand(node:trec-address ; variiT :tree);
begin
let Ay,...,An — Bi,..., By be the label of the node;
let S be the one-node tree labelled with A;,...,Am — By, ..., Bnj
for ¢ := 1 to mdo
if non-atomic(A;) then
S := the new tree obtained from S by applying to the
descendant of A; in every non-aziom leaf of S
th left rule applicable to A;;
endif
endfor;
for 1 := 1tondo
if non-etomic(B;) then
‘ S := the new tree obtained from S by applying to the
descendant of B; in every non-aziom leaf of S
the right rule applicable to B;;
endif
endfor;
T:= dosubstitution(T,node,S)
end

That algorithm would produce this tree:

Q,P,P,S — Q,T,T R,Q,P,P,S — Q,T
Q:P)—'Q’P,S_'T;T R,Q,P,_‘Q,P,S—*T
Q,P,~Q,(PAS)—T,T R,Q,P,-Q,(PAS)—T
P,~Q,(T D R),(PAS)— P,T Q,P,-Q,(TDOR),(PAS)—>T
P,-Q,(P>Q),(T>R),(PAS)—T
2 (PA-Q),(P>Q),(T>R),(PAS)—T

which shows that (P A =Q),(P D> Q),(T D R),(P AS) — T is a tautology. It would
also produce this tree:

Q—P

Q’—IP—)
SP>5Q -P—--Q
= (P>Q)A(-PD Q)

which is a counter-example tree. The leaves are not axioms, and the root sequent is
not a tautology. So this tree shows that the root sequent is falsifiable.

Gallier’s book also contains a proofs that:

8

e these procedures for developing the tree terminate for every finite input sequent
I' - A. This is done by showing that the number of connectives is constantly

being reduced.

e the procedures are complete - if the root sequent is not a tautology, they will
generate a tree which falsifies the root sequent.

e the procedures are sound - if they generate a tree from a sequent which falsifies it,
then the sequent was not a tautology.

2 Predicaté Calculus

This involves the usual additions to the language: functions, constant symbols, variable
which range over universes, and the V and 3 quantifiers.

An interpretation of a formula F in the first order logic consists of a non-empty
domain D, and an assignment of “values” to each constant, function symbol, and predicate

symbol occurring in F as follows:
1. To each constant we assign an element in D.

2. To each n-place function symbol, we assign a mapping from D" to D. (Note that
D" = {(31’ ---)zn) I zyE€D,..,z, € D})

3. To each n-place predicate symbol, we assign a mapping from D" to { L, T}.

Sometimes, to emphasise the domain D, we speak of an interpretation of the formula
over D. When we evaluate the truth value of a formula in an interpretation over the
domain D, Vz will be interpreted as “for all elements z in D”, and 3z as “ there is an

element in D”.
For every interpretation of a formula over a domain D, the formula can be evaluated
to L or T according to the following rules:

1. If the truth values of L and R can be evaluated, then the truth value of =R, L A
R,LV R,L D R,andL = R can be evaluated as for propositional calculus.

2. VzF evaluates to T if F evaluates to T for every d in D; otherwise it evaluates to
L.

3. 3zF evaluates to T if F evaluates to T for at least one d in D; otherwise it evaluates
to L.

Notice that this will not cope with free variables. It is common to demand that
variables be quantified, and sometimes we close a formula by universally quantifying any
free variables.

Example: Consider VzP(z) and 3z-P(z) with the interpretation
Domain: D = {1,2} ‘
Assignment for P:

P(1) P(2)
T 1

Then using the rules, VzP(z) is 1 and 3z-P(z) is T.

Termination can no longer be guaranteed of proofs, now that predicates take the place
of propositions, and they are parameterised over universes which may be infinite, so there
are an infinite number of symbols to be assigned a truth value in interpretations. Also,
the inference rules (see below) do not reduce the number of connectives.

Some definitions:

e A formula G is consistent(satisfiable) if and only if there ezists an interpretation
I such that G is evaluated to T tn I. I a formula G is T in an interpretation I, we
say that I is a model of G and I satisfies G.

e A formula G is inconsistent(unsatisfiable) if and only if there ezists no inter-
pratation that satisfies G.

e A formula G is valid if and only if every interpretation of G satisfies G.

e A formula G is alogical consequence of formulas Fy, ..., Fy, if and only if for every
interpretation I, if F} A ... A Fy, is true in I, G is also true in L.

We also need rules of inference for these new connectives. So continuing in the Gentzen

Seqixent Calculus we use:
T, Alt/z],VzA,A — A I'— A, Aly/z],A

I,VzA,A— A ' - AVzAA
T, Aly/z],A — A ' — A, Alt/z],3zA,A
I3zA,A — A I' - A,3zAA -

N.B. in the rules y is a variable free for z in A, and not freein A unless y = z. ¢ is
any term free for z in A. A term ¢ is free for z in A if either:

e A is atomic or
e Ais BAC,BVC,BD>C,~-Cor B=C, and t.isfreeforzinBandCor

e A is YyB or 3yB and either 2 = y or z # y, y is not a free variable in ¢ and ¢ is
free for z in B.

Axioms still take the form of a sequent where the same formula appears on the left
and right of —.
' Here is an example proof (some multiple applications of quantifier rules have been
collapsed into one - where an instance is introduced, many could be introduced, and have
been simultaneously):
Q(yl))P — Q(yO)’ Q(m),BzQ(z)
P — P,32Q(z2) Q(w1), P — 32Q(2)
P,P D> Q(y1) — 3zQ(z)
P> Q(y1) — P > 32Q(2)
3z(P D Q(z)) — P D 32Q(2)
— Jz(P D Q(z)) D (P > 32Q(z2))

10

We can extend the search and expand algorithms we had before to generate such
proofs (though there is no longer a guarantee of ‘termination). But we now have the
obligation of managing the variables and constants. Here are the algorithms as adapted
for a system without function symbols.

In the following, T ERM, is essentially a list of terms in the current sequent. Initially it
is the constants and free variables, and as more free variables are introduced it is updated
to include them. If there are no constants or free variables to start with, it is initialised to
contain just yo. If there are some constants or free variables, let them be < ug,,up >
say. AV AILyp is an infinite list of free unused variables, say < y1,...,¥n, .. >-

This is really an exhaustive growing of the tree backwards, choosing what to introduce
by knowing what’s already around (in TERM)p), and introducing all of them if possible.
If a new variable is introduced, that is noted and used for futher introductions later. It
becomes important to note what constants and free variables have been used with which
quantifiers. :

Every time a V:right or a 3:left rule is applied, as the variable y, the first element of
AV AIL, is used. It is appended to T ERMp, and deleted from AV AIL,.

When a V:left or a J:right is used, each of the terms in TERMj is used that have not
been used with that formula before. So TERMj has to be a list of records, each of which
is a constant or variable, and a list of the quantified formulae for which it has been used
as t in a V:left or a F:right rule. '

If a sequent has the property that all the formulae in it are either atomic or of the
form VzA or 3zA such that all the terms in TERMj, have been used with a V:left or
J:right rule, and if this sequent is not an axiom, then it will never become one, and it
need no longer be expanded. If this happens, or if the sequent is an axiom, that leaf is
closed.

During the search round, the same substitutions must be performed for all occurrences
of a formula, so a local variable to the procedure is used, TERM;, to store T ERM, plus
that round’s updates. This replaces TERM; on the next round.

procedure search(T' — A:sequent; var T:iree) 5
begin
let T be the one-node tree labelled withT — A 3
Let TERM, be << ug,nil >,...,< up,nil >>
and let AVAILg be < y1,¥2,... > (as ezplained above)
while not all leaves of T are finished do
TERM, :=TERM; ;To:=T ;
for each leaf node of Ty do
if not finished(node) then
ezpand(node,T)
endif
endfor;
TERM, := TERM;
endwhile;
if all leaves are closed
then

11

write(’T is a proof of T — A’)

else

write(T — A is falsifiable’)

endif
end

procedure ézpa;zd(node:trce-addresa; variiT :iree);

begin

let Aj,...,Am — Bi,..., Bn be the label of the node;
let S be the one-node tree labelled with Ay,...,Am — By, ..., Bnj
for i := 1tomdo

if non-atomic(A;) then

endif
endfor;

fori:= 1tondo

it grow-left(A4;,S)

if non-atomic(B;) then
it grow-right(B;,S)

endif
endfor;

T:= dosubstitutionT,node,S)

end

procedure grow-left(A:formula; varS:tree);

begin
case A of
BAC,BVC
B> C, -B:
. VzB:
ezristszB:
endcase
end

eztend every non-aziom leaf of S using the
left rule corresponding to the main
propositional connective;
for every term uy with e record in TERM,
such that A is not amongst u;’s list of formulae do
eztend every non-aziom leaf of S by applying
the V: left rule using the term uy
as one of the terms of the rule, and append A to uy’s list
endfor;
eztend every non-aziom leaf of S by applying
the 3: left rule using the first element of AV AILqg for the new variable y;
append < y,nil > to TERM;;
remove y from AV AlLg;

procedure grow-right(A:formula; varS:tree);

begin

12

case A of

BAC,BVC
B D C, ~B: eztend every non-aziom leaf of S using the
right rule corresponding to the main
. propositional connective;
3z B: for every term u; with a record in TERM)
such that A is not amongst uy’s list of formulae do
eztend every non-aziom leaf of S by applying
the 3: right rule using the term u;
as one of the terms of the rule, and append A to u;’s list
endfor;
forallzB: eztend every non-aziom leaf of S by applying
the V: right rule using the first element of AV AILg for the new variable v;
‘ append < y,nil > to TERM;;
remove y from AV AlLg;
endcase
end

Here’s a proof it could produce:
Q(v1), P — Q(y2)
P — PVz2Q(z) Q(w1),P — ¥2Q(2)
P,P > Qu1) — V2Q(2)
P > Q(y1) — P D VzQ(z)
3z(P > Q(z)) — P > VzQ(2)
— 3z(P D Q(z)) O (P > VzQ(2))

Without functions, this algorithm terminates for valid formulae, but otherwise may
go on infinitely.

3 Herbrand’s Theorem

In spite of various attempts to reduce the amount of search involved in finding proofs or
counterexamples, the algorithms considered so far still leave us with the problem of va-
lidity defined over infinite universes and infinitely many interpretations. This is a major
problem. Herbrand’s theorem is a key to it. It says how to define a particular universe for
a formula, and corresponding interpretations in which an unsatisfiable formula is guar-
anteed to be unsatisfiable if and only if it is actually unsatisfiable for all interpretations.
This makes the task of establishing unsatisfiability a lot more manageable. It opens up
considerably improved possiblities for automatic proof.

So if you’re interested in proving some (closed) theorem Thm from some list of (closed)
axioms Az:

Thm is a logical consequence of Az

13

: iff
Az A —Thm is unsatisfiable
iff
S, the clausal form of Az A -Thm is unsatisfiable
iff
3 a contradiction consisting of a finite conjunction of instances of clauses of S.
(Herbrand’s Theorem).

This theorem supports the soundness and completeness of resolution.

3.1 Unsatisfiablity

Certain kinds of normal form make unsatisfiablity easy to detect, as we’ve noted before.
We’re looking for something of the form P A —P or Q(a) A =Q(a) or a more elaborate
variant say P A (-PV Q) A—Q. If we cast our formula to be refuted as a conjunction of
clauses, then if part of this conjunction is unsatisfiable, the whole thing is. Each conjunct
is called a clause. For unsatisfiablity, a clause must be false in every interpretation. But
at least we can reduce the search to interpretations over 1 domain - the Herbrand Universe.

Before doing this however, we need to do a bit more work on the formula. We need
to take all the quantifiers out to the front, conjunctive normal form it, and skolemize.
This gets you a formula whose only variables are universally quantified. The resulting
formula is unsatisfiable if and only if the original was. Though if the original formula was
satisfiable the resulting formula is not in general equivalent to the original.

The advantage of this is that we can look at any of these (implicitly universally
quantified) formulae as a super-conjunction of all the instances of it with elements of the
universe or domain substituted for the variables. Le. in

Va.P(z) A (-P(2) V Q(f(2))) A ~Q(f(e))

which normal forms to:

P(z) A (=P(2) V Q(f(2))) A ~Q(f(a)
the z is still (implicitly) universally quantified, and as z ranges over some universe,
e.g. €1,€z, €3, ... we have to test the unsatisfiability of:

P(e1) A (=P(e1) V Q(f (1)) A —Q(f(a)

A
P(e2) A (—P(e2) V Q(f(e2))) A~Q(f(a)

A
P(es) A (—P(es) v Q(f(es))) A—Q(f(a))
A
etc.

But if we find some part of this to be unsatisfiable, the whole thing is, necessarily,
and we need look no further.

14

3.2

L
2.
3.

Converting the Formula to Clausal Form
Replace all = using D JANPE A = (A—'—? ARS [@'—7A>
Replace all O by using F D G=-FVG

Drive the —s down to the atoms:
-—F=F
~(FVG)=-FA-G
-~(FAG)=-FV-G
-VzF(z) = 3z-F(z)
-3zF(z) = Yz~ F(z)

. Move all the quantifiers to the left:

(QzF(2)V G = Qa(F(z) v G)
(QzF(2)) A G = Qz(F(z) AG)
VzF(z) AVzH(z) = Vz(F(z) A H(z))
3zF(z) Vv 3zH(z) = 3z(F(z) v H(z))
Q1zF(z) v ngH(z) = Q12Q22(F(z) v H(2))
QszF(z) AQzH (z) = QszQ4z(F(z) A H(2))

where z doesn’t appear in a formula unless indicated, and @ stands for either
quantifier.

. Make the quantified formula conjunctive normal form, distributing and over or.

The previous steps were necessary to make this possible.

. Skolemize. This captures the information about universal and existential quantifica-

tion and embeds it in the quantified formula. Each existentially quantified variable
is replaced by a new function symbol with each of the preceding universally quan-
tified variables as arguments, preserving the information about the dependency
of existentially quantified variables on the universal quantification they lie in. If
there are no universal quantifiers preceding an existential quantifier, its variable
is replaced throughout by a nullary function, i.e. a new constant. The quantifier
symbols are then removed. E.g.

Vz3y3z(—~P(z,y) V R(z,y,2)) A (Q(z,2) V R(z,y, 2))

becomes

(~P(2, fu(2)) V B(z, fy(z), £:(2))) A (@, f(=)) V B(2, £y (=), £:(2)))

15

46 . 4 HERBRAND'S THEOREM

Gilmore [1960] was one of the first persons to implement Herbrand's
procedure on a computer. Since a formula is valid if and only if its negation
is inconsistent, his program was designed to detect the inconsistency of the
negation of the given formula. During the execution of his program, propo-
sitional formulas are generated that are periodically tested for inconsistency.
If the negation of the given formula is inconsistent, his program will
eventually detect this fact. Gilmore’s program managed to prove a few simple
formulas, but encountered decisive difficulties with most other formulas of
the first order logic."Careful studies of his program revealed that his method
of testing the inconsistency of a propositional formula is inefficient. Gilmore’s
method was improved by Davis and Putnam [1960] a few months after
his result was published. However, their improvement was still not enough.
Many valid formulas of the first-order logic still could not be proved by
computers in a reasonable amount of time.

A major breakthrough was made by Robinson [1965a], who introduced
the so-called resolution principle. Resolution proof procedure is much more
efficient than any earlier procedure. Since the introduction of the resolution
principle, several refinements have been suggested in attempts to further
increase its efficiency. Some of these refinements are semantic resolution
[Slagle, 1967; Meltzer, 1966; Robinson, 1965b; Kowalski and Hayes, 1969],
lock resolution [Boyer, 1971], linear resolution [Loveland, 1970a, b;
Luckham, 1970; Anderson and Bledsoe, 1970; Yates et al., 1970; Reiter, 1971;
Kowalski and Kuehner, 1970], unit resolution [Wos et al., 1964; Chang,
1970a], and set-of-support strategy [Wos et al., 1965]. In this chapter, we
shall first prove Herbrand’s theorem. The resolution principle and some
refinements of the resolution principle will be discussed in subsequent
chapters.

42 SKOLEM STANDARD FORMS

Herbrand’s and the resolution proof procedures that are to be discussed
later in this book are actually refutation procedures. That is, instead of
proving a formula valid, they prove that the negation of the formula is
inconsistent. This is just a matter of convenience. There is no loss of generality
in using refutation procedures. Furthermore, these refutation procedures are
applied to a “standard form” of a formula. This standard form was introduced
by Davis and Putnam [1960], and will be used throughout this book.

Essentially what Davis and Putnam did was to exploit the following ideas:

1. A formula of the first-order logic can be transformed into prenex
normal form where the matrix contains no quantifiers and the prefix is a
sequence of quantifiers.

4.2 SKOLEM STANDARD FORMS 47

2. The matrix, since it does not contain quantifiers, can be transformed
into a conjunctive normal form.
‘ 3. Without affecting the inconsistency property, the existential quantifiers
in the prefix can be eliminated by using Skolem functions.

In Chapter 3, we have already discussed how to transform a formula into
a prenex normal form. By the techniques given in Chapter 2, we also know
how to transform the matrix into a conjunctive normal form. We now discuss
how to eliminate the existential quantifiers.

Let a formula F be already in a prenex normal form (Q,x,) - (Q,x,)M,

“where M is in a conjunctive normal form. Suppose Q, is an existential quanti-

fier in the prefix (Q,x,) - (Q,X,), 1 < r < n. If no universal quantifier appears
before Q,, we choose a new constant ¢ different from other constants occur-
ring in M, replace all x, appearing in M by ¢, and delete (Q,x,) from the
prefix. If Q,,, ..., Q,, are all the universal quantifiers appearing before Q,,
1<s, <s3°* <s, <r, we choose a new m-place function symbol f different
from other function symbols, replace all x, in M by f(x,,x,,,...,X,,), and
delete (Q,x,) from the prefix. After the above process is applied to all the
existential quantifiers in the prefix, the last formula we obtain is a Skolem
standard form (standard form for short) of the formula F. The constants and

functions used to replace the existential variables are called Skolem functions. -

Example 4.1

Obtain a standard form of the formula

(3%) (V) (V2) (3u) (Vo) (3w) P(x, y, z,u, v, w).

In the above formula, (3x) is preceded by no universal quantifiers, (3u) is

preced.ed by.(V y) aqd (Vz), and (3w) by (Vy), (Vz) and (Vv). Therefore, we replace
the existential variable x by a constant a, u by a two-place function f(y, z),

and w by a three-place function g(y,z,v) Thus, we obtain the following
standard form of the formula:

(V) (V2) (V0) P(a, y, 2.1 (7, 2), v, 8(3, 2,v)).
Example 4.2
Obtain a standard form of the formula
(V)@ @) ((~ P(x,) A Q(x,2)) v R(x, y,2)).
First, the matrix is transformed into‘av conjunctive normal form:
(Vx)@3)@2) ((~ P(x,) v R(x, y,2)) A (Q(x,2) v R(x, y,2))).

Then, since (3y) and (3z) are both preceded by (Vx), the existential variables
y and z are replaced, respectively, by one-place functions f(x) and g(x).

(e R

" To show this does not necessarily produce a formula which is equivalent to the original,
take the case 3zP(z). This normal forms to P(a). If a domain were 1,2, and we consider
the interpretation in which a is assigned to 1, and the assignments for P are P(1) = L and
P(2) = T then the original formula was true in the 1,2 interpretation, but the converted
one is false in this interpretation.

The important thing is that unsatisfiability is preserved by this transformation.

3.3 Herbrand Universe

Although unsatisfiability is characterised in terms of interpretations, the actual contra-
diction tests we use are syntactic (PA—P etc). So, intuitively, you might feel this could be
used somehow. That if anything is going to supply the required complementary literals,
it’s the symbols there in the formula already.

The Herbrand Universe is the set of all constants appearing in S, our clausally formed
formula, and all terms which can be created from them using the function symbols in
S. If there are no constants, create one, a say. For example here are some formulae and
their Herbrand Universes:

P(a) A (—P(z) v P({(2))) a,f(a), F(£(a)), --
(P(z)VQ@)AR(z) @
P(f(z),a,9(y),d) a,b, f(a), £(b),9(a), 9(8),
£(£(a)), £(£(%)), £ (a(a)), £ (9(),
9(£(a)),9(f (1)), 9(9(a)), 9(g(b)), ete.

The Herbrand Base is the set of ground atoms formed from predicates occurring
in S with arguments in the Herbrand Universe. A ground instance of a clause is the
clause obtained by substituting members of the Herbrand Universe for all its variables.

So in the three examples above, the respective Herbrand Bases are: '

P(a) A (=P(z) V P(f(2))) P(a), P({(a), P(f(£(a))), -

(P(z) v Q(z)) A R(2) P(a),Q(a), R(a)

P(f(z),a,9(v),b) P(a,a,a,a),P(a,a,a,b), P(a,a, b,a), P(a,b,a,a),
P(b,a,a,a), P(a,a,b,b), P(a,b,b,a), P(b,},a, a),
P(b,q,a,b), P(b,a,b,a),P(a,b,a,b), P(b,b,b, a),
P(b,b,a,b), P(b,a,b,b), P(a,b,b,b), P(b,b,b, b),
P(a,a,a, f(a)), -

A Herbrand Interpretation is as follows. For S, a conjunction of clauses, H, its
Herbrand Universe, and I, an interpretation of S over Hlis a Herbrand interpretation
if:

e It maps constants in S to themselves

e For hy,...,hn € H. Assign any n-place function f an n-place function from H" to

H. E.g. if f is a function which takes two arguments, for any hj,hz in H, define

the result of f applied to them to be the term f(h1, hz), which is, of course, in H.
Notice that no evaluation is taking place here. '

16

e There is no restriction on the assignment of truth values to predicate symbols. Any
list of labels of truth values on the Herbrand Base will do.

We actually want the whole class of possible assignments of truth values to ground
instances of predicates. So this defines a set of interpretations. These interpretations are
enough for us to consider if we are only looking for unsatxsﬁabmty of formulae. That is
the substance of Herbrand’s theorem.

3.4 Constructing Herbrand Interpretations corresponding to partic-
ular interpretations

Suppose we have S = P(z) A Q(y, f(y,)
and an interpretation over 1,2:
. a2 P(1)-T
& P(2)— L
1)1 Q1)L
f(1,2)—»2 Q(1,2)T
f(2,1)—2 Q(2,1)— L
f(2,2)—1 Q(2,2)-T
Then we can define a corresponding Herbrand Interpretatwn over all the Herbrand
Base by picking some element for the a of the Herbrand Universe to map to, and specifying
that the Herbrand Interpretation echo this one: -
Herbrand Base Assigned to Calculates to
P(a) P(2) 1 .
Qa,0) Q(2,2) T
P(f(a,a)) P(f(2,2)) P()=T
Qe f(a,0)) Q21(22) Q1=
etc..
In general, the procedure to construct Herbrand Interpretations correponding to (an-

other) interpretation I:

‘ 1. Assign elements of the Herbrand Universe arbitrarily to some elements of I’s domain.
h,‘ = d.'.

2. Assign the truth value of P(hy, ..., h,) where h; € the Herbrand Universe, to be the
truth value of P(dy, ...,dy,) in the interpretation for every P in the formula.

Then

1. If an interpretation I over a domain D satisfies a formula S, any corresponding
Herbrand Interpretation will too.

2. A conjunction of clauses S is unsatisfiable if and only if S is false under all its
Herbrand interpretations.

e — is obvious

17

e «— Suppose S is false under all Herbrand interpretations, but not unsatisfiable.
Then there is some interpretation I over D in which S is true. Construct its
corresponding Herbrand Interpretation, S must be true in that too. But then
we have a contradiction.

8.5 Establishing the Validity and Unsatisfiability of Formulae

So from the point of view of refutation proofs, where we’re interested in unsatisfiability,
we need only consider the Herbrand Interpretations. This is a considerable advance on
having to consider all interpretations over all domains.

We can produce a semantic tree corresponding to the Herbrand Base, since it only
contains ground instances of atomic formulae. In general this will of course be infinite,
and the order in which it is generated by the methods described so far is not necessarily
the most useful. Here is such a tree for S = P(z) A Q(f(z))

P(a)
Q(a)
P(f(a))

Q(f(e) T/\L T/_L TN. TAL T L%%\L

A semantic tree is complete for S iff all its Herbrand Base elements are assigned in
it.

Any node is a partial interpretation.

A node N is a failure node if its interpretation falsifies a ground instance of a clause
of S, but none of its ancestors’ interpretations falsify any ground instance of a clause of
S.

The tree is closed iff every branch terminates with a failure node.

Example: P(z) A (-P(z)V Q(f(z))) A -Q(f(a))

Remember this is:

P(e1) A (=P(e1) v Q(f(e1))) A—Q(f(a)
A

P(ez) A (—P(e2) vV Q(f(e2))) A —Q(f(a))
A

P(es) A (—P(es) v Q(f(es))) A —~Q(f(a))
A

18

ete.

where e;, €3, €, ... are all the elements of the Herbrand Universe. So if we reach a

partial interpretation which makes any clause (e.g. P(z) or (Q(f () or =P(z)vQ(f(z))
) false, there’s no point in expanding that branch further, since the whole formula is false

for that interpretation whatever the rest of the truth assignments are.
Here is an incomplete semantic tree, but all of its leaves are failure nodes, so it is

closed (and finite):

P(a) T \ L1
X

Q(f(a) THL
X/ \X

The branch corresponding to P(a) false needs no further developement, because any
extended interpretation would still include P(a) being false, and the conjunction of ground
instances is falsified by that. "

3.6 Two Versions of Herbrand’s Theorem

In the following, S is a formula in conjunctive normal form as described above.

1. S is unsatisfiable iff corresponding to every complete semantic tree there is a finite
closed semantic tree

o unsatisfiable — closed
Let B be a branch in the tree and Ip its interpretation.
Ip must falsify a ground instance of a clause C of S.
C is finite, so there is a node N on B such that N’s partial interpretation is
enough. Prune the tree below N.
Every branch can be pruned like this, so the tree must be closed.

o closed — unsatisfiable
Every branch must contain a failure node.
So every interpretation falsifies S.

2. S is unsatisfiable iff there is a finite unsatisfiable conjunction of ground instances
of its clauses -

o unsatisfiable — 3 a finite unsatisfiable conjunction of ground instances of its
clauses
Let T be S’s semantic tree.
Let T' be a corresponding finite closed semantic tree, which the first version
of the theorem giiarantees will exist. ‘

19

Let S' be the conjunction of all the ground instances of clauses falsified at
failure nodes of 7"

S’ is finite, and false in all interpretations, i.e. unsatisfiable.

e 3 a finite unsatisfiable conjunction of ground instances of S’s clauses — un-
satisfiable
Let S’ be a finite unsatisfiable conjunction of ground clauses of S.
Let I be any interpretation of S.
Then I contains (or equals) an interpretation of S’
But S’ is unsatisfiable, so the contained interpretation must falsify it, and
therefore so must I.
But then I must also falsify S

The second of these is more commonly used.
This theorem is the theoretical basis for using the resolution rule of inference.

3.7 Using Herbrand’s Theorem

The simple way to use the theorem (this is not resolution) is to generate the Herbrand
universe progressively, and to create the corresponding increasing conjunction of ground
clauses too, and check at each stage for unsatisfiability. If it is detected, stop, otherwise
keep going, some larger conjunction may turn out unsatisfiable.

This is where the second version of the theorem turns out to be more useful. You can
detect contradictions more easily than exploring whole semantic trees.

The progression of universes can be defined recursively. You have a set of constant
symbols, and a set of function symbols from the formula. The first subset of the Herbrand
Universe, Hp is just the constant symbols. To create the next, apply all the function
symbols to all the elements of Hy in all possible ways, and take the union of the result
and Hj. Do the same to create each subsequent set, apply the functions to all the elements
of the previous set in all possible ways, and take the union of the result with the previous
set.

E.g.
P(z) A—~P(f(f(a)))
Ho a P(a) A=P(f(f(a)))
H q,f(a) (P(a) A~P(f(f(a)))) A (P(f(a)) A—~P(f(f(a))))

Hy a,f(a), f(f(a)) (P(a) A-P(f(f(a)))) A (P(f(a)) A=P(f((a)))) A (P(£(f(a))) A=P(f(f(2)))

At each stage the formula is essentially propositional, and therefore its (un)satisfiability
is decidable. The semantic tree is finite for each conjunction of ground literals.

This is not very efficient though, with quite a small number of constants and functions,
the size of the H; can grow very rapidly. The semantic tree grows even more rapidly.

Various people looked at ways of making this more efficient.

20

3.8 Gilmore’s Procedure

Take the conjunction of ground clauses at each stage of developement, turn it into dis-
junctive normal form, and there’s a contradiction in all the disjuncts. If, not go on to the
next, bigger conjunction.

3.9 Davis and Putnam’s Procedure

1. Again, create a conjunction of ground instances of the formula, F'.

(a) Delete all clauses that are tautologies, i.e. they contain @ and ~Q for some Q.

(b) ¥ any of the clauses in F is a unit ground clause, P, i.e. P is a ground literal®
then:

i. If all of F’s clause contain P, F is satisfiable, stop, try another conjunction
of clauses.
ii. If =P is a unit clause, it is replaced by O, so, F is unsatisfiable, stop.
iii. Otherwise, delete all the clauses which contain P, and all occurrences of
—P from the rest of the clauses.

(c) There is a literal L in F, and no occurrence of L, delete all clauses containing
L.

(d) If F can be put into the form
(AiVI)A .. A(ApVI)A(B1V-L)A ... A(BpV-L)AR
where A; and B; and R are free of L and —L, then for
Fi=AAN...NALAR

and
F,=B;A..ANB,AR

F is unsatisfiable if and only if both F; and F; are, i.e. F1V F; is.

(e) Repeat these procedures as long as possible.

2. If you haven’t proved unsatisfiability, use the next H; to create another conjunction,
and repeat.

Examples:

(PVQV-R)A(PV-Q)A-PARAU

(QV-R)A(Q)ARAU rule (b) on ~P
“RARAU rule (b) on -Q
oAU rule {b) on -Q

which is unsatisfiable, since it contains the empty clause (the OR of no literals).

‘lan atom or the negation of an atom

21

(PVQ)A-QA(-PVQV-R)

PA(-PV-R) rule (b) on -Q

-R rule (b) on P

which is satisfiable, since using rule (b) on ~R , we get the AND of no literals.

(PV-Q)A(-PVQ)A(QV-R)A(-QV)

(-QA(QV-E)A(-QV-R))
V(QA(QV-R)A(-QV—R)) rule (d) on P
-RV-R rule (b) on Q and -Q

which is satisfiable by using rule (b) on =R

(PVQ)A(PV-Q)A(RVQ)A(RV-Q)
(RVQ)A(RV-Q) | rule (c) on P
which is satisfiable using rule (c) on R

3.10 More Efficient Procedures

The previous two methods still leave us with the overhead of generating the universe and

creating lots of ground instances, many of which will not be needed. What would be

_preferable would be to detect inherent contradictions with minimal instance creation.
We want to detect potential contradictions. Think about:

P(z) A-P(f(f(f(F(f(=))))))

We don’t really want to generate the whole of:

P(a) - A =P(F(F(F(F(f(a)))))

P(f(a)) N)
P((())) A PUTGUGTTE@N)
P(f(f(f(2)))) A -PUCTUUTTEE@MM)
PUGUU@Y) A ~PUGTUEUTUTE@MMIN

A
PSS @N) A ~PUGEFSSEES @M

We want to detect the contradiction yielded by the top right and bottom left literals
above. They are complementary, one is the negation of the other. If we hadn’t been
doggedly generating Herbrand universe from the bottom, we could have foreseen this.

If you think about it, the identical naming of the z’s in the original formula was
spurious. The first one had to cover all possible values, so did the second, The two
literals were ANDed together, and the implicit universal quantification ANDed all the
instances. We can therefore standardise the variable names apart in separate clauses,

22

48 4 HERBRAND'S THEOREM

Thus, we obtain the following standard form of the formula:
(Vx) ((~ P(x, f(x)) v R(x, f(x), g(x)) A (Q(x, g(x)) v R(x, f(x). g(x))))-

Definition A clause is a finite disjunction of zero or more literals.

When it is convenient, we shall regard a set of literals as synonymous with
a clause. For example, Pv Qv ~R = {P,Q, ~ R}. A clause consisting of r
literals is called an r-literal clause. A one-literal clause is called a unit clause.
When a clause contains no literal, we call it the empty clause. Since the
empty clause has no literal that can be satisfied by an interpretation, the
empty clause is always false. We customarily denote the empty clause by (J.

The disjunctions ~ P(x,f(x)) v R(x,f(x),g(x)) and Q(x, g(x)) v R(x,f(x),
g(x)) in the standard form in Example 4.2 are clauses. A set S of clauses
is regarded as a conjunction of all clauses in S, where every variable in S is
considered governed by a universal quantifier. By this convention, a standard
form can be simply represented by a set of clauses. For example, the
standard form of Example 4.2 can be represented by the set

{~P(x,f(x)) v R(x.f(x), g(x)). Q(x, 8(x)) v R{x.f (x), g(x))}-

As we said in the beginning of this section, we can eliminate existential
quantifiers without affecting the inconsistency property. This is shown in
the following theorem.

Theorem 4.1 Let S be a set of clauses that represents a standard form
of a formula F. Then F is inconsistent if and only if S is inconsistent.

Proof Without loss of generality, we may assume that F is in a prenex
normal form, thatis, F = (Q,x,)*-*(Qux)M[xy, ..., x,}.(Weuse M[x,, ..., X,]
to indicate that the matrix M contains variables x,, ..., x,,.) Let Q, be the first
existential quantifier. Let F, =(Vx,)---(Vx,_‘)(QHlx,ﬂ)---(Q,,x,,)M[x,,
cenXpe 1 S (Xys e X) X1 ..y X,), where [isaSkolem function correspon-
ding to x,, 1 <r<n. We want to show that F is inconsistent if and only
if F, is inconsistent. Suppose F is inconsistent. If F, is consistent, then there
is an interpretation I such that F, is true in I. That is, for all x,...,X,—y,
there exists at least one element, which is f(xg,...,X,~ 1), such that
(Qr+ 1%+ A (anu)M[xh v Xpo S (Xgs oo Xpm hXrs 1o ...,X,,] is true in [.
Thus, F is true in I, which contradicts the assumption that F is incon-
sistent. Therefore F, must be inconsistent. On the other hand, suppose that
F, is inconsistent. If F is consistent, then there is an interpretation I over
a domain D such that F is true in I. That is, for all x,, ..., X, -y, there exists
an element x, such that (0,4 1%+ 1) QX)) MIX s s Xy 13 X X1 o X
is true in 1. Extend the interpretation I to include a function J that maps
(X -oes Xp—q) tO X, fOr all Xy, ..y Xy in D, that is, f(Xy, ..., X,—1) = X,. Let

4.2 SKOLEM STANDARD FORMS 49

zgns c:ten;non of I be denoted by I’ Then, clearly, for all X1y eeny X
Thr;tl isrﬂF -~.(Q,,x,,)1\f![xl',...,Jf,_,,f(xl,.‘.,x,_l),x,“,...,x,,] is true’ irrll’,
inconsi;tenlt !;htru? in FI, which contradicts the assumption that F is;
- I'nerefore F must be inconsistent. Ass st
ine 1 ' . Assume there are m existen-
quantifiers in F, Let F, = F. Let F, be obtained from F x—1 by replacing

the first existential quantifier in F x-1 by a Skolem function, k = 1

Clearly, ., m.

Fy_,is ir.xs‘cc:]g:{euts ltr'l X tcile Sla fe arguments given above, we can show that
k=1 ntifand only if F, is inconsistent for k = 1

e - . = 1, ..., m. Therefo
we conclude that F is inconsistent if and only if S is inconsistent. QE g,

Thl;ztr efn b: 1at ;tangax;cfi ;oFm of a formula F. If F is inconsistent, then by
m 4.1, F = S. Is not inconsistent, we note that, in ge , i
x;o.t equivalent to S. For example, let F & (3x) P(x) and S & I%(:)eréll'e:;lls

is a standard form of F. However, let I be the interpretation deﬁnéd belowy',

Domain: D = {1,2}.

Assignment for a:

ISR~

Assignment for P:

POy PR)
F T

Thltin_, clearly, F is true in I, but $ is false in 1. Therefore F#S
e sake o simplicty, when we Canatorm o oty p21dard form. For
S_, we should replace éxisten’tial quantif?elz*sab;rgljcl:):*,p }HIO i e that e
simple as possible. That is, we should use Skolem an u'ncnons' e s
number of arguments. This Cthn_S Wltl} i,
fiers to the left as far as possigll:.a ;ixrt:lhaetr;;s:?: ijerl?:\‘/,ee ;xEt;ntfl'quar}‘fi-
:{Zn%a;dsigi::tg]{‘yp()b'tain a set S; of clauses, where each §; rlepreser:\ts ';
Siandard for Fii= I,...,n Then, let S = §,U-- US,. By arguments
o to those given in the proof of Theorem 4.1, it is not difficult

at F is inconsistent if and only if S is inconsistent. 10 see

Example 4.3

In this example, we shall sh ' i
o pnd ow how to express the following theorem in

If x-x=e for all x in
_ = group G, where - is a binar i
the identity in G, then G is commut’ative. Y operator and ¢ i

50 4 HERBRAND’S THEOREM

We shall first symbolize the above theorem together with some basic
axioms in group theory and then represent the negation of the above
theorem by a set of clauses.

We know that group G satisfies the following four axioms:

Ay: ' x, ye Gimplies that x-ye G (closure property);
As: x,y,z€G implies that x«(y-2) = (x-)-z (associativity property);
As: x-e = e-x = x for all x € G (identity property);

A4: for every x € G there exists an element x~'eG such that x-x!' =

x~1.x = e (inverse property).

Let P(x, y, z) stand for x-y = z and i(x) for x~!. Then the above axioms
can be represented by

Ay (90 (V) @2) P(x, 3, 2)

Ays (V%) (Vy) (Vz) (Vi) (Vo) (Yw) (P(x, y, u) A P(y,z,v) A P(u,z,w) =P(x,0, w))
A (V) (V) (V2) (Vi) (V) (Yw) (P(x, y,) A Py, 2,0) A P(x, 0, W) = P, 2, W))

Ayt (Vx) P(x,e,x) A (Vx)Ple, x, x)

Ayt (Vx) P(x,i(x),e) A (¥x)P(i(x),x, e).

The conclusion of the theorem is

B: Ifx-x = efor all x€G, then G is commutative, i.e., u-v = v-u for all
u,veQqG.

B can be represented by
B (Vx)P(x,x,e) = ((Vu) (Vo) (Yw)(P(u, v, w) = P(v, 4, w))).

Now, the entire theorem is represented by the formula F = A" A -+~
A Ay = B.Thus, ~F = 4, A A)' A Ay’ A A4 A ~B'. To obtain a set S of
clauses for ~F, we first obtain a set S; of clauses for each axiom A;,
i =1,2,3, 4 as follows.

{P(x,y, f(x, 1)}
{~P(x,y,u) v ~P(y,z,0) v ~P(u,z,w) v P(x,v, w),

o U
-

o

~P(x,), zﬂ) v ~P(y,z,0) v ~P(x,0,w) Vv P(u,z,w)}
Sy: {P(x,e,x), P(e,x,x)}.
Sy: {P(x,i(x),e), P(i(x),x, e)}.

4.3 THE HERBRAND UNIVERSE OF A SET OF CLAUSES 51
Since
~B = ~((Vx) P(x,x,e) - ((Vu) (Vo) (VW) (P v.w) = P(o,u, w))))

= ~(~(Yx) P(x,x,¢) v ((Vu) (Y0) (VW) (~ P(t,0,w) v P(v, 1, w)))
= (Vx) P(x,x,e) A ~((VYu) (Vo) (YW)(~ P(u,0,w) v P(v,u, w)))
= (Vx) P(x,x,e) A (3u)(Fv) @w) (P(u,v,w) A ~P(v,u,w)),
a set of clauses for ~ B’ is given below.
T: {P(x,x,e),
P(a,b,c),
~ P(b,a,c)}.

Thus, theset $ = S, U S, US; US, U T is the set consisting of the following
clauses:

(1) PleoyS(x)
) ~P(x,y,u) v ~P(y,z,v) v ~Pu,z,w) v P(x,0, w)
(3) ~P(x,y,u) v ~P(y,z,0)-v ~P(x,0,w) v P(u,z,w)
@) P(x,ex)
) P(e, x, x)
6) Plxi(x).e)
(1 Plitx), x.e)
(8) P(x,x,¢e)
%) P(a,b,c)
(10) ~ P(b,a,c).

In Example 4.3, we have shown how to obtain a set S of clauses for the
formula .~ F. By Theorems 2.2 and 4.1, we know that F is valid if and only
if S is inconsistent. As we said at the beginning of this section, we shall
use refutation procedures to prove theorems. Thus, from here on, we shall
assume that the input to a refutation procedure is always a set of clauses,
such as the set S obtained in the above example. Furthermore, we shall use
“unsatisfiable” (“satisfiable”), instead of “inconsistent” (“consistent”), for sets
of clauses.

43 THE HERBRAND UNIVERSE OF A SET OF CLAUSES

By definition, a set S of clauses is unsatisfiable if and only if it is false under
all interpretations over all domains. Since it is inconvenient and impossible

52 4 HERBRAND’S THEOREM

to consider all interpretations over all domains, it would be nice if we
could fix on one special domain H such that S is unsatisfiable if and only
if § is false under all the interpretations over this domain. Fortunately, there
does exist such a domain, which is called the Herbrand universe of S, defined
as follows.

Definition Let H, be the set of constants appearing in S. If no constant
appears in S, then H, is to consist of a single constant, say H, = {a}.
Fori=0,1, 2, .., let H;,, be the union of H; and the set of all terms of the
form f"t,,...,t,) for all n-place functions f" occurring in §, where t;,
j =1, ..., n, are members of the set H;. Then each H; is called the i-level
constant set of S, and H,, or lim,., H,, is called the Herbrand universe of S.

Example 4.4

Let S = {P(a), ~ P(x) v P(f(x))}. Then
H, = {a}
H, ={a, f(a)}
H, = {a, f(a), f(f(a))}
H, = {a,f(@a), f(f@) (S @)-.}.
Example 4.5

Let S = {P(x) v Q(x), R(z), T(y) v ~W(y)}. Since there is no constant in
S. we let Hy = {a}. There is no function symbol in S, hence H = H,
=H, = = {a}.

Example 4.6

Let S = {P(f(x),a, g(y), b)}. Then
H, = {a, b}
H, = {a,b, f(a), f(b), gla), g(b)}
H, = {a, b, f(a), f(b), gla), g}, f(f(a), F(/), f(gla)), f(g(b)), &(S (a)),
g/ b)), glgla)), glg(b))

In the sequel, by expression we mean a term, a set of terms, an atom,
a set of atoms, a literal, a clause, or a set of clauses. When no variable
appears in an expression, we sometimes call the expression a ground ex-
pression to emphasize this fact. Thus we may use a ground term, a ground
atom, a ground literal, and a ground clause to mean that no variable occurs

4.3 THE HERBRAND UNIVERSE OF A SET OF CLAUSES 53

in the respective expressions. Furthermore, a subexpression of an expression
E is an expression that occurs in E.

Definition Let S be a set of clauses. The set of ground atoms of the
form P"(t,,...,t,) for all n-place predicates P" occurring in S, where t,,...,t,
are elements of the Herbrand universe of S, is called the atom set, or the
Herbrand base of S.

Definition A ground instance of a clause C of a set S of clauses is a clause
obtained by replacing variables in C by members of the Herbrand universe
of S.

Example 4.7

Let S = {P(x),0(f(»)) v R(y)}. C = P(x)is a clause in S and H = {q, f(a),
f(f(a)), ...} is the Herbrand universe of S. Then P(a) and P(f(f(«))) are
both ground instances of C.

We now consider interpretations over the Herbrand universe. Let S be a
set of clauses. As discussed in Chapter 3, an interpretation over the Herbrand
universe of S is an assignment of constants, function symbols, and predicate
symbols occurring in S. In the following, we shall define a special interpre-
tation over the Herbrand universe of S, called the H-interpretation of S.

Definition Let S be a set of clauses; H, the Herbrand universe of S;
and I, an interpretation of S over H. I is said to be an H-interpretation
of S if it satisfies the following conditions:

1. I maps all constants in S to themselves.

2. Let f be an n-place function symbol and hy, ..., h, be elements of H.
In 1, f is assigned a function that maps (hy, ..., h,) (an element in H") to
f(hy, ..., h,) (an element in H).

There is no restriction on the assignment to each n-place predicate symbol
inS. Let A = {A,, Ay, ..., 4,, ...} be the atdm set of S. An H-interpretation
I can be conveniently represented by a set

I ={m,my,..,mM,, ..}

in which m; is either 4; or ~A4; for j = 1,2,.... The meaning of this set is
that if m; is 4, then A4; is assigned “true”; otherwise, 4; is assigned “false.”

Example 4.8

Consider the set S = {P(x) v Q(x), R(f(y))}. The Herbrand universe H of
Sis H = {a, f(a), f(f(a)), ...}. There are three predicate symbols: P, Q, and
R. Hence the atom set of S is

., A= {P(a),Qla), R(a), P(f(a)), O(f(a)), R(f (@), ...}.

54 4 HERBRAND’S THEOREM

Some H-interpretations for S are as follows:

1, = {P(a), Q(a), R(a), P(f(a)), 2(f(a)), R(f(a)), ...}
I = {~Pla), ~Q(a). ~R(a), ~ P(f(a)), ~Q(f (@) ~R(f(@)),...}
Iy = {Pla), Q(a), ~R(a), P(f(a)), Q(f(a)), ~R(f(a)), ...}.

An interpretation of a set S of clauses does not necessarily have to be-

defined over the Herbrand universe of S. Thus an interpretation may not
be an H-interpretation. For example, let S = {P(x), Q(y, f(y,a))}. If the
domain is D = {1, 2}, then the following is an interpretation of S.

D = {1,2}.

a f(L1) f(L2) f2,1) f(2,2)
2 1 2 2 °

P() P2) Q1) 0(1.2) 0(2,1) Q(2.2)
T F F T F T

For an interpretation such as the one defined above, we can define an
H-interpretation I* corresponding to I. We use the above example to
illustrate this point. First, we find the atom set of S,

A = {P(a), Q(a, a), P(f(a,a)), Q(a, f(a,a)),Q(f(a,a).a), Q(f(a,a), f(a,a)), ...}.
Next, we evaluate each member of A by using the above table.
Pla) = P2) = F
Qa,a) = Q(2,2) =T
P(f(a,a)) = P(f(2,2) = P(1) =T
Qla, fla,a)) = Q2 f(2,2)) =02, 1) = F
Q(f(a,a)a) = Q(f(2,2).2) = Q(1,2) =T
Q(f(a,a), fla,a)) = Q(f(2,2), /(2,2) = Q(I, 1) = F

Therefore, the H-interpretation I* corresponding to I is
I* = {~ P(a), Qa, a), P(f(a,a)), ~Q(a, fla,a)), Q(f(a,a), a),
~Q(f(a,a), f(a,a)),...}.

In case there is no constant in S, the element a that is used to initiate
the Herbrand universe of S can be mapped into any element of the domain

43 THE HERBRAND UNIVERSE OF A SET OF CLAUSES 55

D. In this case, if there is more than one element in D, then there is more than
one H-interpretation corresponding to I. For example, let S = {P(x),
0(y,f(»,2))} and let an interpretation 7 for S be as follows:

D={1,2)
L) f(L,2) f2,1) f(2,2)
I 2 2 1

P(1) P2) 0(1,1) 0(1,2) Q2,1) 022
I F F T F T

Then the two H-interpretations corresponding to I are
I* = {~P(a),Q(a,a), P(f(a,a)), ~Q(a, f(a,a)),Q(f (4, a),a),
~0Q(f(a,a),f(a,a)),...} if a=2,
I* = {P(a), ~Q(a,a), P(f(a,a)), ~Q(a, f(a,a)), ~Q(f(a,a).a),
~Q(f(a,a), f(a,a)),...} if a=1.
We can formalize the concepts mentioned above as follows:

Definition Given an interpretation I over adomain D, an H-interpretation
I* corresponding to I is an H-interpretation that satisfies the following
condition:

Let hy, ..., h, be elements of H (the Herbrand universe of S). Let every h;
be mapped to some d; in D. If P(d,,...,d,) is assigned T(F) by I, then
P(h,,...,h,) is also assigned T'(F) in I*.

In fact, it is not hard to prove the following lemma. The proof is left as
an exercise.

Lemma 4.1 If an interpretation I over some domain D satisfies a set S
of clauses, then any one of the H-interpretations I* corresponding to I also
satisfies S.

Theorem 4.2 A set S of clauses is unsatisfiable if and only if S is false
under all the H-interpretations of S.

Proof (=) The first half of the above theorem is obvious since, by
definition, S is unsatisfiable if and only if S is false under all the interpre-
tations over any domain.

(«<=) To prove the second half of the above theorem, assume that S is
false under all the H-interpretations of S. Suppose S is not unsatisfiable.
Then there is an interpretation / over some domain D such that S is true

!

56 4 HERBRAND'S THEOREM

under I. Let I‘.‘ be an H-interpretation corresponding to I. According to
Lemma 4.1, S is true under I*. This contradicts the assumption that S is
false under all the H-interpretations of S. Therefore, S must be unsatisfiable.

Q.E.D.

Thus we have obtained the objective stated at the beginning of this section.
That is, we need consider only interpretations over the Herbrand universe,
or more strongly, H-interpretations, for checking whether or not a set of
clauses is unsatisfiable. Because of the above theorem, from here on, whenever
we mention an interpretation, we mean an H-interpretation.

Let & denote the empty set. Each of the following observations is
obvious. We shall leave their proofs to the reader.

. 1. A ground instance C' of a clause C is satisfied by an interpretation I
if and only if there is a ground literal L' in C’ such that L' is also in [
thatis, C'nl # Q. ,

2. A clause C is satisfied by an interpretation I if and only if every
ground instance of C is satisfied by 1.

3. A clause C is falsified by an interpretation I if and only if there is at
least one ground instance C' of C such that C' is not satisfied by 1.

4. A set S of clauses is unsatisfiable if and only if for every interpretation
1, there is at least one ground instance C’ of some clause C in S such that
' is not satisfied by 1.

Example 4.9

1. Consider the clause C = ~ P(x) v Q(f(x)). Let I,, I,, and I, be defined
as follows:

I, = {~ P(a), ~Qla), ~ P(f(@)), ~Q(/(@), ~P(f (f@)), ~Q(f (f@))...}
L={ P@, Qa P(f@) QU@) PUU@) Q@) }
I,={ Pa),~0@, P(fla)~0(f@) P(f(f@)),~f(f@)..}

The reader should be able to see that C is satisfied by I d
falsified by I5. y I, and I, but

2. Consider S = {P(x), ~ P(a)}. There are only two H-interpretations:
Iy ={P(a} and I ={~Pa)}.
S is falsified by both H-interpretations, and therefore is unsatisfiable.
44 SEMANTIC TREES

Having ?mroduced the Herbrand universe, we now consider semantic
trees [Robinson, 1968a; Kowalski and Hayes, 1969]. It will be seen in the

44 SeMaNTIC TREES 57

sequel that finding a proof for a set of clauses is equivalent to generating
a semantic tree.

Definition If A is an atom, then the two literals 4 and ~ 4 are said to
be each other’s complement, and the set {4, ~A} is called a complementary
pair.

We note that a clause is a tautology if it contains a complementary pair.
In the sequel, when we use “tautology,” we shall specifically mean a clause
that is a tautology.

Definition Given a set S of clauses, let A4 be the atom set of S. A
semantic tree for S is a (downward) tree T, where each link is attached with
a finite set of atoms or negations of atoms from A4 in such a way that:

i, For each node N, there are only finitely many immediate links
L,,..., L, from N. Let Q; be the conjunction of all the literals in the set
attachedto L;,i = 1,...,n. Then Q; v Q, v *=- Vv 0, is a valid propositional

formula.
ii. For each node N, let I(N) be the union of all the sets attached to the

links of the branch of T down to and including N. Then I(N) does not
contain any complementary pair.

Definition LetA = {A4,,A,,..., A, ...} betheatomset of aset S of clauses.
A semantic tree for § is said to be complete if and only if for every tip node
N of the semantic tree, that is, a node that has no links sprouting from
it, I(N) contains either 4; or ~4; fori=1,2,....
Example 4.10

Let A = {P,Q, R} be the atom set of a set S of clauses. Then each one of
the two trees in Fig. 4.1 is a complete semantic tree for S. (See p. 58.)

Example 4.11

Consider S = {P(x), P(a)}. The atom set of S is {P(a)}. A complete semantic
tree for S is shown in Fig. 4.2. (See p. 58.)
Example 4.12 ’

Consider § = {P(x), 0(f(x))}. The atom set of S is

{P(a), 0(a), P(f (@), Q(f (@), P(/ (/@)), Q(f (S (@), - -}

Fig. 4.3 shows-a semantic tree for S.

It is noted that for each nod¢ N in a semantic tree for S, I(N) is a
subset of some interpretation for S. For this reason, I(N) will be called a
partial interpretation for S.

When the atom set 4 of a set S of clauses is infinite, any complete
semantic tree for S will be infinite. As is easily seen, a complete semantic

58

P(a)

(b)
Figure 4.1

Figure 4.2

~ P(a)

4 HERBRAND’S THEOREM

4.4 SeMANTIC TREES 59

Q(f(a)) ~Q(f(a)) Q(f(a) ~Q(f(a))

P(f(a)) ~ P(f(a))

Figure 4.3

tree for S corresponds to an exhaustive survey of all possible interpretations
for S. If S is unsatisfiable, then S fails to be true in each of these inter-
pretations. Thus, we may stop expanding nodes from a node N if I(N)
falsifies S. This motivates the following definitions.

Definition A node N is a failure node if I(N) falsifies some ground in-
stance of a clause in S, but I(N) does not falsify any ground instance of a
clause in S for every ancestor node N’ of N.

Definition A semantic tree T is said to be closed if and only if every
branch of T terminates at a failure node.

Definition A node N of a closed semantic tree is called an inference node
if all the immediate descendant nodes of N are failure nodes.

Example 4.13

Let S={P,QV R, ~Pv ~Q,~Pv ~R}. The atom set of Sis A=
{P,Q, R}. Figure 4.4a is a complete semantic tree for S, while Fig. 4.4b is a
closed semantic tree for S.

Example 4.14 .
Consider S = {P(x), ~ P(x) v Q(f(x)), ~Q(f(a))}. The atom set of S is
A = {P(a), Q(a), P(f(a)), O(f(a)), ...}.

Figure 4.5 shows a closed semantic tree for S.

@ (b)
Figure 4.4

Figure 4.5

45 HERBRAND'S THEOREM

Herbrand’s theorem is a very important theorem in symbolic logic; it is a
base for most modern proof procedures in mechanical theorem proving,
Herbr_and’s theorem is closely related to Theorem 4.2 given in Section 4.3.
That is, to test whether a set S of clauses is unsatisfiable, we need consider
pnly interpretations over the Herbrand universe of S. If S is false under all
m!erpretations over the Herbrand universe of S, then we can conclude that
§ is unsatisfiable. Since there are usually many, possibly an infinite number
of these interpretations, we should organize them in some systematic wayj

4 HERBRAND'S THEOREM

4.5 HERBRAND’S THEOREM 61

This can be done by using a semantic tree. We shall give two versions of
Herbrand’s theorem. The one stated most often in the literature is the second
version; however, the first version is useful in this book.

Theorem 4.3 (Herbrand’s Theorem, Version I) A set S of clauses is
unsatisfiable if and only if corresponding to every complete semantic tree

of S, there is a finite closed semantic tree.

Proof (=) Suppose S is unsatisfiable. Let T be a complete semantic
tree for S. For each branch B of T, let I, be the set of all literals attached
to all links of the branch B. Then I, is an interpretation for S. Since S is
unsatisfiable, I ; must falsify a ground instance C’ of a clause C in S. However,
since C' is finite, there must exist a failure node N (which is a finite number
of links away from the root node) on the branch B. Since every branch of
T has a failure node, there is a closed semantic tree T for S. F urthermore,
since only a finite number of links are connected to each node of T', T’
must be finite (that is, the number of nodes in T is finite), for otherwise, by
Konig's lemma [Knuth, 1968], we could find an infinite branch containing
no failure node. Thus we complete the proof of the first half of the theorem.

(<=) Conversely, if corresponding to every complete semantic tree T for
S there is a finite closed semantic tree, then every branch of T contains a
failure node. This means that every interpretation falsifies S. Hence S is
unsatisfiable. This completes the proof of the second half of the theorem.

Theorem 4.4 (Herbrand’s Theorem, Version II). A set S of clauses is
unsatisfiable if and only if there is a finite unsatisfiable set S of ground
instances of clauses of S.

Proof (=) Suppose S is unsatisfiable. Let T be a complete semantic
tree for S. Then, by Herbrand’s theorem (version I), there is a finite closed
semantic tree T' corresponding to T. Let S’ be the set of all the ground
instances of clauses that are falsified at all the failure nodes of T". §" is finite
since there are a finite number of failure nodes in T'. Since S’ is false in
every interpretation of §', ' is unsatisfiable.

(<) Suppose there is a finite unsatisfiable set S’ of ground instances of
clauses in S. Since every interpretation I of § contains an interpretation
I' of &, if I’ falsifies §', then I must also falsify S'. However, S’ is falsified
by every interpretation I'. Consequently, §' is falsified by every interpretation
I of S. Therefore, S is falsified by every interpretation of S. Hence, S is
unsatisfiable. Q.E.D.

Example 4.15 ‘

Let S = {P(x), ~P(f(a))}. This set S is unsatisfiable. Hence, by Herbrand’s
theorem, there is a finite unsatisfiable set ' of ground instances of clauses
in S. We have found that one of these sets is ' = {P(f(a)), ~ P(f(a))}.

J——

b . e D

62 4 HERBRAND’S THEOREM

Example 4.16

Let S = {~ P(x) v Q(f(x), x), P(g(b)), ~Q(, 2)}. This set S is unsatisfiable.
One of the unsatisfiable sets of ground instances of clauses in S is

S = {~P(g(b)) v Q(f(g(d)), (b)), P(gb)). ~Q(f (g(b)), g(b))}-
Example 4.17
Let the set S consist of the following clauses:
S = {~P(x,y,u) v ~P(y,2,0) v ~P(x,0,w) v P(u,z,w),
~P(x,y,u) v ~P(y,z,0) v ~P(u,z,w) v P(x,v,w),

P(g(x, y), x, ¥}, P(x, h(x,), y), P(x, y, f(x,),
~ P(k(x), x, k(x))}.

This set .S is also unsatisfiable. However, it is not very easy to find by
hand a finite unsatisfiable set §' of ground instances of clauses in S. One
way to find such a set §' is to generate a closed semantic tree T for S.
Then the set S’ of all the ground instances falsified at all the failure nodes
of T" is such a desired set. The following is a desired set S'. The reader may
want to check that each ground clause in §’ is a ground instance of some
clause in S, and that §' is unsatisfiable.

§' = {P(a, h(a,a),a),
~ P(k(h(a, a)), h(a, a), k(h(a, a))),
P(g(a, k(h(a, a))), a, k(h(a,))),
~ P(g(a, k(h(a,a))), a, k(h(a,a))) v ~ P(a, h(a,a),a)
v ~P(g(a,k(h(a,a))),a,k(h(a,a))) v P(k(h(a,a)), h(a,a), k(h(a,a)))}.

4.6 IMPLEMENTATION OF HERBRAND’S THEOREM

The second version of Herbrand’s theorem suggests a refutation procedure.
That is, given an unsatisfiable set S of clauses to prove, if there is a
mechanical procedure that can successively generate sets S,’, ..., S,/ ... of
ground instances of clauses in S and can successively test S,’,S,’,... for
unsatisfiability, then, as guaranteed by Herbrand’s theorem, this procedure
can detect a finite N such that S’ is unsatisfiable.

Gilmore was one of the first men to implement the above idea [Gilmore,
1960]. In 1960, he wrote a computer program that successively generated
sets Sy, Sy, ..., where S/’ is the set of all the ground instances obtained by
replacing the variables in S by the constants in the i-level constant set H; of S.
Since each S is a conjunction of ground clauses, one can use any method

4.6 IMPLEMENTATION OF HERBRAND'S THEOREM 63

available in the propositional logic to check its unsatisfiability. Gilmore
used the multiplication method. That is, as each ;' is produced, §; is multi-
plied out into a disjunctive normal form. Any conjunction in the disjunctive
normal form containing a complementary pair is removed. Should some S/
be empty, then S is unsatisfiable and a proof is found.

Example 4.18
Consider
S = {P(x), ~P(a)}.
H, = {a}
So = P(a) A ~P(a) = OJ.
Thus S is proved to be unsatisfiable.
Example 4.19
Consider _
S = {P(a), ~P(x) v Q(f (x)), ~Q(f(@))}-
H, = {a}.
So' = P(a) A (~P(a) v Q(f(a)) A ~Q(f(a))
= (Pa) A ~P(a) A ~Q(f@)) v (P@) A Q(f(@) A ~Q(f(@)
=0OvO=0

Thus S is proved to be unsatisfiable.

The multiplication method used by Gilmore is inefficient. As is easily
seen, even for a small set of ten two-literal ground clauses, there are 210
conjunctions. To overcome this inefficiency, Davis and Putnam [1960]
introduced a more efficient method for testing the unsatisfiability of a set
of ground clauses. We shall now describe their method with some
modification. ’

The Method of Davis and Putnam

Let S be a set of ground clauses. Essentially, the method consists of the
following four rules.

I. Tautology Rule Delete all the ground clauses from $ that are
tautologies. The remaining set S’ is unsatisfiable if and only if S is.

II. One-Literal Rule If there is a unit ground clause L in S, gbtain Ry
from S by deleting those ground clauses in S containing L. If §" is empty,

e

-

Ji

64 4 HERBRAND’S THEOREM

S is satisfiable. Otherwise, obtain a set $” from S’ by deleting ~ L from §'.
S” is unsatisfiable if and only if S is. Note that if ~ L is a ground unit clause,
then the clause becomes [J when ~ L is deleted from the clause.

III. Pure-Literal Rule A literal L in a ground clause of S is said to be
pure in S if and only if the literal ~ L does not appear in any ground clause
in S. If a literal L is pure in S, delete all the ground clauses containing L.
The remaining set S’ is unsatisfiable if and only if S is.

1V. Splitting Rule 1If the set S can be put into the form
(A, VLYA - A(Ap v LYA(By vV ~L)A - A(B,Vv ~L) AR,.

where A;, B;, and R are free of L and ~L, then obtain the sets §, =
Ay A++AA, AR and §; =B, A+ A B, AR. S is unsatisfiable if and
only if (S, v S,) is unsatisfiable, that is, both S, and S, are unsatisfiable.

We can now show that the above rules are sound. That is, if the original
set S is unsatisfiable, then the remaining set after one of the rules is applied
is'still unsatisfiable, and vice versa.

For Rule I Since a tautology is satisfied by every interpretation, §' is
unsatisfiable if and only if S is.

For Rule II 1If §' is empty, then all the ground clauses in S contain L.
Hence any interpretation containing L can satisfy S. Therefore S is satisfiable.
We still have to show that S$” is unsatisfiable if and only if S is un-
satisfiable. Suppose S” is unsatisfiable. If § is satisfiable, then there is a model
M of S containing L. For §”, M must satisfy all the clauses which do not
contain L. Furthermore, since M falsifies ~ L, M must satisfy all the clauses
that originally contain ~ L. Therefore, M must satisfy S”. This contradicts
the assumption that $” is unsatisfiable. Hence, S must be unsatisfiable. Con-
versely, suppose S is unsatisfiable. If §" is satisfiable, then there is a model
M" of S”. Thus any interpretation of § containing M” and L must be a
model of S. This contradicts the assumption that S has no model. Hence
S” must be unsatisfiable. Therefore, $” is unsatisfiable if and only if S is.

For Rule 111 Suppose §’ is unsatisfiable. Then S must be unsatisfiable
since S’ is a subset of S. Conversely, suppose S is unsatisfiable. If S’ is
satisfiable, then there is a model M of §'. Since neither L nor ~L is in §',
neither L nor ~ L is in M. Thus any interpretation of S that contains M
and L is a model of S. This contradicts the assumption that S has no model.
Hence S’ must be unsatisfiable. Therefore, §’ is unsatisfiable if and only if
S is unsatisfiable.

For Rule IV Suppose S is unsatisfiable. If (S, v S,) is satisfiable, then
either S, or S, has a model. If S,(S,) has a model M, then any interpretation

.

4.6 IMPLEMENTATION OF HERBRAND'S THEOREM 65

of S containing ~L(L) is a model of S. This contradicts the assumption
that S has no model. Hence (S, v S,) is unsatisfiable. Conversely, suppose
(S, v S,) is unsatisfiable. If S is satisfiable, S must have a model M. If M
contains ~ L(L), M can satisfy S,(S,). This contradicts the assumption that
(S, v S,) is unsatisfiable. Hence S must be unsatisfiable. Therefore, S is
unsatisfiable if and only if (S, v S,) is.

The above rules are all very important. We shall see in the subsequent
chapters that these rules have many extensions. We now give some examples
to show how these rules can be used.

Example 4.20

Show that S=(Pv Qv ~R)A(PV ~Q) A ~P AR AU is unsatis-
fiable.

(1) (PvQv ~RA(PVY ~QA~PARAU
2) Qv ~RyA(~Q)ARAU Rule Il on ~P
(3) ~RARAU Rule Il on ~Q
4) oAU Rule IT on ~R.
Since the last formula contains the empty clause [J, S is unsatisfiable.
Example 4.21

Show that S=(P v Q) A ~Q A(~P v Q v ~R)is satisfiable.
1) PvQyAa~QA(~PVvQVv ~R)

(2) P A(~PvVv ~R) Rule Il on ~Q

(3) ~R Rule Il on P
4)] ‘ Rule Il on ~R.
The last set is an empty set. Hence S is satisfiable.

Example 4.22

Show that S=(P v ~Q) A(~PV Q) A(QV ~R)A(~QV ~R) is
satisfiable.
1) (PVv~QDA(~PVvOYAQ@YV ~R)A(~QV ~R)
@ (~QA(@QV ~R) A(~QV ~R)

V(@A@Y ~R)A(~Q Vv ~R)) Rule IVon P

(3) ~R v ~R Rule Il on ~Q and Q
@) vl Rule IT on ~R.
Since both of the split sets are satisfiable, S is satisfiable.

and in the above, call the second z, y say. This would mean that when we looked at such
formulae as:

P(z) A-P(f(F(f(F(F()))

we could see straightaway that there was a potential match of P(z) and =P (f(f(f(f(f(¥)))))),
by considering whether and how they would unify. So it is important to complete the
clausal forming by standardising apart variables in different clauses sharing the same
name. :

Resolution makes use of this. Effectively it postpones tha actual generation of the
Herbrand universe and base as long as possible, so that you only generate what you need.

4 Resolution

4.1 Resolution for Propositions

This is a partial development of resolution from Herbrand’s theorem, see Alan Bundy’s
book for a more detailed account.

First, I want to look at the resolution rule of inference for propositions and then
go back and look at it working with expressions involving predicates, so you can see it
controlling the development of the Herbrand base.

If you think about Davis and Putnam’s second rule, it would take something like:

PA(-PVQ)

and work out that this was unsatisfiable iff Q was. For if P is T, the (un)satisfiability
is determined by the second clause, which is effectively 1L V@, i.e. Q. If P is 1, the whole

thing’s | anyway.
More generally, what about:
(PVR)A(-PVQ)
Again there are two cases
e If P is T this is equivalent to T A Q, which is equivalent to Q.
e If P is L this is equivalent to R A T, which is equivalent to R.

So effectively it’s equivalent to Q V R. Having produced a resolvent, it should be
ANDed back into the conjunction, available for further resolution with other clauses. If
any resolution eventually produces the empty clause, e.g. P A —P resolving to O, that is
unsatisfiable. So the basic process is to keep resolving until you get 0.

Here’s a resolution style deduction tree:

23

(PVQ) A (-1PVQ) A (va-wQ) A (~PV-Q)

NN\

A -Q

\A

O

4.2 Resolution with Predicates

A rather more general formula than the one I used above to motivate using resolutionis:

® (Ple)v Q&) A (-PU() V () A

The progressive Herbrand universe generation gives us something like this:

a (P(a) v Q(a)) A (—P(f(a)) Vv B(a)) A...
a,f(a) (P(a)VQ(a)) A(=P(f(a))V B(a)) A ...
A

(P(f(a)) v Q(f()) A (=P(f(f(a])) v B(f(a))) A

We would take (P(f(e)) V Q(f(a))) and (=P(f(a)) V R(a)) and resolution would
produce Q(f(a)) Vv R(a), to AND back into the conjunction. But this is wasteful, we
can use resolution without generating the Herbrand Universe on (P(z) vV Q(z)) and
(=P(f(y)) V R(y)) to produce Q(f(2)) V R(z), knowing that the z can be instantiated

by any member of the Herbrand Universe. The new clause is ANDed back into the con- -

junction, available for further resolutions. Its variables must be renamed apart from any

existing ones.
. So this is effectively genarating only those parts of the Herbrand Universe required to

demonstrate unsatisfiability, and delaying such genarations as long as possible by unifying
variables with variables to give other variables as long as possible. Obviously unifying a
variable with a constant fixes the variable to that constant.

Search doesn’t go away though. There is still the problem of choosing which clauses
to resolve together.

Notice that if two literals can be unified there is a unique most general unifier.

5 Com;ﬁeteness and Soundness of Resolution

This is taken from Chang and Lee’s account, and supplements the chapters on resolution,
unification and formal results about resolution in Bundy’s book.

»

24

5.1 Resolution Rule of Inference

Binary Resolution:

(C'vP')A(C"v=P")

(c've™e

where 8 is the most general unifier of P! and P", and the C’s and P’s stand for any
literals.
* Full Resolution:

(C'"VPIV.VPYA(C"V=P!V..v=PL)

(c'vc")¢

where P{¢ =...= Pl¢ = P{'¢ = ... = P}l¢ and ¢ is the most gencral such unifier.

Resolution is used to derive new clauses which are ANDed to the existing ones once
their variables have been renamed. In a refutation proof, this continues until the empty
clause O is derived, or possibly forever if the original formula was satisfiable.

5.2 Resolution and Semantic Trees

Suppose we have some clauses on which resolution is being used:

PA(=PVQ)A(=PV-Q)

Here is the semantic tree:

PV -Q -PVQ
false false
here here

~PV —Q and ~P V Q are falsified at two nodes which, because they are children
of a common parent, share a common assignment of truth values apart from the last
assignment to Q. l.e. the two clauses contain the complementary literals @ and —@Q.
So they can be resolved together on these complementary literals. Each of the clauses
was made false by the relevant assignments to Q, so everything else in the clauses (—P)
must already have been false. So since the resolvent of the two clauses is a disjunction of

25

everything else in them which was already false regardless of @, it must be false in the sub-
interpretation labelling the parent node. This new clause ANDed into the conjunction
of clauses lets us prune the semantic tree, because we know that the parent of the two
failure nodes we were considering before is a failure node for a clause in the conjunction
(the new clause we just ANDed in). So we prune the branches below it, getting a new
tree:

P T 1

—P false P false
here here

Another resolution in this case produces the empty clause from P and P and re-
duces the tree to just the root. We would not expect any assignment of truth values in
an interpretation to be necessary to falsify the empty clause. If we reach the root, it
means that the empty clause has been derived, since nothing else could be falsified by no
assignment of truth values.

For the proofs that follow, we also need a lemma:

If Cf is an instance of C; and C} is an instance of Cz, where C; and C; are
clauses, and C' is a resolvent of C} and Cj then 3 C a resolvent of C; and Cj,
such that C' is an instance of ¢ .

5.3 Completeness of Resolution

A conjunction of clauses S is unsatisfiable implies there is a deduc-
tion of the empty clause from S

Let Ay, Ag, ... be S’s Herbrand Base. S is unsatisfiable, so by Herbrand’s theorem
there is a finite closed semantic tree 7" corresponding to every complete semantic tree.
Take any such finite closed tree, then there are two cases:

e T' is only the root node. So the empty clause is already in S.

o T' is not only the root node. Then there must be a node N such that both its
children Ny and N are failure nodes. These correspond to interpretations identical -
up to N and then with some element of the Herbrand Base (An say) true in Ny and |
false in N3. Since these are failure nodes, 3 instances Cf and Cj of clauses Cy and
C,, falsified by the interpretations at Ny and Nz, but not by N’s interpretation.
Since the only development after N was the assignment of truth values to Ay, all
the other literals in C] and Cj were necessarily falsified at N, the only thing not
making the whole clauses false was the lack of an assignment to An.

So Cf must contain ~Ay and Cj must contain Ay. Resolve C] and Cj on Ay, AN
to get C', which must be false in N’s interpretation. From the lemma, we know
there is some C, resolvent of C, and C; of which C' is an instance.

26

Let T" be the tree pruned up to N. This is a closed semantic tree for S A C, since
an instance of C is falsified at N.

We can keep doing this, since the tree is finite, and we must eventually reach the
empty (root only) tree, corresponding to the empty clause.

5.4 Soundness of Resolution

If there is a deduction of the empty clause from a conjunction of
clauses S that implies S is unsatisfiable

'Let Ry, ..., Ry, be the resolvents in the deduction. Suppose S were unsatisfiable, then
it would have a model M. Any model must satisfy all S’s clauses and all their resolvents,
since the resolvents are logical consequences. It must also satisfy the resolvents’ resolvents,
and their reslovents etc. But O is such a resolvent, and nothing can be a model for it,
so we have a contradiction, S cannot have been satisfiable.

27

