Experiments with Proof Plans for Induction

Alan Bundy Frank van Harmelen Jane Hesketh
Alan Smaill
Department of Artificial Intelligence,
University of Edinburgh.

- October 28, 1988

Abstract

The technique of proof plans, is outlined. This technique is used to guide
automatic inference in order to avoid a combinatorial explosion. Empirical
research to test this technique in the domain of theorem proving by mathe-
matical induction is described. Heuristics, adapted from the work of Boyer
and Moore, have been implemented as Prolog programs, called tactics, and
used to guide an inductive proof checker, Oyster. These tactics have been
partially specified in a meta-logic, and plan formation has been used to rea-
son with these specifications and form plans. These plans are then executed
by running their associated tactics and, hence, performing an Oyster proof.
Results are presented of the use of this technique on a number of standard
theorems from the literature. Searching in the planning space is shown to be
considerably cheaper than searching directly in Oyster’s search space. The
success rate on the standard theorems is high. These preliminary results are
very encouraging.

Keywords

Theorem proving, mathematical induction, search, combinatorial explosion, proof
plans, tactics, planning.

Acknowledgements

The research reported in this paper was supported by SERC grant GR/E/44598,
Alvey/SERC grant GR/D/44270, and an SERC Senior Fellowship to the first au-
thor. We are grateful to the other members of the mathematical reasoning group
at Edinburgh for many useful discussions.

1 Introduction

This paper describes work in progress to explore the use of proof plans for the
automatic guidance of proofs by mathematical induction.

Such inductive proofs are required in the domain of verification, transforma-
tion and synthesis of recursive computer programs. We have adopted this domain
as a'vehicle for the exploration of our ideas on automatic guidance. To enable us
to do this the Nuprl program development system, [Constable et al 86], has been
reimplemented in Prolog by Christian Horn, a visitor to our group, [Horn 88].
This system, which we have christened, Oyster, is a proof checker for Intuition-
istic Type Theory, based on a system of Martin-Lof, [Martin-Lof 79]. Thisisa
constructive, higher order, typed logic, especially suitable for the task of program A
synthesis. '

Oyster reasons backwards from the theorem to be proved using a sequent
calculus notation, which includes rules of inference for mathematical induction.
The search for a proof must be guided either by a human user or by a Prolog
program called a tactic. The Oyster search space is very big, even by theorem
proving standards. There are hundreds of rules of inference, many of which have
an infinite branching rate. So careful search is very important if a combinatorial
explosion is to be avoided. Most of these huge Oyster search spaces consist of
sub-proofs that various expressions are well typed. These provide a synthesis time
type checking on the programs synthesised by the proofs. These sub-proofs are
fairly easy to control, but even without them the search spaces are very big. It
is an open problem whether the usual devices of normal forms, unification, ete.
can be used to make a more computationally tractable theorem prover without
sacrificing its suitability for program synthesis.

Our aim is to develop a collection of powerful, heuristic tactics that will guide-
as much of the search for a proof as possible, thus relieving the human user of a
tedious and complex burden. These tactics need to be applied flexibly in order
to maximise Oyster’s chances of proving each theorem.

The state of the art in inductive theorem proving is the Boyer-Moore Theorem
Prover, [Boyer & Moore 79] (henceforth BMTP). It is, thus, natural for us to try
and represent the heuristics embedded in the BMTP as Oyster tactics. [Bundy 88]
contains an analysis of some of these heuristics. We have used this analysis to
implement a number of Oyster tactics for inductive proof and have tested them on
some simple theorems, in the theories of natural numbers and lists, drawn from
[Boyer & Moore 79] and [Kanamori & Fujita 86]. These tactics are outlined in
§2.

A theorem prover faithful to the spirit of BMTP would apply these tactics, in
sequence, to a series of sequents. It would use a process of backwards reasoning:

with the theorem to be proved as the initial sequent and a list of axiom sequents,
true, as the final one. Whenever a tactic succeeded in modifying the current
sequent, the resulting formula would become the new sequent and would be sent
to the beginning of the tactic sequence. If the current sequent could not be
modified then the theorem prover would fail rather than backtrack. The BMTP
does not search. »

Clearly this strategy is very reliant on the design of the tactics and on their
order of application. We were keen to improve on this strategy by making the
tactic application order more sensitive to the theorem to be proved and, hence,
less reliant on the tactic design. We have built a number of plan formation
programs which construct a proof plan consisting of a tree of tactics customised
to the current theorem, and have tested these planners on our standard list of
theorems. These planners are described in §3.

In order to build this plan it is necessary to specify each tactic, partially, by
giving some preconditions for its attempted application and some effects of its
successful application. We call this partial specification a method. It is expressed
in a meta-logic, whose domain of discourse consists of logical expressions and
tactics for manipulating them. More details of the advantages and use of proof
plans can be found in [Bundy 88].

2 Tactics for Guiding Inductive Proofs

Figure 1 is a simple illustrative example of the kind of proof generated by BMTP
and by our Oyster tactics. It is the associativity of + over the natural numbers.
The notation is based on that used by Oyster, but it has been simplified for
expository reasons and only the major steps of the proof have been given.

Each formula is a sequent of the form H I G, where H is a list of hypotheses,
I is the sequent arrow and G is a goal. Formulae of the form X : T are to -
be read as “X is of type T”. pnat is the type of Peano natural numbers. The
first sequent is a statement of the theorem. Its first two hypotheses constitute
the recursive definition of +. Each subsequent sequent is obtained by rewriting a
subexpression in the one above it. The subexpression to be rewritten is underlined
and the subexpression which replaces it is overlined. Only newly introduced
hypotheses are actually written in subsequent sequents; they are to be understood
as inheriting those hypotheses above them in the proof. In the spaces between
the sequents are the names of the tactics which invoke the rewriting.

The proof is by backwards reasoning from the statement of the theorem. The
induction tactic applies the standard arithmetic induction schema to the theo-
rem: replacing z by O in the base case and by s(z') in the induction conclusion
of the step case. The take_out and unfold tactics then rewrite the base and step

3

Vu : pnat.{0+ u = u}

Vv : pnat, Var : pnat.{s(v) + v = s(v + w)}
z : pnat

: pnat

: pnat

z+ (y+2)=(z+y)+=

induct\
Y

FO+(y+2z)=(0+y)+2 z': pnat
Z+(y+z)=(z"+y)+2
Fa(z)+(y+2)=(s(z')+y)+=
: [
2 X take out 2 X unfold

T N @

~_a

FyrE=t4s T Py s B g)

-l

aimp{ify unjfold
_r

S
true Fa(z'+ (v +2)) = s((z' +y) + 2)

fertilize right
—Y
Fs(z'+ (y+2)) = s(z'+ (v + 2))
/
simplify

_¥

true

Figure 1: Outline Proof of the Associativity of +

case, respectively, using the base and step equations of the recursive definition
of +. The two applications of takeout rewrite the base case to an equation
between two identical expressions, which the simplify tactic reduces to irue.--
The three applications of unfold raise the occurrences of the successor function,
s, from their innermost positions around the z's to being the outermost func-
tions of the induction conclusion. The two arguments of the successor functions
are then identical to the two arguments of = in the induction hypothesis. The
fertilize_right tactic then replaces the right hand of these two arguments for the
left hand one in the induction conclusion. The two arguments of the successor
functions are now identical and the simplify tactic reduces the sequent to true.
The basic_plan is a tactic for guiding the whole of this proof, apart from the two
simplify steps. It is defined by combining the sub-tactics induction, take_out,

unfold and fertilizeright in the order suggested by the above proof.

Each of these tactics is implemented as a Prolog program that calls Oyster
rules of inference in order to manipulate the current sequent and produce a new
one. As an example, the unfold tactic is given in figure 2. The argument to the
unfold/1 procedure, (0), is the position of the constructor function we want to
unfold. This position is represented as a list of numbers, e.g. [1,2,3] represents the
1st argument of the 2nd argument of the 3rd argument of the outermost function.
unfold/1 first picks up the current sequent, (1), and finds the subexpression
containing the specified occurrence of the constructor, (2). It finds the function
symbol whose step-equation it wants to use, (3), and picks up its step-equation,
(4). It then finds the new value of the subexpression-to-rewrite by computing the
instantiation of the step equation that matches the subexpression-to-rewrite, (5),
and uses that result to call the sub-tactic rewrite, (6). If this succeeds then it
produces a list of three sequents, the first and the third one of which are proved
by the sub-tactics univ_elim and wf fiacs, and the second one of which is left as
the remaining subgoal® after the application of un fold, (6).

unfold(||Pos]) : — (0)
goal(G), (1)
exp.at(G, Pos, Ezp), (2)
exp.at(Ezp,|[0], F), (3)
step(F, Eq), (4)
instantiate(Eq, Ezp = NewEzpin T,), (5)
rewrite(Ezp = NewEzp in T)

then [univ_elim,idiac, wf ftacs]. ()

Figure 2: Prolog Code for the unfold Tactic

A selected list of theorems to which these tactics have been applied is given
in figure 1. The cpu times taken to prove these theorems and the lengths of the
proofs found are tabulated in table 2, in columns OT and OL, respectively.

}4dtac is a non-op.

38 Using Planning for Flexible Application

We have had some success in proving theorems by repeated application of the
basic_plan and simplify tactics. This success confirms the hypothesis proposed
in [Bundy 88] that the proof structure captured in basic_plan underlies a large
number of inductive proofs. However, some theorems (e.g. comx) do not yield
to this straightforward combination of tactics and require ad hoc modifications,
e.g. using take_out in the step case. This kind of ad hoc patching is unlikely
to work for more complex theorems. To make a powerful theorem prover which
will scale up to complex theorems, it is necessary to put the tactics together in a
principled and flexible way. That is, we want tactics used to be sensitive to the
form of theorem to be proved and to be explicable in terms of that form.

To achieve this we use Al plan formation techniques to construct super-tactics,
especially geared to the theorems to be proved, out of the sub-tactics described
above. Each of these sub-tactics is partially specified using a method and the plan
formation program reasons with these methods to link the sub-tactics together.
Example plans formed by this process are given in figures 5 and 6. The theorems
are then proved by executing the super-tactics defined by these plans.

A method is represented as an assertion of the Prolog procedure method/6 in
the format given in figure 3. The first argument, (1), to method/6 is the name
of the method: a function with some arguments specifying the context of its use.
We find it convenient, in practice, to overload the tactic name and reuse it as
the method name. The second argument, (2), is the snput formula, a meta-level
pattern which any formula input to the tactic must match. The third argument,
(3), is the preconditions, a list of further properties, written in the meta-logic, that
the input formula must satisfy. The fifth argument, (5), is the output formulae,
a list of meta-level patterns which any formulae output by the tactic will match.
The fourth argument, (4), is the effects, a list of further properties, written in the
meta-logic, that the output formula will satisfy. The sixth argument, (6), is the
Prolog procedure call to the tactic.

The method for the unfold tactic is given, as an example, in figure 4. The
input to the tactic, (2), can be any sequent, H - G, where H is the hypoth-
esis and G is the goal. The argument, [N|Pos|, to the name, unfold, of the
method, (1), and the tactic, (6), is a list of numbers specifying a position. The
preconditions, (3), for attempting the tactic are as follows. In position [N|Pos]
in G there should be a constructor term, Constructor with a constructor func-
tion, Constructor Func as its dominant function. Constructor should be in the
recursive argument position of a primitive recursive function, F, whose recursive
definition has the step case, StepEg. The result of a successful application of the
tactic will be that the output, (5), will be a sequent H NewG, in which NewG

6

method(name(... Args...), (1)
Input formula, (2)
Preconditions, (3)
Effects, (4)
Output formulae, (5)
tactic(... Args...) (6)

Figure 3: The Format of Methods '

is formed from G by rewriting the term at position Pos using StepEq, (4).

Finding proof plans presents an unusual plan formation problem. Most Al
planners work backwards from the final goal® to the initial state. Unfortunately,
the final goal of all our proofs is a list of trues, and this gives the planner virtually
nothing to work from. The initial state, i.e. the theorem to be proved, is a much
richer source of information. Therefore, we have built a series of experimental
forward planners.

Altogether we have built four different forward planners Our depth-first plan-
ner is the fastest at finding plans, but sometimes gets trapped down an infinite
branch of the planning search space and does not always find the shortest plan.
Our breadth-first planner is guaranteed to terminate with the shortest plan, if
there is a plan, but is intolerably slow on all but trivial theorems. Our stera-
tive deepening planner is a fairly good compromise, being much faster than the
breadth-first one and being guaranteed to terminate with the shortest plan. Our
best-first planner is only slightly slower than the depth-first planner and, in prac-
tice, usually terminates with plans of reasonable length. Its heuristics consist of
a simple fixed order in which to try the methods.

Each planner takes the theorem to be proved as the initial state and finds a
tree of methods which will transform it into a list of trues. At each cycle it finds
a method that is applicable to the current state by matching that state to the
input pattern of the method and checking the preconditions. The list of output
formulae is then calculated from the output and the effects of the method. The
cycle is repeated for each of these output formulae.

2Note that goals in planning are not the same thing as goals in sequents.

method(un fold([N|Pos)), (1)
H:G, (2)
[type(., - -, Constructor),
ezp_at(Constructor,[0], Constructor Func),
ezp.at(G, [0, N|Pos), Constructor Func),

ezxp.at(G,[0|Pos), F),

prim_rec(F,N),

step(F, StepEq) :
I, (3)
[rewrite(Pos,StepEq, G, NewG)], (4)
[H + NewG], | . (9)
unfold([N|Pos)) (6)

).

Figure 4: The Method for the unfold Tactic

For instance, if the current state were the sequent:
Fos(z)+(y+2)=s(z) +y)+2

then the method unfold([1,1,1]) is applicable since there is a constructor term,
s(z), in position [1,1,1] in the sequent’s goal, in the recursive argument position
of a primitive recursive function +. After rewriting the term in position [1,1] with
the step case of the recursive definition of + we get the output sequent:

Fos(z+(y+2)) =s(z) +y) +2

When the tactic unfold([1,1,1]) is executed it generates an Oyster proof consist-
ing of 25 rule of inference applications! This 25:1 ratio indicates the gearing that
we get from planning the proof. Further evidence for this can be found in table
2. 22 of these are concerned with proving well-typedness, but even if these are
ignored the remaining 3:1 ratio still indicates a significant gearing.

If the basic_plan method is not available, the plan found for the example ass+
is as displayed in figure 5. When the tactic corresponding to this plan is executed
it generates the proof outlined in figure 1, as required. If the basic_plan method
is available, the plan found is as displayed on the left hand side of figure 6. Of
course, the tactic associated with this planalso generates the proof outlined in

8

figure 1. The right hand side of figure 6 shows the plan formed for the example
com+. This illustrates the way in which the basic_plen can be nested in a plan.

induction(z) then
[take_out ([1,1,1]) then

take_out ([1,1,2,1]) then

simplify ,
unfold([1,1,1]) then

unfold([1,1,2,1]) then

unfold([1,2,1]) then
fertilize right([1],vs) then
simplify

Figure 5: The Proof Plan Generated for ass+

basic_plan(z) then basic_plan(z) then
[simplify, [basic_plan(y) then
simplify [simplify,
] simplify
Js
basic_plan(y) then
[stmplify,
stmplify

]

Figure 6: The Plans for ass+ and com+ using the basic_plan Method

4 Results

The results of applying our plan formation programs to the theorems listed in
table 1 and then executing the resulting plans in Oyster, are given in table 2.
The meaning of the various columns is as follows.

e PT — is the time in cpu seconds to form the plan using the best-first
planner. All cpu times were measured using a Sun3/60 with 24 Mb of
memory, running Quintus 2.2 under Sun0S§ 3.5. A “-” sign indicates that the
attempt to find a plan failed. With the depth first planner times are slightly
shorter, but fewer planning attempts are successful. With the iterative
deepening planner times are slightly longer and exactly the same planning
attempts succeed. With the breadth first planner times are several orders
of magnitude longer and many planning attempts had to be abandoned due
to resource limitations.

e OT — is the time in cpu seconds to execute the plan by running its associ-
ated Oyster tactic. This calls rules of inference of Martin-Lof Intuitionistic
Type Theory.

e RT — is the result of dividing OT by PT. These results were very surprising
to us. It is an order of magnitude less expensive to find a plan than to
execute it, despite that fact that finding a plan involves search whereas
executing it does not. Partly this is due to an inefficient implementation
of the application of Oyster rules of inference. However, it also reflects the
smaller length of plans compared to proofs, the small size of the plan search
space (¢f. column PS) and the inherent cheapness of calculating method
preconditions and effects. It also indicates that most of the time spent
executing a tactic is taken up in applying Oyster rules of inference, rather
than in locating the rule to apply. '

e PL — is the length of the shortest plan found by the best-first planner, t.e.
the number of tactics in the plan. These are calculated with the basic_plan
tactic available.

e OL — is the length of the proof found by executing tactics corresponding

to the plan, s.c. the number of applications of Oyster’s rules of inference in
the proof.
Note to referee: The figures given (ezcept one) are estimates. Measurement
of the precise figures requires a modification to the Oyster system, which
we were not able to implement before the deadline, but the figures will be
avatlable shortly.

10

e RL — is the result of dividing OL by PL. Note that plans are significantly
shorter than proofs. This is because each tactic applies several rules of
inference.

¢ PS — is the number of nodes visited in the planning space before the first
plan is found by the iterative deepening planner. For some of the simpler
theorems we give figures both with and without the basic_plan. The former
are much smaller, since short plans using bastc_plan are found early in the
search. For more difficult theorems only the figure with the basic_plan is
given, although our planners can find plans not containing the basic,lan for
all those theorems for which they can find plans containing the basicylan.
Resource limitations prevented the iterative deepening planner finding a
plan for some theorems, even though the best-first planner had succeeded.
We have estimated PS in these cases.

¢ OS — is an estimate of the number of nodes visited in the object-level space
before the first proof is found by the iterative deepening planner. Those
rules that generate infinite branching points were restricted in application
to a finite number of sensible instances. Attempts to automate even this
restricted version ran into severe resource problems due to the huge size of
the object-level search space, so an estimate had to be made.

¢ RS —is the result of dividing OS by PS. This shows the considerably smaller
size of the plan search compared to the proof search space. We used the
same iterative deepening planner for calculating/estimating PS and OS, in
order to facilitate comparison. We rejected the best-first planner for this
purpose because it would have been necessary to provide different heuristics
for the plan and object-level searches, thus obscuring the comparison.

These initial results are very encouraging. The much smaller search space
required for planning as opposed to theorem proving (see column RS) shows a
considerable potential for defeating the combinatorial explosion by finding plans
and then executing them, rather than searching for proofs directly. We do not
have to pay for this decrease in search space by an increased cost of searching.
On the contrary, column RS shows that it is considerably cheaper to search in the
planning space. The relatively high cost of executing the plan would need to be
paid anyway during the search of the object-level search space, since most of the
run time of a tactic is spent in applying rules. In fact, much more would have to
be paid, since it would cost more to search for a proof than merely to check the .
proof. .
There is a cost, of course, in the loss of completeness, 1.e. whereas exhaustive
search at the object-level will eventually prove any theorem, our planners may

11

Name Theorem Source
ass+ z+(y+2)=(z+y)+z BM14
com+ z+y=y+=z BM13
com+; z+(y+z)=y+(z+2) BMi12
dist zX(y+2)=(zxy)+(zx2) BM16
assXx zx(yxz)=(zxy)xz BM20
comX IXY=yXxXz BM18
tatlrev, app(rev(a),n :: nil) = rev(n :: a) KF51
assapp app(l,app(m,n)) = app(app(l,m),n) BMO5
lensum len(app(z,y)) = plus(len(z),len(y)) wus
tailrev rev(app(a,n :: nil)) = n :: rev(a) KF51
lenrev len(z) = len(rev(z)) BM56
revrev z = rev(rev(z)) - BM47
comapp len(app(z,y)) = len(app(y, z)) BM77
apprev app(rev(l),rev(m)) = rev(app(m,l)) BMO0O9
applast n = last(app(z,n :: nil)) KF432
tailrevs rev(app(rev(a),n:nil)) =n:ua KF51

Key to Source Column

BMnn is theorem nn from appendix A of [Boyer & Moore 79].

KBnnn is example n.n.n from [Kanamori & Fujita 86].

Table 1: List of Theorems

12

RS

Name PT OT RT PL OL RL PS 0S

ass+ 10 73 73 3 160 53 7 ~10° ~107
ass+* 20 ° > 9 » 18 404 » ~10°
com+ 22 93 42 7 ~550 ~80 25 ~ 102 ~ 10
com+* 43 " 7 18 » ~30 952 7 ~10°
com+, 21 109 52 5 ~550 ~110 39 ~10% ~ 10
com+; 34 7 7 16 ? ~30 14747 ” ~ 10"
dist 171 405 24 12 ~680 ~60 ~10° ~10% ~ 10%°
assX 13.0 468 36 16 ~1550 ~100 ~10° ~10% ~ 10%
comx 113 372 33 17 ~1850 ~80 3078 ~10% ~10%
tailrev, 02 26 130 2 ~25 ~12 5 ~800 ~160
assapp 1.2 101 84 3 ~300 ~100 7 ~10° ~108
lensum 1.5 133 8 3 ~200 ~170 7 ~10°° ~10°
tailrev 1.8 212 118 4 ~230 ~60 17 ~10"° ~10°
lenrev 32 198 62 6 ~550 ~90 54 ~ 10'® ~ 10
revrev 26 230 88 7 ~900 ~130 154 ~ 10 ~ 10
comapp 3.5 271 71 7 ~400 ~60 25 ~ 10 ~10™
apprev 124 380 31 .9 ~520 ~60 440 ~ 10 ~ 10%®
applast - - - - - - - - -
tailrevs - - - - - - - - -

Key to Column Titles
First letter: P = Plan, O = Object-level, R = Ratio;
Second letter: T = Time, L = Length, S = Search Size;

e.g. RL is ratio of object-level proof length to plan length.

For more details see body of text.

A % sign indicates that either the planner or the tactic
(as appropriate) failed on this problem.
A “*7 indicates that the figures on this column are the results
obtained without the basic_plan.
A “~” sign indicates that this figure is an estimate.

Table 2: Results of Plan Formation and Execution

13

fail to find any plan for a theorem, or the all the plans that are found may fail
to produce proofs. However, the high success rate of our current batch of tactics
shows that this is not, yet, a practical problem. Completeness could, in any case,
be regained by providing a low priority tactic which indulged in exhaustive search.

We have recorded two representative examples of theorems that our system
cannot prove: applast and tailrevs. applast is representative of a class of theorems
which cannot be proved because Oyster cannot yet handle partial functions. In
this case last is a partial function, being undefined on the empty list. Nuprl
has recently been extended to handle partial functions, so it should not be too
difficult to extend Oyster in the same way. With this extension, hand simulation
suggests that our planner and tactics will succeed in planning and proving this
and a number of similar theorems. tailrevs is representative of a more interesting
class of theorems which involve an extension of our current set of tactics and
methods, e.g. to include the ability to generalise sequents.

Our work is currently in the early stages. We have designed and implemented
a few simple heuristics and tested them on some of the simpler examples from
the literature. We have implemented a few simple planners for putting together
these tactics. The methods and tactics proposed in [Bundy 88| required very little
modification to prove the theorems listed in 1. By improving and extending our
set of tactics and methods, over the next few months, we expect to be able to
increase, significantly, the number of theorems that Oyster can prove.

5 Comparisdns with Related Work

In this section we discuss the relationship of our work to that of other researchers
building inductive theorem provers, others using tactics and others using meta-
level inference.

As mentioned in §1, the state of the art in inductive theorem proving is still
BMTP. We have yet to incorporate all the heuristics from BMTP into our tactics
or to test them on the full range of theorems in [Boyer & Moore 79]. However,
even on the simple examples we have tried so far we have found one improvement
over BMTP; it can only prove comx if the lemma u X 8(v) = v + u X v* has
previously been proved. A combination of the fixed order of BMTP’s heuristics
and its inability to backtrack means that it misses the opportunity to propose
and prove the lemma at the right moment and then it gets stuck down the wrong
branch of the search space. The more flexible application of our tactics enables
them to set up the key lemma they require* as a subgoal, and prove it, during
the proof of comx. Hence they do not require it to be pre-proved. In addition,

3A commuted version of the step case of the recursive definition of x
4Which is a slight variant of the one required by BMTP

14

our experience of partially specifying and reasoning with inductive proof tactics
has given us an insight into how the BMTP heuristics cooperate in the search for
a proof and suggested ways of extending and improving them (see §6).

Tactics were first introduced to theorem proving in the LCF program verifi-
cation system, |Gordon et al 79]. Their major use in LCF and Nuprl has been to
automate small scale ‘simplification’ processes and to act as a recording mech-
anism for proof steps discovered by a human during an interactive session. We
are unusual in using tactics to implement general-purpose whole-proof strategies,
although there has been some work on the implementation of decision algorithms.
We are unique in using plan formation to construct a purpose-built tactic for a
theorem, although [Knoblock & Constable 86] discusses the (meta-)use of Nuprl
to construct a tautology checking tactic from its specification.

Meta-level inference has been widely used in AI and logic programming to
guide inference (see, for instance, [Gallaire & Lasserre 82]). However, most uses
of meta-level inference have been to provide local control, e.g. to choose which
subgoal to try to solve next or to choose which rule to solve it with. It has also
been used for a coarse global control, e.g. to swap sets of rules in or out. We are
unusual in using it to construct proof plans, i.e. outlines of the whole inference
process. The only other use of proof plans we are aware of is earlier work in our
own group, e.g. [Silver 85| and [Bundy & Sterling 88], on which this work builds,
and the use of abstraction to build proof plans, e.g. [Sacerdoti 74]. Abstraction,
in contrast to meta-level inference, works with a degenerate version of the object-
level space in which some essential detail is thrown away. Because abstract plans
are strongly tied to the object-level space, they are limited in their expressive
power.

6 Limitations and'Future Work

As mentioned in §5 we have not yet implemented all the heuristics from BMTP
as tactics. In particular, we are still limited in the range of inductive rules of
inference and recursive well-orderings and data-structures that we can handle.
In order to choose an appropriate form of induction, BMTP analyses the forms
of recursion in the theorem to be proved. We call this process recursion analysis.
We have yet to incorporate the full sophistication of this process into our proof
plans, but we can see how to extend the preconditions of basic_plan, in a natural
way, so that recursion analysis occurs as a side effect of plan formation. Indeed, we
can see how to improve recursion analysis so that the form of induction used is not
similar to any of the forms of recursion used in the statement of the theorem. We
hope that this will, for instance, enable us to prove the standard form of the prime
factorization theorem using the standard prime/composite form of induction, even

15

though no prime/composite form of recursion appears in the theorem statement.
This is beyond the BMTP in its current form.

At present there is a certain amount of redundancy in the work done by
methods and tactics. For instance, comparison of the tactic and method for
unfold, figures 2 and 4, respectively, shows that both calculate the step-equation
and the result of the rewriting. We intend to reduce this redundancy by passing
more information from the methods to the tactics via the tactic’s arguments.

It is possible to calculate the output of our current simple tactics from the
output and effects slots of their methods. As we build more sophisticated tactics
we do not expect this to continue. The output pattern and the effects meta-
formulae will only partially specify a tactic’s output. It will then be necessary
to satisfy the preconditions of subsequent methods not by evaluating them on
the current sequent, but by a process of bridging inference from the effects of
previous methods. This is a more expensive and open-ended process and needs
careful control. Research into this extension continues.

~ Note that if basic_plan is not available as a tactic then the planner is able
to reconstruct it by combining its sub-tactics (¢f. figure 5). It would be nice to
build a learning system that could remember such plans for future use. However,
it would be necessary to weed out ad hoc plans that are not of general utility.
Related work on learning plans from example proofs is being conducted within
our group, [Desimone 87].

Our ideas on proof plans have been tested in the domain of inductive the-
orem proving because it is a challenging one in which there is a rich provision
of heuristics. We have also done some earlier work in the domain of algebraic
equation solving, [Silver 85]. We hope that proof plans will also be applicable in
other domains. We have plans to explore their use in other areas of mathematics
and in knowledge-based systems.

7 Conclusion

In this paper we have described empirical work to test the technique of proof
plans, originally proposed in [Bundy 88|, in the domain of inductive theorem
proving. We have built a series of tactics for the proof checker, Oyster, partially
specified these tactics using methods, and built a series of planners to construct
proof plans from these methods. This system has proved a number of theorems
drawn from the literature. The initial results are very encouraging; the planning
search space is considerably smaller than the objeci-level one and plan steps are
considerably cheaper than object-level steps. Our system has a high success rate
on the simple theorems we have fed it. The rational reconstruction of the BMTP
heuristics which has resulted from our expressing them in the form of tactics and

16

[4

methods has suggested a number of interesting extensions. Hand simulation of
these suggests that we can build a theorem prover which will extend the state of

the art.

Much work remains to be done in testing the technique of proof plans in this
domain and in others, but preliminary results suggest that it will prove a powerful
technique for overcoming the combinatorial explosion in automatic inference.

References

[Boyer & Moore 79|

[Bundy & Sterling 88]

[Bundy 88|

[Constable et al 86

[Desimone 87]

[Gallaire & Lasserre 82]

[Gordon et al 79]

R.S. Boyer and J.S. Moore. A Computational Logic.
Academic Press, 1979. ACM monograph series.

‘A. Bundy and L.S. Sterling. Meta-level inference:

two applications. Journal of Automated Reasoning,
4(1):15-27, 1988. Also available from Edinburgh,
Dept. of Al, as Research Paper No. 273.

A. Bundy. The Use of Ezplicit Plans to Guide Induc-
tive Proofs. Research Paper 349, Dept. of Artificial
Intelligence, Edinburgh, 1988. Short version pub-
lished in the proceedings of CADE-9. Long version
submitted to JAR.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Im-
plementing Mathematics with the Nuprl Proof Devel-
opment System. Prentice Hall, 1986.

R.V. Desimone. Explanation-based learning of proof
plans. In Y. Kodratoff, editor, Machine and Human
Learning, Ellis Horwood, 1987. Also available as DAI
Research Paper 304. Previous version in proceedings
of EWSL-86.

H. Gallaire and C. Lasserre. Metalevel control for
logic programs. In Logic Programming, pages 173-
185, Academic Press, 1982. '

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Ed-
tnburgh LCF - A mechanised logic of computation.
Volume 78 of Lecture Notes in Computer Science,
Springer Verlag, 1979.

17

m Ca .

Ntii C

[Horn 88]

[Kanamori & Fujita 86)

[Knoblock & Constable 86]

[Martin-Lof 79]

[Sacerdoti 74]

[Silver 85]

C. Horn. The NurPRL Proof Development System.
Working paper 214, Dept. of Artificial Intelligence,
Edinburgh, 1988. The Edinburgh version of NurPRL
has been renamed Oyster.

T. Kanamori and H. Fujita. Formulation of induc-
tion formulas in verification of Prolog programs.- In
8th Conference on Automated Deduction, pages 281-
299, Springer-Verlag, 1986. Springer Lecture Notes
in Computer Science No. 230.

T. B. Knoblock and R.L. Constable. Formalized
metareasoning in type theory. In Proceedings of
LICS, pages 237-248, IEEE, 1986.

Per Martin-Lof. Constructive mathematics and com-
puter programming. In 6th International Congress
for Logic, Methodology and Philosophy of Science,
pages 153-175, Hannover, August 1979. Published
by North Holland, Amsterdam. 1982.

E.D. Sacerdoti. Planning in a hierarchy of abstrac-
tion spaces. Artificial Intelligence, 5:115-135, 1974.

B. Silver. Meta-level sinference: Representing and
Learning Control Information in Artificial Intelli-
gence. North Holland, 1985. Revised version of the
author’s PhD thesis, DAI 1984.

18

3 More Things To Try

Here are some more proofs for you to exercise on. There are proofs of them in the
benchmarks directory, but they will probably seem a bit obscure. Try them from
scratch, and don’t expect your solution to look anything like the benchmark one.

1.

AV A ~E A~ AL 24
[1>>a:u(1)->(a\a->void) ->((a->void) ->void) ->a

/ akaaV -a— —ma —a

2.

[1>>a:u(1)->p: (a->u(1))->(((x:a->p of x)->void)->void)->x:a->(p
of x->void)->void

(- Vzp(z) — Vz-p(z))
[1>>a:u(1)->p: (a->u(l))->(x:a#p of x->void)->(x:a->p of x)->void
(3z-p(z) — ~Vp(<))

[1>>a:u(1)->p: (a->u(1))->((x:a#p of x->void)->void)->x:a->(p of
x->void)->void

(=—3zp(z) — Vz--p(z))

. [I>>a:u(1)->p: (a->u(1))->((x:a#p of x)->void)->x:a->p of x->void

(-3zp(z) — Vz-p(z))

. [plus(x,y)<==>p_ind(x,y,[",v,s(v)]1)]

>>x:pnat->y:pnat->z:pnat->plus(x,plus(y,z))=plus(plus(x,y),z)in
pnat

(VzVyVz(z + (y + 2)) = ((z +y) + 2))

This is a bit harder than the others. It involves:

e A definition presented as a hypothesis. -

¢ Understanding the recursive definition functional p_ind — it allows you
to refer to recursion over the natural numbers. It works much like
NuPRL’s ind and list_ind. The first argument is the recursion argu-
ment, the second is the function’s value if the recursion argument is
0, and the third describes how to compute its value if it is of the form
s(z') This third argument is a triple, of which the first two elements
are z' and the value of the function being defined applied to z'. The
third element of the triple is then the value of the function in terms
of the first two elements of the triple. In this case, the first element of
the triple is not required and is left as ~.

9

