Semantics II

1. Resume

Previously we saW how we could provide a compositional semantics for simple sentences.
In the first mstance we associated a semantic value with each phrase and a rule for com-
bining semantic values with each rule for combmmg phrases. Then the notion of logical
form was mtrodubed Instead of pairing a phrase directly with its semantic value, it was
paired with an expressxon of a logxcal language that had the same truth conditions.

In this lesson we;will examine an encoding of the procedure for translation into logical
form in Prolog, an;d a possible approach to ambiguities in the scope of quantifiers.

2. Encoding the £ Fragment i in Prolog nga(}{’

We will need to augment each phrase in a DCG with an additional argument to carry the
logical form. Then we will add an additional predicate to each rule to specify the relation
between the logical forms of the rhs constituents and that of the lhs. Then we will par-
tially execute the resulting program, that is, replace certain computations that would nor-
mally be performed at run-time by changes to the program itself.

For instance, in the fragment for handling quantified noun phrases given above, the LF for
the sentence was obtained by applying the LF of the subject noun phrase to that of the
verb phrase. Thus our DCG rule is:

s(S) —> np(NP).vp(VP),{apply(NP,VP.S)}.

We will encode an expression of the form AX E as X" E. E will (usually) be an expression
that contains one or more instances of the bound variable X. Full evaluation of the result
of applying a lambda—exprwslon to an argument requires lambda-binding the argument
and then sxmphfymg the resulting expression recursively. In what follows we will be
interested only in'the initial binding step. lambda-bmdmg this function w.r.t to an argu-
ment a involves replacing each occurrence of X in E with a. In this case, we will obtain
the following simple definition for bind:

bind(Arg" ExI‘)r.Axf'g,Expr);

Note how logic valriables are encoded as Prolog variables, so that variable binding is real-
ised by Prolog unification. The function is encoded as a difference structure’, that is, as an
incomplete data structure whose unbound variable(s), though arbitrarily deeply nested
within the structure. share with a variable at the top level. The effect of executing the
bind procedure is thus to bind the variable positionally at the top level, and thus simul-
tancously to bind all occurrences of it in the function body. For example:

bind(X" £(3.X g(x Y)).2.£(3.2,(2.Y))).

Since the bind procedure is deterministic, we can partially execute it, giving the following
grammar rule for s:

s(S) —>np(VP" S) vp(VP).

p . i I e .
This encoding of functions as difference structures means that we need to code A expres-
sions which return A expressions as follows:
L
1

Natural Language Processing:HO12 ' Page 1

|
|
i
i

AXAYE=Y"X"E
In our original grammar determmers were ngen translatmns such as:
)\Q)\Pall(X)[P(X)— >Q(X)]

but notice that WF cannot render this in P;rolog' as:
P" Q" all(X.P(X) -> QX))

since this is not legal Prolog (predicate varmblcs are not allowed). 'l herefore we will have
to make things shghtly more complex. Consider an instance of the above s rule, as in
parsing "every man is_stupid". The vp can be straxghtforwardly represented as:

X" is stupxd(X)

The translation o;f the s will be

all(X,man(X) ->§is _stupid(X))

Therefore the tra%xslation of "every man" will have to be:

Q" all(X,man(X) ->R)

where bind(Q.X,lil) holds. Partially executing this we obtain
(X" R)" all(X.mah(X) -> R)

as the translation for every man". By a similar process we can arrive at a final Prolog
representation for every":

(X" P)" (X" R)" all(X,P ->R)
Now we need theifollowing rule for combining a verb with an object noun phrase:

vp(X" P) —> tv(X" P1),np(P1" P).

|
Notice what is going on here is analogous to the appending of difference lists that represent
the string arguments of a DCG. The translation of the noun phrase is a difference struc-
ture which is the difference between the translation of the verb phrase and that of the
verb. The verb in' turn is a difference structure with a variable corresponding to the indivi-
dual variable that will be introduced by the subject.

Natural Languaée Processing:HO12 Page 2

'
]
|

The final versxon of the entire program is as follows:

- op(100,xfy, ->) - op(100 xfy.&).

s(S) —> i
np(VP" S),
vp(VP).

np(NP) —> !
det(N1" NP), .
noun(N1). | - .

vp(IV) —> :
iv(IV). |

vp(X~ 8) -->
tv(X" 1V),
np(IV"§).

[a]. e R T R ST
det((X™ R)™ (X sb“'gll(x;fi;;s')')'; >
[every]. o } “

noun(X” man(X)) —_>>
man).

noun(X" woman(X)) -_>
[woman]. !

tv(X™ Y" loves(X Y)) ->
loves]. o

lV(X iS_stu id(XD) _> S mA e e e e

[is_stupid].

test(P) :-
s(P.[every,man, lovos A, woman] [D.

- Natural Language Processing:HO12 _

det((X" R)" (X" S)" exists(X.R&S)) —>

-d@'v’@f we Qs seper
AU rateah oaf),

il el 089)

- (/L%.

Page 3

?7 - trace, test(LF)
call:
call:
call:
call:
call:
fail:
call:
exit:
exit:

2)
3)
4)
5)
6)
6)
7)
7)
5)

8)
9)
9)
8)
4)

10)
11)
12)
12)
11)
13)
14)
14)
13)
15)
16)
17)
17)
16)

18)
19)
19)
20)
20)
18)
15)

10)

3)

~ ~ ~ ONNINNNNN INNININNINNNNNANNIN NN ONNNNSNNINN

2)
))

AMMMMA&NH

WhH s

flail

exit

oo ULbshbdhUhbhdbUadbhw

call

LA = W= W= e

w

| 8]

1 exit:

call:
call:
exit:
exit:
exit:

call:
call:
call:
: C([loves,a,woman],is_stupid, [
flail:
call:
call:

call:

exit:

e bl o

exit:

P TR PR S PRI R

test(_0) ?
s(_0,[every.man,loves,a,woman],[]) ?
np(_22" _0.[every.man, loves,a,woman],L88) ?

~det(_26" 22" _0,[every.man,loves.,a,woman],L99) ?

C([every.man,loves,a,woman],a,L99) ?
C([every.,man,loves,a,woman],a,L99)

C([every'nmn.loves a,woman],every,L99) ?

C([every ,man,loves,a,woman],every, [man, loves,a,woman])
det((_29" _30)" (29" _31)"al1(_29, 30->31),

[every man,loves,a ,woman], [man loves,a,woman])

noun(_29"_30, [man loves,a,woman],L88) ?

C([man, loves,a,woman],man,L88) ?

C([man, loves,a,woman],man,[loves,a,woman])

noun(_29‘nmn(_29),[umn.loves.a.wmmmn],[loves.a.“mnmn])

np((_297 _31)"a11(_29,man(_29)->31),
every,man,loves,a,woman],[loves,a,woman])

vp(_29" _31.[loves,a,woman].[]) ?

iv(_29" _31,[loves,a,woman],[]) ?

C([loves.a.wmman],is_§tupid,[% ?

)

)
iv(_29" _31,[1loves,a,woman],[])
tv(_29" _51,[1loves,a,woman],L146) ?
C([loves,a,woman],loves,L146) ?

: C([1oves,a,woman],loves,[a,woman])
exit:
call:
call:
call:
elxit:
exit:
e

tv(_29" 53" loves(_29,_53).[loves.a,woman],[a,woman])

np((_53"loves(_29..53))"_31,[a,woman],[]) ?

det(_61"(_53"1oves(_29,_53))" 31.[a,woman],L175) ?
C([a.woman],a,L175) ?

C([a,woman],a,[woman])

det((_53"_65)"(_53" loves(_29,_53))" '
exists(_53,_65&loves(_29,_53)),[a,woman], [woman])
noun(_53" _65,[woman],[]) ?

: C([woman],man,[]) ?
f;ail:
call:
exit:
exit:

exit:

C([woman] ,man,[])

C([woman] ,woman,[]) ?

C([wmnmn].vmnmn.[])

noun(_53"woman(_53), [woman],[])

np((53" loves(_29,_53))"
exists(_53,woman(_53)&loves(_29, 53)).[a,woman],[])

vp(_ 29" exists(_53,woman(_53)&loves(_29,_53)),

[loves.a,woman],[])
s(al11(_29,man(_29)->exists(_53,woman(_53)&loves(_29._53

[every,man,loves,a,woman],[])

test(all(29 ,man(_29)->exists(_53 womnn(_53)&loves(_293

LF = al11(_29. man(_29) -> exists(_53, woman(_53) & loves(_29. _53)))

Natural Languagt’: Processmg‘HOl2 R | ‘ o Page 4 |

'
4

1. Generating Alternative Quantifier Scopes

The program prese:nted above assumes a fixed relative scoping for the quantifiers in a sen-
tence, in which that introduced by the subject np always outscopes that introduced by the
object np. In the above sentence this seems the most plausible. However, in general, the
intended scoping depends not only on syntactic structure, but on inherent properties of
quantifiers and on real-world knowledge. For instance, Woods (in Readings in NLP)
discusses the likely intended scopings for the questions:

What is the average silicon content for all samples?
What is the average silicon content for each sample?

In the first case, t1:1e an.swéjt" warited n probably a single figure, while in the second, it is
probably a set of sgmple-cont_ent, pairs.

e o A

Therefore we will Echahgé the jﬁrogrnm above so that it does not produce a fixed quantifier
scoping, but rather _(ur_xdcr)rcprqscnl.s all possible scopings simultanecously in a structure
from which all fully specified scopings can be generated non-deterministically.

This intermediate structure is called a quantifier tree, and is built from quantifier nodes
(internal) and predication nodes (leaves). Thus the quantifier tree for the above sentence
would be: | '

Fie = N A el ekl

P“Q‘all(;X.P ->Q) man(X) . Tq

: R°S"every(Y.R ->S) woman(Y) loves(X,Y)

EPRLUEE L RTL L L

So a quantifier node has the form Q(D.R.S); where D is the expression representing the
determiner meaning, and R and S are sub-trees from which the range and scope of D will
be obtained. We can build such a quantifier tree merely by replacing the above determiner
rules: : .

det((X" R)" (X" S)exists(XRES) —S[a].
det((X" R)" (X" 8)" all(X.R->S)) —> [every].

with the followihgé

det((X"R)" (X* S)Ai q(P“ Q'; exiéts(I;&Qj.R.S)) -> [a].‘ |
det(X"R)" (X" S)‘; q(P” Qf:a;l(P -> Q).R.S)) —>[everyl.

l. : "
. The top-level sentence rule now reads:

s(T) —>np(VP" 8),vp(VP).{pull(S,T)}.

where S is a quantéifiéf Atreé,:‘-'i‘- ‘is'a fﬁli}} :scopéd formula, and pull is a procedure which

generates all fully scoped formulae compatible with a given quantifier tree. For instance,
from the above quantifier tree, the following two logical forms will be generated:

LF = all(_29, man(_29) -> exists(_53, woman(_53) & loves(_29, _53))) ;
LF = exists(_29, woman(_29) &,al,lv(.‘_53.. _z_nfmg __gS) -> loygs‘(._53). 29)));

" Natural Language Processing:HO12) _ Page 5

