Overview of Toolkits OVERVIEW OF TOOLKITS |

The toolkits - |

- * ART (V 3.1) - Inference Corporauon

Paul Chung ¢ KEE (V 3 05) I“te"lCOIp

Al Applications Institute ¢ i(nowledge Craft (V 3.1) - Camegfw Group
Edinburgh University ne. i

[

The overview |

¢ highlights the facilities that each lOOlklt pro-
vides

e points out the toolkits’ mmdaques and
differences |

i

The overview is not an evaluation |

. ’ e complex systems cannot be compared very
well by just a table of options !

» they show differences in different aPpllcauon

areas |
|
!
|
i
!
|
|
|
l
|
WHY MULTI-PARADIGM SYSTEMS? General components }
. e a large programming problem can usually be ¢ Schema Representation i
divided into a number of sub-problems :
¢ a single paradigm may not be suitable for ¢ Rule Based Programming '
solving all of the sub-problems
¢ multi-paradigm systems give the programmer ¢ Object Oriented Programming

the right tool at the right time
e Access Oriented Programming

Ways of building a multi-paradigm system

e design a new system that supports different + Context Manipulation
paradigms
O ART and KEE ¢ Development Environment

» "provide an interface for different languages
o LOGLISP, POPLOG and Knowledge Craft
e augment an existing system with a new
language construct
o HOPE with unification

e o =S A A

SCHEMA REPRESENTATION

group related information into a structure. Sche-
mata are also called frames and units.
a schema has slots and values
Example
{car-1
reg: JB0O7
colour: silver
make: AM
) .
schemata can be used to represent objects or
concepts
Inheritance and Specialization
D enables the easy creation of objects that are
almost like others with a few incremental

changes

O reduces the need to specify redundant infor-
mation and simplifies updating and
modification

OBJECT ORIENTED PROGRAMMING

schemata are viewed as objects

combines the properties of procedures and data

O data abstraction

O local states

methods

message passing

O (Send-Message Object Selector Argl)

o a form of indirect procedure call

O computation is invoked by the passing of
messages between objects

inheritance and specialization

MR N ARR

RULE BASED PROGRAMMING
|

o knowledge is represented in rule form:
If Premises then Conclusions

e rules are usually used in a forward chammg
manner

 conflict resolution
o refraction
O recency
s speclﬁcuy
o rules may be used in a backwarq chaining
. manner ;
¢ truth maintenance |
O keeps track of dependencies betwech premises
and conclusions [
O marks inconsistencies , :

ACCESS ORIENTED PROGRAMMING

e active value the mechanism underlying access-
oriented programming [
O also known as demon |

e activate computation when data are fctched or
stored -

o very useful if the value of one vanablel is depen-
dent on the value of another

I
* used a lot in fancy graphical front end |
¢ also used for constraint propagation |
I
|

|

CONTEXT MANIPULATION

o context is also known as world
o when to use it
0O hypothetical situation
O time
O state in solution to a problem
© some operations
O create new context
o add and delete information from context
O merge contexts

ART - SCHEMA REPRESENTATION

‘-‘ user defined relation
O new relation
O transitivity
O inverse
O controlled inheritance
¢ multiple inheritance
¢ single value and multi-value slots
e automatic creation of objects

DEVELOPMENT ENVIRONME’M

text editor ‘ i
file handler

knowledge base browser
interface development facilities |
rule debugger |
LISP debugger E

|
|
|
|
|
|
|
|
I
|
|
i
|
i
]

|
|
|
|

ART - RULE BASED PROGRAMMING
i

allows very complex expressions oni the LHS,

including arbitrary LISP expressions |
forward chaining rules I
(DEFRULE EXAMPLE-RULE-1" |
(LIKE 7X ?Y) |
(SWEET 7Y) ‘
=>
(ASSERT (LIKE-SWEET-THINGS ‘PX)))
backward chaining rules i
(DEFRULE EXAMPLE-RULE-3 |
(GOAL (LIKE-SWEET-THINGS ?X))
(LIKE 7X ?Y) ;
(SWEET ?Y) I
=
(ASSERT (LIKE-SWEET-THINGS '7X)))
logical dependencies
(DEFRULE EXAMPLE-RULE-3
(LOGICAL (ON ?X TABLE)
(ON ?Y 7X)
(ON 727Y))
=>
(ASSERT (ONE BIG PILE)))

conflict resolution
o salience then recency

ART - OBJECT ORIENTED PROGRAMMING

e creating a method
0O (defaction action schema argl)
e sending a message
o (invoke action schema argl)
O variations
o before
o after
¢ whopper

ART - CONTEXT MANIPULATION

create, delete and merge contexts

add and delete information

believe (select) context

poison context

o schema value conflict

O retraction from assumptive base

0O other user defined rules that look out for con-
tradictions

inheritance of contexts (context tree)

if a slot value is changed in a child context, only

that slot is copied

multiple levels of contexts

¢ attach an action to a slot !
e gactivation ;

ART - ACCESS ORIENTED PROGRAMMING

0 get, put, modify
O before, after

i
|
|
l
|
|
}
|
'
l
]

|

|

{
KEE - SCHEMA REPRESENTATION

subclass and member relations only :
multiple inheritance |
two kinds of slots f
O own slot - not inherited '

O member slot - inherited by subclasses and
members '

facets

0O define slot usage

O inheritance (e.g. override, union)

DO type and range of value

O cardinality i

o others and user defined ones |
|
I

.
.
|
1
|

KEE - RULE BASED PROGRAMMING

o two kinds of rules
o Standard Rule B
(IF Premises THEN DO Conclusions)

o Deduction Rule
(WHILE Premises BELIEVE Conclusions)
related rules are grouped into a rule class
o the same rules are used for forward and back-
ward chaining

o start forward chaining
(ASSERT
’(THE COLOUR OF CAR IS RED)
'CHOOSE.OWNER.TYPE.RULES)

O start backward chaining
 (QUERY
"(THE OWNER OF CAR IS 7WHO)
‘ "CHOOSE.OWNER.TYPE.RULES)

« conflict resolution
O depth first or breadth first
O deduction rule, standard rule, new world rule
0O most general rule or most specific
o weight (same as salience)

e

KEE - ACCESS ORIENTED PROGRAMMING

o atfach a function to a slot
.\ activation
o get
O put
0 add
O remove

¢ sending a message

e detection of inconsistent context

® an mconsmtcnt context remains

KEE - OBJECT ORIENTED PROGRWING

e KEE was originally developed as ; an object
oriented system, so this part of KEE 13 very well
developed

e creating a method -

O assign the slot value class to ’method

O assign the slot value to be a lambda expres-
sion or a function name !

O (unitmsg schema slot argl)

o create, delete and merge contexts

¢ add and delete information

« inheritance of contexts

o if a slot value is changed in a child comext only

l
l
|
I
I
I
|
|
|
KEE - CONTEXT MANIPULATION
I
|

that slot is copied

e create exclusion contexts, these comexts and

their children cannot be merged later '
A
O violation of cardinality, type or range
. N .
O user supplied rules that detect inconsistent
state :
!
O can get explanation for mconsnstenc&
D can resurrect context by removing .reason for
inconsistency

i
|
|
|
|
|
i
i
:
|
i
|
|
|

KNOWLEDGE CRAFT - KNOWLEDGE CRAFT -

SCHEMA REPRESENTATION RULE BASED PROGRAMMING
e user defined relations - e CRL-OPS (for forward chajmng)
O new relation O an enhanced version of OPS5 (for example,
O transitivity allows LISP expressions on the LHS of a
- O inverse rule)
o controlled inheritance D conflict resolution i
e multiple inheritance ® recency |
o meta-information is encapsulated in schema ¢ most specific rule
O meta-schema: a schema representing “meta- o CRL-OPS’ own working memo{-y is not

accessible from outside OPS

knowledge about another schema |
¢ CRL-PROLOG (for backward chaining)

O meta-slot: a schema representing meta-

knowledge about a slot O LISP syntax rather than Edmburgh Prolog
O meta-value: a schema representing meta- syntax !
knowledge about a value O access to LISP via call and bind |
0 meta information is not inherited o simple schemata interface ! .
* slot restriction [
0 domain |
O range [
o cardinality l
) |
|
|
|
|
l
|
|
|
|
KNOWLEDGE CRAFT - KEE - ACCESS ORIENTED PROGRAMMING

OBJECT ORIENTED PROGRAMMING

¢ attach a function to a slot
e creating a method e activation
assign the slot value to be a function name o get, put, delete

 sending a message O before, after
o (call-method schema slot argl)

|
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|

KNOWLEDGE CRAFT -
CONTEXT MANIPULATION

create, delete and select contexts

copy and move schemata

add and delete information

inheritance of contexts

once a slot value is changed in a child context
the whole schema is copied

no consistency check

|

|

l

ARTICLES |
’ |

J

Fraser, J.L. (1987) Overview of KEE. Airing, No 2.
Al Applications Institute, Edinburgh Unwersny

Inder, R. (1987) The State of the Art. Amng, No 1
and 2. Al Applications Institute, Edmburgh Univer-
sity. |
Kingston, J. (1987) A Technical Review of
Knowledge Craft. Airing, No 3 and 4. AI Applica-
tions Institute, Edinburgh University. |

i
Lurent, J., Ayel, J., Thome, F. and Zijebelin, D.
(1986) Comparative Evaluation of ThJ;ee Expert
System Development Tools: KEE, Knowledge Craft,
ART. The Knowledge Engineering Revxew Vol 1,
No 4, pp18-29. |

i

Richer, M.H. (1986) An Evaluation of Expert Sys-

tem Development Tools. Expert Systems,» Vol 3, No
3, pp166-183. |

|
Wall, R.S., Apon, A.W., Beal, J., Gately, M.T. and
Oren, L.G. (1985) An Evaluation of Commercial
Expert System Building Tools. Data & Knowledge
Engineering, Vol 1, pp279-304.

l
I
;
|
|
i

'
|
]
]

|
|
|
l
|
|
!
|

|
|
|
|
i
i
i
|
|

]
|
|
|
i

-

