Users
Knowledge Representation and Inference Two

T\

Lecture Nine:

ystem \CDKB Toolkit)
evelopment N\

e Ynterface o ———————— — 1
o . (SDI) Declarative
Al-Based Design: ’ Knowledge
.) Base
The Edinburgh Designer System (DKB)

-

\—

Designer System

N

and
&//\

Al Toolkits: An Overview

Design Manager
Support (DSM) Knowledge
1 Introduction Toolkits ~ Sources
ng ATMS)
These notes are divided into two parts. Part one describes the Edinburgh Designer A Manuf‘ : AME /\
System (EDS), and part two is a copy of the slides Dr Paul Chung (AIAI) will use in > / \ N
presenting his overview of AI Toolkits. § §
) . R Reliabtv Desi SRE \

2 The Edinburgh Designer System N esign N

~ Description N
Th(]: Edinburgh Designer System (EDS) is an Al-Based Design Support System being % Document
built in the Department of Artificial Intelligence at Edinburgh University as part of Mai tnce . A

ain DDD E

the Alvey Large Scale Demonstrator Project “Design to Product” {Smithers 85]. It is g - () GM ~
primarily being constructed to support mechanical engineering design, and the sub- S @
systems within it reflect this.

The aim of the EDS is to provide a computer based system which, by the integrated § Cost RME) NS}
application of a number of Artificial Intelligence techniques, will support engineers ™~ =
carrying out the processes involved in designing a product, and thus to aid the engineers . ' u T
in arriving at a consistent and suitable design specification, not only of its functional and | K /\\ < \ /
geometric aspects, but also of its maintenance, reliability, cost, and manufacture etc.

The EDS differs from present day CAD systems in two major respects: first it sets out : \
to support a wider range of the activities carried out during the design process, not just . -7l'£('/ w1 0P7Hé W"D . j

drawing; and the representation of designs, built using it, is founded on a representation \

of function, rather than geometry, as is the case in conventional CAD systems. The

function based representation can be further enhanced by the consistent addition of 7/45}()‘(N WC@GC’ fz/qse |
other types of relevant knowledge, such as geometry, spatial relationships, manufactur- i P . . 0 - - :
ing knowledge etc., and is therefore best seen as a rich representation primarily centred Figure 1 - The Edinburgh Designer System Archxtectlsu'e
on functionality [Smither 87a] {Smithers 87b). : :

I

B

_ I
: T Gengal (e (s,
® S g ylewy Spperk Syrlavns .

The reason for developing a function based representation formalism, rather than
follow the CAD systems geometry based representation approach, is so that the EDS can
reason about the effects upon functionality when changes are made to a proposed design
either of other aspects of its functionality, or its geometry, manufacture, maintenance,
reliability, or cost for example. During the design of a product all these aspects will
need to be taken into account, and will often impose conflicting constraints upon the
overall design. However, no matter what weighting might be given to these aspects of
a product’s design, its required functionality must at all times be maintained - there
is no point designing a product which is very easy to manufacture, or maintain, for
example if it does not function in the manner required. It is therefore important that
when considering all these possibly conflicting aspects of a product’s design any changes
which remove or change the functionality of the product being designed can be identified
to the designers. This is, therefore, one of the primary aims of the EDS as a design

support system, and is why a function based representation formalism is being developed
for it.

To provide, in an integrated way, the type of support functions required by en-
gineering designers, the different Al technologies being employed in the EDS have
to be interfaced to each other in a uniform and coherent manner. The current EDS
architecture contains what is considered to be a core set of sub-systems necessary to
support engineering design. The architecture and its implementation is intended to form
an open architecture system. Inother words the EDS is to be seen as the core of a system
which can be flexibly added to and/or reconfigured to meet different requirements. One
of the major goals of the EDS research programme is to gain an understanding of how
previously separately developed Al systems can be put together to form an integrated
and uniform system which behaves in a controlled and comprehensible way.,

The major components of the EDS which are integrated in a system architecture
are described in more detail in the following sections. Each section relates to one of the
labelled parts of the system architecture diagram presented in figure 1.

2.1 The Declarative Knowledge Base (DKB)

The way in which the EDS supports the process of engineering design is by providing
a knowledge base containing knowledge from which engineers are able to construct a
description of their design, or designs. For a computer based system, such as the EDS,
to maintain such a description of an engineering design, or set of desi"gns, the description
has to be a formal representation. The term formal here means mu’t,hematically based.
This need for a formal representation of the design description fin turn means that
any element, or part, of that design description must be uniquely and unambiguously
identifiable. In other words every element of the representation of the design description
must represent one thing and one thing only. If elements of the representation were to
represent more than one thing the EDS would have to have the ability to resolve the
ambiguities which would consequently arise in the design description - this is something
that Al research has shown is very hard for a computer based system to do, it typically
requires contextual knowledge which is often not present in the x;épresentation.

¥

i
{

3 /f

Geax}f

Spur-teeth L
Teeth Bevel-teeth
© - Spur-gear
Helical-teeth |
Cylindrical-rim 4
Ya i~
OBevjél-gear
Conical-rim *

——() Wheel
o—) Hub

“o—()Hub/Shaft interface —"_"Oneuca’i

—————— Kind-of arcs ~———o6————= Part-of arcs

Figure 2 - An example of part of the Functional Unit Module Class
Structure of the DKB for kinds of gears and their element parts.

The Declarative Knowledge Base is thus the base of engineering knowledge provided
by the system from which suitable knowledge is taken to construct a description of a
design. The knowledge it contains is organised in a hierarchical way in which different
levels of the hierarchy represent knowledge at different levels of abstraction. This
hierarchical structuring is achieved by packaging up knowledge, appropriate to a partic-

T T o T~~~ ular level of abstraction, inte Functional Unit Module Classes; the term module being

borrowed from the work of Barrow [Barrow 83} on digital hardware design verification.
A Functional Unit Module Class presents, in a declarative form, knowledge about a

4

single engineering functional entity which has a concrete referent, at a particular level
of abstraction. The declarative representation of knowledge is to be distinguished
from the procedural, or rule based, representation of knowledge by the fact that the
representation either has nothing to say about how the knowledge is to be applied, or
it in no way implies how it is to be used. Within each module knowledge pertaining__

to other aspects of the class are also represented; concerning geometric shape, spatial
relationships between parts of the module, and manufacturing knowledge, for example.

A Functional Unit Module Class within the DKB can be related to other module
classes in two ways: by a “Kind-of” relationship which places it below the module class
of which it is a kind-of in a hierarchical structure, or by a “Part-of” relationship which
relates it to other module classes whose knowledge it makes use of by including them

- within itself as parts. In order to maintain the necessary unit, or single, functionality

representation a module class may only be a Kind-of one other module class. In other
words a module class may not be a kind-of two different types of module classes higher
up in a hierarchical structure.

The Functional Unit Module Classes contained within the DKB can thus be thought
of as forming an entity-relationship directed graph structure whose entities are Func-
tional Unit Module Classes, and whose arcs are either Kind-of relationships or Part-of
relationships. An example of what part of a DKB concerned with kinds of gears and
their elemént parts is presented in figure 2. It should be noted that this example
represents.only a very small part of what a useful DKB would need to contain.

2.2 Declarative Knowledge Base Toolkit (DKBTk)

The building and maintaining of a knowledge base, just like a data base, requires the
provision of suitable tools. The DKBTk contains a set of tools for building the DKB
from a set of Functional Unit Module Class definitions, the production of Module Class
definitions, and tools for checking the syntax of module class definitions.

2.3 The Design Description Document (DDD)

The term Design Description Document is used to refer to the body of knowledge about
a product which is built up using the EDS: it is where the description of a design, or
set of designs, is built up 2and maintained in a consistent way, together with a record
of the design process. It consists of: a collection of instances of particular Functional
Unit Module Classes; the relationships between them; values for parameter instances
declared in the Functional Unit Modules used; and knowledge inferred from these. The
knowledge contained in the DDD at the end of the design process will be a complete
specification of a product and its manufacture. It will also form the basis of an historic
record of the design process.

From the users’ point of view the DDD is thus the working document with which
she or he primarily interacts.

2.4 Kﬁowledge Sources

The term “Knowledge Sources” is used to describe a set of EDS sub-systems which are
able to infer new knowledge from knowledge already existing in the DDD. It comes from

_the term inference engine commonly used to describe one part of many expert.system.

architectures. They are not, however, to be thought of as expert systems. Their main
role is to provide an integrated level of support functions to the user to help her or
him in catrying out any of the diverse types of operations executed in the process of
mechanical engineering design. Currently the EDS has four types of Knowledge Sources
which are referred to as Engines, and which provide support for: algebraic expression
solving and manipulation; spatial relationship reasoning; geometric space occupancy
modelling; and the manipulation of Codd type relational models (Tables for example).
Each of these Engines are described in more detail below.

2.4.1 The Algebraic Manipulation Engine (AME)

The Algebraic Manipulation Engine aims to support all the expression simplification,
manipulation, and solution requirements of an engineering designer using the EDS. It
will also be used by the system to follow paths in the relational structure of the design, or
designs, described in DDD, mediated by constraint equations, or expressions, or other
types of symbolic representations arising from the knowledge declared in Functional
Unit Module Class definitions, and to infer new relationships.

The AME currently contains four basic components: the equations solving system
mini-press (after the Press system of [Bundy et al 82]); the expression simplifier simp;
a symbolic linear equation solving system; and the parameter evaluator eval. The
invocation of all of these components of the AME is under the control of the EDS, but
the user can, by use of suitable commands, invoke mini-press, the linear equation solver,
and simp specifically.

2.4.2 The Spatial Relationship Engine (SRE)

The Spatial Relationship Engine provides an inferencing system able to infer the location
of objects from a description of their relative spatial relationships. This Engine is
based upon the inference engine at the centre of the RAPT Robot Programming system
developed by Popplestone et al [Popplestone et al 80] and [Corner et al 83].

2.4.3 The Geometric Modelling Engine (GME)

This Engine provides both a language for describing geometric space occupancy, a means
of manipulating the resulting shapes, and the carrying out certain types of operations
on them. The representation language used is based upon Requicha’s constructive solid
geometry (csg) [Requicha 78].

The GME in the EDS currently has two Geometric Modelling systems within it: the
Robmod system developed at Edinburgh by Cameron (Cameron 84), which is a simple
but effective polyhedral csg modelling system; and the NONAME system [Armstrong 82,
which is a quadric surface csg modeller developed at Leeds as part of the GMP1 project.

6

2.4.4 The Relation Manipulation Engine (RME)

The fourth Engine of the EDS is the Relation Manipulation Engine. Much of the
information used in the design of things mechanical, and indeed electrical, is to be
found in the form of tables and graphs. The need arises, therefore, for a means of
manipulating and effectively accessing this type of knowledge - to choose certain rows

and columns, to join two tables to form a third one, to interpolate between values in .

a table or lines on a graph, or to graphically display a table on the screen. All the
operations mentioned above except for interpolation are identical to those provided by
the Relational Calculus developed by Codd for his Relational Model [Codd 70] and
[Codd 71], and can be incorporated into a forward chaining predicate logic language
[Popplestone 79).

The RME thus provides a subset of the Relational Calculus operations for applica-
tion to tables of knowledge found in the DDD.

2.5 The Assumption based Truth Maintenance System (ATMS)

The process of design involves the exploration of the space of possible designs and the
reduction of that space by the identification of constraints. At any one time during the
design of a product, both of its functional and geometric aspects, and of its manufacture,
a number of possible alternative designs will typically be being entertained by the
engineers working on a product design. In order for the system to be able to represent
such multiple designs and to be able to distinguish what knowledge is inconsistent
within the DDD, ie. describing different designs - so that the Engines are prevented
from inferring new knowledge from existing but inconsistent knowledge in the DDD
(which it is quite possible for them to do, but would not be useful in advancing the
exploration of the design space), a Truth Maintenance System has been developed to
manage the contents of the DDD and the manner in which entries are made in it. This
EDS sub-system is based on the work of deKleer [deKleer 84, and is referred to as
an Assumption based Truth Maintenance System to distinguish it from other earlier

types of dependency directed backtracking Truth Maintenance Systems, of [Doyle 79)
and {McAllester 78]. -

2.6 The Designer System Manager (DsM)

The integrated control and use of the various EDS sub-systems is handled by the
Designer System Manager. In the current EDS implementation a simple Blackboard
agenda control mechanism is used to control the invocation of the various sub-systems,
and to queue up the various operations that can be executed as a result of some
user interaction. See [Nii 86a] and [Nii 86b] for a good survey article on Blackboard
architectures.

2.7 The System Development Interface (SDI)

Clearly any system whose aim is to support engineering designers in carrying out the
design of a product needs to have a powerful and sophisticated user interface. The

I

design, of both the ergonomic and computational aspects, of such a user interface is
beyond the expertise and resources of the Edinburgh EDS team. However, an interface
to the system as it is being built is required, and an interface which goes a long way to
meeting the demands of those involved in its construction, debugging, and testing. This
part of the EDS is therefore called the System Development Interface. Its design and
implementation is being carried out with a view to it supporting a more sophisticated
prototype user interface later on in the project. In the current EDS implementation
the SDI consists of all the commands used to interact with and control any of the
sub-systems, plus a prototype multi-window graphical display.

2.8 Design Support Toolkits .

The final set of sub-systems included in the EDS architecture diagram, see figure 1, is
the set called Design Support Toolkits. These will provide sets of tools to aid users in
the design of specific aspects of a product’s design. Those identified so far for supporting
mechanical engineering design are manufacturing, reliability, maintenance, and cost.

3 A Postscript

The material used in these notes was largely written between June 1985 and June 1987,
In most respects it still accurately describes the EDS and its component subsystems.
However, as a result of teaching this KR+I-2 course and a growing concern about the
problems experienced in trying to build DKBs, I am now proposing to radically change
the approach taken to representing domain knowledge in the EDS.

As you will see from section 2.1, the approach taken so far has been a structured
object approach, in which the builders and users of the DKB are directly concerned
with the structure of the knowledge-base. The approach that I am now advocating is
that of Brachman and Levesque: having tried to convince you of its utility, I think it is
time I tried to put it into practice. Their approach, which I refer to as the functional
approach‘to building and using knowledge-bases, is perhaps best summarised by quoting
the abstract of Levesque’s paper Foundations of a Functional Approach to'Knowledge
Representation [Levesque 84].

“We present a new approach to knowledge representation where knowledge
bases are characterized not in terms of the structure they use to represent
knowledge, but functionally, in terms of what they can be asked or told
about some domain. ... The overall result is a formal foundation for knowl-
edge representation which, in accordance with current principles of software
design, cleanly separates functionality from implementation structure”.

I have included this postscript to illustrate that knowledge representation and infer-
ence is still very much a research subject. There are some powerful techniques available

T T which can be put to very good use. It is just not easy to do, but these difficulties and

the research problems we still face present the science of Al with some of its greatest
challenges.

o [Barrow 83| “Verify: A Program for Proving Correctness of Digital Hardware Designs”, —

' !

References

[Armstrong 82] “Noname Description and Users Manual”, Department of Mechanical
Engineering, Leeds University, 1082.

Al Technical Report No. 23, November 1983, Fairchild Laboratory for Artificial
Intelligence Research, Schlumberger, Palo Alto, CA 94304.

{Bundy et al 82] “Solving Symbolic Equations with PRESS”, DAI Research Paper No
171, Department of Artificial Intelligence, University of Edinburgh, 1982.

[Cameron 84] “Modelling Solids in Motion”, Ph.D. Thesis, Department of Artificial
Intelligence, University of Edinburgh, 1984.

[Codd 70] “A Relational Model of Data for Large Shared Data Banks”, CACM 13, No.
6, June 1970. |

[Codd 71} “A‘Data Base Sublanguage Founded on the Relational Calculus”, Proc. 1‘:971
ACM SIGFIDET Workshop on Data Description Access and Control, November 1971.

[Corner et al 83] “Reasoning about the Spatial Relationships Derived from a RAPT
Program for Describing Assembly by Robot”, Proc. 8th. Int. Joint Conf. on Artificial
Intelligence, Karlsruhe, FRG, 1983. |

[deKleer 84]'. “Choices without Backtracking”, Proc. AAAI-84, pp 79-85, 1984.

[Doyle 79] “A Truth Maintenance System”, Artificial Intelligence, Vol. 12, No. 3, pp
231-272, 1979.

[Levesque 84) “Foundatlons of a Functional Approach to Knowledge Representation”,
Artificial Intelllgence, Vol 23, pp 155-212, 1984

[McAllester 78] “A Three-valued Truth Maintenance System”, Technical Report Memo
473, MIT Al Lab., 1978,
Fa

[Nii 86a) “Blackboard Systems Part One - The Blackboard Model of Problem Solving
and the Evolution of Blackboard Architectures”, The Al Magazine, Vol. 7. No. 2, pp
38-53, Summer, 1986.

[Nii 86b] “Blackboard Systems Part Two - Blackboard Applications Systems, Black-
board Systems from a Knowledge Engineering Perspective”, The Al Magazine, Vol.
7, No. 3, pp 82-106, August, 1986.

[Popplestone 79] “Relational Programming”, Machine Intelligence 9, ed. Hayes, J.E.,
Michie, D., and Mikulich, L.I., Ellis Horwood, 1979.

" [Popplestone et al 80] “An Interpreter for a Language for Descnbmg Assemblies”,
Artificial Intelligence 14 1, pp 79-107, 1980.

[Requicha 78] “Mathematical Foundations of Constructive Solid Geometry: General

Topology of Closed Regular Sets”, TM27a, Production Automation Project,
University of Rochester, USA, 1978.

[_ ——

[Smithers 85] “The Alvey Large Scale Demonstrator Project Design to Product”, Proc.
Third Int. Conf. on Advanced Information Technology: Artificial Intelligence in
Manufacturing - Key to Integration?, November 7-8, 1985, Gottlieb Duttweiler
Institute, Zurich, Switzerland, published by North-Holland.

__[Smither 87a) “Al-Based Design v_geometry-Based Design_or Why Design Cannat Be___ ___ _.

Supported By Geometry Alone”, DAI Discussion Paper No 53, 1987.

[Smithers 87b] “Artificial Intelligence and Product Creation: An Al-Based View”, DAI
Research Paper No 342, 1987.

Tim Smithers
March 1988

10

