Knowledge Representation and Inference Two
Lecture Seven:

Object-Oriented Programmlng

1 Introductory Comments

Object-oriented programming is one of the more recent and popular programming
methodologies. There are now many so called object-oriented languages in use:
Smalltalk, Actors, Strobe, LOOPS, Objective-C, C++, Objective Pascal, BLOBS, Com-
mon LOOPS, Common Objects to name just a few. Many commercial hardware and
software systems now include some object-oriented features, such as Flavors on Symbol-
ics machines, KEE and ART on various kinds of workstation, the GoldWorks package
for Golden Common LISP on PC/ATSs and so on.

Along with so called Expert Systems, Object-oriented Programming represents one
of the contributions Al has made to the world of computer programming and the
engineering of computer-based systems.

These notes aim to introduce the basic principles and elements of the object-oriented
approach, and to illustrate their use. Some comments relating its development to work
in knowledge representation and inference are also made. The sections on XLISP and
FLAVORS are based upon a set of notes produced by Peter Ross.

2 Some History and Background

2.1 The History

The term object-oriented programming was first used to describe the Smalltalk program-
ming environment developed at Xerox PARC in the 1970's, though the roots of the
object-oriented approach go back to SIMULA {DH72] which was developed in the mid-
1960s. It is related to, and influenced by, Minsky’s work on frames [Min85] and Hewitt’s
work on actors [Hew77|. The first Al systems to incorporate it as a methodology were
KRL [BW85] and UNITS [Ste78], both developed in the late 1970s.

During the 1980s object-oriented programming environments for Lisp machines were
developed: Flavors at MIT, and LOOPS at Xerox PARC. It has also been included as
a methodology supported by a number of Al Toolkits: KEE, ART, and CRL.

2.2  The Background

The background to the development of object-oriented programming can be briefly (and
thus by no means completely) presented by considering the motivations behind Bobrow’s

SRR

and Winograd’s KRL (Knowledge Representation Language). These were:

e an attempt to mtegrabe procedural and declarative knowledge representation for-
malisms,
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attached procedures,

® to use procedural attachment to provide generic operations which depend upon
the characteristics of the objects involved,

e that knowledge should be organized around conceptual entities with assocxated
descriptions and procedures,

e that entities should be able to be partially described, and have multiple descriptors
to capture different points of view of the same entity,

e to support reasoning in terms of comparisons between new objects and stored
prototypes, with specialised reasoning strategies associated with prototypes,

e to support multiple active processes and appropriate control mechanisms,

* to provide a flexible set of basic tools which embody no commitment to specific
representation and reasoning techniques.

KRL was therefore revolutionary, in that:

o the structuring of knowledge was object-centred,
¢ objects could exist at different levels of control in different perspectives,

e it was agnostic about epistemological issues and aimed to provide implementation
tools.

3 Principles of Object-Oriented Programming

Most programming languages support the data procedure paradigm. Active procedures
act on the passive data passed to them. For example, a square root function, sqrt (x),
takes a number and returns its square root.

In a strongly typed language such as Pascal, it would be typical to have a different
version of sqrt(x) for each data type of x, usually returning a floating-point result.
A late-binding language such as LISP detects x’s type at run time and performs the
appropriate operations for that type. Such generic operations are generally primitives
restricted to a small class of data types such as numbers, or they are functions defined
in terms of such primitives.

Object-oriented languages employ a data or-object-centered approach to program-
ming. Instead of passing data to procedures, objects perform operations on themselves,
and each other. In the following examples the object name is followed by :operation,
which is in turn followed by any furthbr arguments, and terminated by a period (this
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syntax is similar to that of Smalltalk-80, though simplified). For example, an expression
to take the square root of x has the form:

x :sqrt.

The implication is that x is asked to perform the :sqrt operation on itself. We say that
x is the receiver of the message :sqrt.

A more complicated example would be the dot-product operation. The dot-product
of two vectors, x and y, is computed, producing a scalar result:

x :dot y.

Here, x is told to perform a dot-product operation with itself and the argument y. We
could thus take the square root of the dot product of x and y =nd assign the result to
the variable z in the following manner

z <-- (x :dot y) :sqrt.

using parentheses to indicate the order of evaluation, although the parentheses are really
not needed here, assuming left-to-right evaluation.

3.1 Some Terminology

The object, “x” referred to in the sqrt example is an instance of a class. This distinction
between classes and instances in an important one in knowledge representation in
general. The class provides all the information necessary to construct and use objects
of a particular kind, its instances. Each instance has one class, and a class may have
many instances.

The class also defines methods which apply to all instances of it. Methods are
procedures invoked by sending selectors, or messages, to a class’s instances. Methods
may allocate temporary variables for use during the execution of the method. These
temporary variables are like local variables in Pascal procedures in that their value is
lost when you leave the method.

Each instance has storage allocated for maintaining its individual state. The state is
referenced by instance variables. Instance variables may be primitive data types such as
integers, other objects, or both, depending on the language. Each object has its own set
of instance variables. Both temporary and instance variables may be freely referenced
within the scope of an object’s method, but unlike temporary variables the value of
instance variables is not lost when you leave the object’s method. Some object-oriented
programming systems also provide class variables. These are used to store data about
a particular class and their values are available to all instances of the class.

Computation is performed by sending messages to objects, which invokes a method
defined in_the object’s class. Typically, a_method sends messages to_other objects
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which invokes other methods, etc., until you reach the point where a primitive method

is invoked. Here ends the chain of message-sends. Each message-send eventually returns

a result to the sender (e.g., x :sqrt returns the square root of x). The final result of
|
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all these message-sends is usually the changing of the state of one or more objects.
Sometimes, however, a message is sent simply to invoke some primitive having a side
effect external to the world of objects, for example, accessing an external file system or
controlling hardware.

3.2 The Elements of Object-Oriented Programming
To fully support object-oriented programming a language must have four characteristics:

"~ e information hiding,
e data abstraction,
o dynamic binding,

e inheritance.

Two languages, Ada and Modula-2, that have been mistakenly called object-oriented,
will be used in order to illustrate why all four characteristics are necessary and why
conventional procedure-oriented languages cannot adequately support object-oriented
programming.

3.2.1 Information Hiding o

Information hiding is important for ensuring reliability and modifiability of software
systems by reducing interdependencies between software components. The state of a
software module is contained in private variables, visible only from within the scope
of the module. Only a localized set of procedures directly manipulates:the data. In
addition, since the internal state variables of a module are not directly accessed from
without, a carefully designed module interface may permit the internal data structures

and procedures to be changed without affecting the implementation of other software
modules.

Most modern languages, even FORTRAN, to some degree, support information
hiding. ISO (standard) Pascal is one notable exception, since it provides no way to
declare static variables within the scope of a procedure.

3.2.2 Data Abstraction

Data abstraction can be thought of as a way of using information hiding. A programmer
defines an abstract data type consisting of an internal representation plus a set of
procedures used to access and manipulate the data. Modula-2 provides excellent data
abstraction mechanisms. For example, it can easily be used to define a stack as
an abstract data type, called Stack. Variables of type Stack may be declared and
manipulated in other program units. ’

no direct access to the internal state of a stack is provided. The stack is manipulated
through the module’s processing and query procedures. But there are two problems with
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the Modula-2 solution. First, the procedures used by a module must have either unique
or qualified names. For example, if a module uses (imports) two different abstract
data types, Stack and Queue, and variables of these types must be initialized, then
the initialization procedures defined for these types must have different names, such
as InitializeStack and InitializeQueue. This makes the resulting program less

~— -versatile. -Secondly;-and-more-importantly; Modula:2-abstract-data ‘types-¢an operate

on only one type of data. Stack, therefore, can store only integers, for example.

Ada partially solves both these problems through two language features: operator
overloading and generic program units. Operator overloading permits a program to
use multiple operators with the same name. The distinction between operators can be
determined at compile time by examining the types and number of parameters, just
as + can be used to add either integers or real numbers in most modern languages.
Generic program units permit the definition of a module to be used with different data
types. The generic program unit is a procedural temaplate that can be parameterized
with actual types during compilation of programs using its capabilities.

A problem still exists if you wish to use the stack to store heterogeneous elements.
Neither compile-time solution, operator overloading or generic program units, is suffi-
cient. A solution is dynamic binding.

3.2.3 Dynamic Binding

Dynamic binding is required to make flexible use of the Stack module. Consider the
addition of a procedure, Print, to the Stack-Handler module that prints the contents
of a stack. If we use the stack for storing integers, floating-point numbers, character
strings, etc., a traditional procedure-oriented approach dictates that you include a case
statement to check at run time that the correct printing procedure for an element’s
type is used. Trying to print an integer with a procedure designed to print character
strings is potentially disastrous. The resulting problem is that every time you add a
new data type to the system, you must modify all such case statements and recompile

- a time-consuming and error-prone procedure. Ideally, additions should require only
additions, not modifications.

The object-oriented approach pushes the responsibility for printing elements onto
the objects themselves. Each object is sent the same message selector, Print, so that
it will print itself in the proper way. This is known as polymorphism, since the same
message can elicit a different response depending on the receiver. Operator overloading
in Ada does not exhibit this form of dynamic polymorphism since the address of the
procedure invoked is fixed at compile time.

This model of object-oriented programming can be improved. As presented thus
far, the addition of a new type of object requires writing entirely new procedures for
common operations such as Print. What's worse is that there will be a great deal of
similarity between different print methods, requiring continual rewrites of methods that
differ slightly or not at all. This burden is likely to be so great that programmers would
avoid the creation of new object types, significantly reducing the practical usefulness of
object-oriented programming systems. Inheritance is a mechanism that largely relieves
programme:s of this burden.

e e e e e -glC:—A-trumpet-inherits-properties that -are-associated with-brass-instruments; wind —

3.2.4 Inheritance

Inheritance enables programmers to create classes and, therefore, objects that are
specializations of other objects. For example, you might create an object, Trumpet, that
is a specialization of a BrassInstrument, which is a specialization of a WindInstrument,

instruments, and musical instruments. Creating a specialization of an existing class is
called subclassing. The new class is a subclass of the existing class, and the existing
class is the superclass of the new class. The subclass inherits instance variables, class
variables, and methods from its superclass. The subclass may add instance variables,
class variables, and methods that are appropriate to more specialized objects. In
addition, a subclass may override or provide additional behavior to methods of a
superclass. Inherited methods are overridden when redefined in a subclass.

Inheritance enables programmers to create new classes of objects by specifying the
differences between a new class and an existing class instead of starting from scratch
each time. A large amount of code can be reused in this way.

3.3 A Prototypical Object-Oriented System

In a prototypical object-oriented system the basic elements described above are imple-

mented in terms of the following features:
i

Object — This is the basic unit, a data structure with memory allocated for a set of

attributes; these are called the object’s instance variables. There will be a large

number of objects in a typical application. Objects are organised into groups

of similar objects. An object has access, in a way described below, to a set

of procedures that define the operations that can be done on the object. The

" procedures that the object has access to are not stored in its own data structure;

nevertheless, those procedures typically use the object’s instance variables as data.

Class — A related group of objects is called a class. A class is also a data structure,
and an object in its own right. When a class is defined, a set of instance variable
names is specified to go with it. Any object which is a member of that class will
have its own set of instance variables, but known by those names. This means
that, given any instance variable name, there will be many variables known by
that one name - one variable per object. A set of procedures is typically attached
to a class, and these are some of the procedures that the objects in the class have
access to.

Inheritance — The procedures attached to its class are not the only procedures
that an object has access to, because classes are arranged in a hierarchy, by a
superclass/subclass relationship. Any object in a class has access to the procedures
stored with the class, and to the procedures stored with the superclass, and the
superclass of that, and so on. Typically, the top-most class in the hierarchy is
defined to be its own superclass. One says that an object inherits procedures from
all the classes on the path up to the top of the hierarchy.

Instance — If an object is a member of a class it is said to be an instance of that
class. It is not, however, an instance of the class’s superclass or of other classes
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up the hierarchy. An object is an instance of exactly one class. In some systems
the word instance is used only for objects which are not themselves classes. In
such systems, it is customary to talk of one class having another as its superclass,
rather than saying it is an instance of that other class.

Message — An operation on some object, such as requesting the value of one of
its instance variables or some more elaborate result, is performed by sending a
message to the object. This is really just a certain kind of procedure call. The
message consists of a selector, which is used to identify the procedure to be used,
and arguments to be passed to the procedure wherever it is to be found. When an
object receives a message, it looks for a suitable procedure accessible to it. First
it searches the procedures defined for its class; if no procedure for that selector is
attached to the class, the object then searches the superclass. The search proceeds
up the class hierarchy until a procedure is found. It is typically an error for there
to be no suitable procedure anywhere up the hierarchy. When a procedure is
found, it is run. The procedure may utilise various kinds of data. First, it has
access to the object’s instance variables. Second, in some systems, there are also
class variables available. These are variables which are part of a class’s structure
rather than being part of any member of the class. The procedure has access to
the variables of the class of the object, and (by inheritance again) to class variables
of any classes further up the hierarchy.

Method The procedures attached to any class are called its methods.

So, the essence of what goes on in an object-oriented programming system is the
passing of messages. When an object receives a message, the following happens:

e there is a search for the appropriate method. This starts in the object’s class (not
in the object, even if the object is a class itself), and if necessary proceeds to the
object’s superclass and any super-super-...-classes until one is found.

e any references to variables in the procedure are tracked down. First, the object’s
instance variables are searched, then any class variables of the object’s class, then
the super-class of that, and so on. This is just a caricature, of course; in practice
there might be no searching at all, because all the variable references have been
resolved in some way at compile time.

e the procedure may cause more messages to be sent, sometimes to other objects
and sometimes even to the same object. This leads to a wonderful economy of
programming style, usually at little expense in execution speed. Normally, in a
LISP-based object-oriented programming system, the symbol self is automati-
cally bound to the object that received the message, so that your procedure code
can then simply send messages to self, to identify which object is using the
procedure or whatever.

o the result of executing the method is the result of the message.

4 Two Object-Oriented Systems

4.1 XLISP

XLISP is a toy Lisp system for experimenting with object-oriented programming. It
was written by David Betz of Harvard University. Its main strengths are that it is free,
available as source code, written entirely in C, runs on many different machines, is easy
to extend and is reasonably efficient for an interpreted system. It most resembles the
core of Common LISP. Its main features are the existence of clags variables as well as
instance variables, and a simple tree-structured class hierarchy as outlined above, rather
than a class lattice. In other words, it does not allow multiple inheritance!

In XLfSP, all the arguments of a message are evaluated, although the system follows
the usual convention that keywords (symbols whose names begin with a colon) by default
evaluate to their name. This makes it convenient to use such symbols as message
selectors. The form of a message is

(object-symbol message-selector arguments)

There are initially two objects in existence. One is Object, the top of the whole class
hierarchy. There are four predefined methods attached to it:

:show print out details of the instance variables of the receiving object (which will
hardly ever be Object itself). This is mainly used for debugging purposes; other
:show methods will usually be defined elsewhere in the hierarchy to do something

more suitable for the specific application.

:class returns the class of the object which receives this message.

:isnew is a vacuous, default object initialisation method. It exists only to plug a gap
(see Class below).

:sendsuper selector arguments
is useful for sending a message to the super-class of a class (that is, to the class
one step up in the class hierarchy).

The object named Object is an instance of the class named Class. Class is the other
predefined entity; it is a peculiar beast, which is an instance of itself and which has
Object as its super-class. There are three predefined methods attached to it:

" :imew creates a new object which is an instance of the class which received this message.

There may be further arguments given. By default, an :isnew message is sent to
the new object, with the arguments (if any) given to the :new message. This is why
a vacuous :isnew method has to exist somewhere, otherwise this default process
would cause an error if the programmer had not yet defined his own version. The

__inew message can also be sent to Class itself, this creates a new class, By default . |
the new class is a sub-class of Object, but an optional parameter naming some
other class can be given, and then it will be a sub-class of that instead.
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sdisnew ilist [clist [super]]

This initialises a new class. The ilist is a list of instance variable names to be
associated with the class ~ that is, a set of these variables is created for every
instance of the class. The clist is an optional list of class variable names. The
super is an optional parameter specifying the super-class of the new class — that

is, where it is to be hung in the hierarchy.

:answer msg arglist formlist
This adds a new message to the receiving class. It is an error to send it to anything
which is not a class. The nsg is the message selector symbol. The arglist is a list
of the formal arguments to the message; the usual keywords &optional, &rest
and &aux are allowed and have their normal roles. The formlist is a list of
executable expressions, the code comprising the body of the method. The result
of the last expression will be the result of the message.
An example should make this all clearer. Here is a standard example used in many
texts on object-oriented programming systems:

(setd Ship (Class :new ’(x y xv yv mass name captain)))
This creates a new class called Ship; the list of instance variable names is not for use
by the :new method itself, it is passed to the automatic :isnew message (see above).
So, each instance will have a cartesian position and cartesian components of velocity, a
mass, a ship’s name and the name of its captain. Now we need messages to access this
information about any given ship, and it makes sense to attach such methods to the

class itself: :

(Ship :answer :getx O '(x))
(Ship :answer :getxv 'O ' xv )
(Ship :answer :gety O Cy))
(Ship :answer :getyv O 'Cyv )
(Ship :answer :getmass '() ’( mass ))
(Ship :answer :getname () '( name ))
(Ship :answer :getcaptain '() ’( captain ))

In each case the body of the method is trivial - just evaluate an instance variable, return
its value. The following is a slightly more elaborate method; it takes one argument, a
number of hours, and causes the information about a ship’s position to be updated:

(Ship :answer :sail ’(time)
*( (self :setx
(+ (self :getx) (* (self :getxv) time))

) : -
(self :sety [/ / ,7 /

(+ (self :gety) (* (self :getyv) time)) . / v e
) .

)

This'shows one of the common idioms, namely using messages as convenient subroutines.
In this case the messages are sent to the ship itself, from the ship itself. Before the :sail
method can be used, the :setx and :sety methods must be defined, of course:

b~ _(Ship :answer :setx _ __ ’'(newx) ___'( (setqxmewx) ))
(Ship :answer :setxv "(newxv) '( (setq xv newxv) ))
(Ship :answer :sety ' (newy) '( (setq y newy) ))
(Ship :answer :setyv '(newyv) *( (setq yv newyv) ))
(Ship :answer :setmass '(newmass) ’'( (setq mass newmass) ))
(Ship :answer :setname ' (newname) ’( (setq name newname) ))
(Ship :answer :setcaptain ’(c) *( (setq captain c¢) ))

It is, however, mildly inefficient to define the :sail method as above. It is better to do
it in a cnore conventional way, and also to return something more usable than the ‘y’
component of velocity:

(Ship :answer :sail *(time)
*( (setq x (+ x (* xv time)))
(setq y (+ y (* yv time))) J
time ; return the given sailing time

)

It also makes sense to define a function which creates new ships and initialises them at
the same time:

(defun newship (name captain mass Zaux v)
(setq v (ship :new)) ; set v to be the new ship

(v :setx 0) ; Now initialise it by sending messages
(v :sety 0)
(v :setxv 0)
(v :setyv 0)

(v :setname nanme)

(v :setcaptain captain)

(v :setmass mass)

v ; and finally return the object

; For instance:

(setq argo (newship ’Argo ’Jason 2307))

In XLISP, you need to create the methods for initialising instance variables and other
such commonplace jobs. You could of course define your own interface to the (Class
inew ...) message which did this for you automatically, and more elaborate object-
oriented programming systems provide such things by default. |
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4.2 Flavors

The Flavor mechanism is part of ZetaLISP, which runs on Symbolics machines; the
mechanism has been' replicated in various other LISPs. It is described in the “Lisp
Machine Manual” by Weinreb and Moon !. A more superficial description can be

found in “LISP Lore: A Guide To Programming The Lisp Machine”, by Hank Bromley
(Morgan Kaufman).

The Flavor system is less purist about the object-oriented approach; you can poke
inside objects using lower-level LISP functions, for example, although you shouldn’t.
It is much more powerful than XLISP. For example, inheritance can be across a true
lattice, not just up a tree; this'can, of course, result in very exciting bugs.

Here is the equivalent of the ship example:

(deff)=vor Ship (x Xv y yv mass name captain) ()

) :gittable-instance-variables
:settable-instance-variables
:initable~instance-variables

)

The keyword :gettable-instance-variables causes methods such as :x to be defined
automatically; these returan the value of the named instance variable. The keyword

:settable-instance-viriables requests the automatic definition of other methods
such as :set-x, for setting the values. The keyword :initable-instance-variables
 creates keywords for use in the instance creation routine:

(setq argo
(make-instance 'Ship /f“"f 7
X0 :xv 0 :y O :yv O J
:name 'Argo (o)
icaptain 'Jason
:mass 2307)
)
Methods are added like this:
(defmethod (Ship :sail) (time)
(setq x (+ x (* xv time)))
... ete ...
)
and invoked by send, which is merely funcall in disguise:

(send argo :sail 7.5)

There are about a million special features available. One which is worth further

variable names. In the example above it was an empty list. More generally it is a list
of other flavors (the component flavors of the composite, as it were), which instances
of this flavor can search during the inheritance process. An object can not only search
those flavors for a method or instance variable, but also all the flavors which they can
inherit from too; the search is a straightforward depth-first search of the network of
flavors. This listing of the flavors that instances of a flavor can search is, naturally
enough, called mizing flavors. The customary ordering is to have the most specific
flavors at the front of the list and the most general at the back. Usually a fundamental
definition is called a base flavor, and flavors that just add features are called mizins.

Since the search of the network of flavors is purely depth-first, it sometimes happens
that a component flavor of some other component flavor appears too soon in the search
order - that is, a method appears there but it is not the method you wanted to be found
first. There are several mechanisms to help you. For example, there are the :required-
flavor or the :included-flavor options, which can appear as a separate list starting
with the keyword and followed by one or more flavors. These options specify that the
flavors they designate are not to be searched at that point, or just at some point. The
:included-£flavor form specifies that a flavor it designates must be added in last of
all if it happens not to appear anywhere earlier in the search. The other form merely
makes it be an error for that flavor not to appear anywhere in the search.

You can also define before and after daemons, like this:

(defflavor WarShip (country guns) (Ship)
:gettable-instance-variables
:initable-instance-variables

)

; Note: instance variables not settable - we suppose

; that navies do not sell their ships or change the

; number of guns on a ship!

(defmethod (Warship :before :sail) ¥
(confirm-sailing-orders) P b
) =
=

(defmethod (WarShip :after :sail)
(report-position-to-base)
)
By this means, warships do these extra actions whenever they receive a :sail message.
Obviously, it would make no particular sense to attach these daemons to the same flavor
that holds the method for :sail. Return values of such daemons are just ignored.

Sometimes, such daemons do not provide enough control; for example, you might
want to cause the combined method to run in a special context (say, an unwind-protect
or with some special variable temporarily given another value?). For such occasions the
Flavors package provxdes whoppers.

discussion here is that extra argument to defflavor, just after the list of instance

‘often called the ‘Chine-ual’ because of the way the name wraps around the cover
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For example:

(detwhopper (some-flavor :some-method) (argl arg?)

oo {unwind~protect __ . _ __ — e e e e e
(progn (setup) (continue- whopper argl arg2))
(cleanup)
)

The job of the system function continue-whopper is just to call the normal (combined)
method.

So far, it has been assumed that the top-down depth-first search for a method ends
when the first appropriately-named method is found. Even this can be changed, by the
method-conbination option! For instance, you can specify that the appropriately-
named methods should be tried in turn, until one returns non-NIL. Consider the example
of handling mouse button clicks. On a Symbolics, when you press a mouse button, the
message ‘mouse-click is sent to the window under the mouse cursor, by the mouse
handler. If you want that window to do something special, you can just define a :mouse-
click method for it. One of the message arguments indicates what kind of button press
it was (e.g. a double click), and your special method can just deal with the cases you
want. However, one of the component flavours for all windows is essential-mouse:

(deftlavor essential-mouse () ()
(:included-flavors essential-window)
(:method-combination

(:or :base-flavor-last :mouse-click))

)

(detmethod (essential-mouse :mouse-click) (buttons x y)
. the code, default actions for all cases ...

The effect of the :or keyword is to cause every :mouse-click method found in the
search to be tried, until one returns non-NIL. The effect of the :base-flavor-last
keyword is to cause essential-mouse’s :mouse-click method to be tried only at the
very end of the search. There are several other ways of combining methods.

As all this should suggest to you, OOP systems such as Flavors offer a very powerful
and economical way of programming, particularly suited to jobs such as process simula-
tions and sophisticated interfaces in which there is a natural metaphor of a community
of objects each with its own internal state and its own processing power.
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5 Some Comments

5.1 Advantages

Object-oriented  languages have many advantages over more traditional

procedure-oriented languages. Information hiding and data abstraction increase reli-
ability and help decouple procedural and representational specification from implemen-
tation. Dynamic binding increases flexibility by permitting the addition of new classes
of objects (data types) without having to modify existing code. Inheritance coupled
with dynamic binding permits code to be reused. This has the attendant advantage of
reducing overall code size and increasing programmer productivity, since less original
code has to be written, tested and debugged. Inheritance enhances code factoring Code
factoring means that code to perform a particular task is found in only one pizge, and
this eases the task of software maintenance.

5.2 Criticisms Defended

Object-oriented languages have a few characteristics that are considered disadvantages
by some. The one most often debated is the run-time cost of the dynamic binding
mechanism. A message-send takes more time than a straight function call. Some studies
have shown that with a well-implemented messager this overhead is approximately 1.75
times a standard function call. Actual differences in execution speed between traditional
languages and their object-oriented counterparts, however, do not prove to be very
significant. This is most likely due to the fact that the overhead applies only to message-
sends and that message-sends accomplish more than a function call. Often, some of the
work done automatically by a message-send must be done by the programmer anyway
using code surrounding function calls or even multiple function calls. In fact, a case
can be made that in large applications the ability to standardize and fine-tune the
functionality supplied with the message-sends can make the application run faster than
a traditional counterpart. The primary reason is that messaging obviates much of the
variability in function setup code that results from different programming styles and
skill levels. Messaging also eliminates the complex code often needed when traditional
programs have to simulate dynamic binding.

Another disadvantage often cited is that implementation of object-oriented languages
is more complex than comparable procedure-oriented languages, since the semantic gap
between these languages and typical hardware machines is greater. Therefore more
software simulation is required. Fortunately, you pay the cost of implementation only
once for a given machine.

Another potential problem is that a programmer must learn an often extensive class
library before becoming proficient in an object-oriented language. As a result, object-
oriented languages are more dependent on good documentation and development tools
such as Smalltalk-80 browsers. i
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5.3 Problems Of Using Object-Oriented Programming

! Problems can arise in using the more “powerful” object-oriented programming systems
if an undisciplined approach is taken to the overiding, or denial, of default properties,
and the use of multiple inheritance. Such practices make it effectively impossible to
define anything.

Not all problems are easily programmed in terms of objects and message passing.
For example, some numerical analysis and simulation problems are not well suited to
an object-centred approach.

Two common problems arise in object-oriented programming. An epistemological
problem about what do objects stand for, and an implementational problem about grain
size, in other words, the structuring of the computation in terms of objects.

5.4 Objects, Production Rules and Logic Programming

Sets of production rules and Horne clauses used in logic programming lack explicit
structure. Structured objects make it easier to encode other transitive relations apart
from type-subtype, for example, part-whale, and cause-effect. Production rules are good
for encoding direct stimulus-response patterns in an ill-structured domain. Whereas
logic programuming is good for describing complex relationships such as those involving
quantifiers and n-ary predicates. Objects can be combined with rules and logic pro-
gramming, as in the KEE system for example, and can act as a layer between these
formalisms and an underlying implementation language like LISP.

5.5 System Engineering Level Again

Object-oriented programming can be seen as a powerful technique to be used to engineer
knowledge-based systems, and other Al-based systems. Its effectiveness derives from
its well structured yet flexible delivery of a means to effectively build compact easily
testable and modifiable computer programs to implement the Symbol Level techniques
selected to deliver the Knowledge Level functional requirements.

6 How To Get At XLISP
XLISP is available on edai, aipna, and itspna. To run XLISP login under your

own user id and type “tim/x1ispThings/x1sipEx/xlisp.unix. You should then see
something like this:

edai¥ ~“tin/x1ispThings/x1lispEx/xlisp.unix
XLISP version 1.6, Copyright (c) 1985, by David Betz

You can find documentation in ~tim/x1ispThings/x1lispDoc/x1lisp.doc, and some
example programs in the directory “tim/x1ispThings/xlispProgs. A screen-based
object-oriented turtle system is available in “tim/x1ispThings/x1lispTurtle, but you
should set term = VT100 if you don’t normally do so.
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7 Required Reading

The required reading for this week is Chapter 13 of the Big Red KR Book: Bobrow,
D.G. and Winograd, T., An Overview of KRL, ¢ Knowledge Representation Language,
page 263.
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8 Small Group Tutorial Preparation

Object-oriented programming is presented as a System Engineering Level technique.
Could you use it to engineer a production rule system which has either a forward
chaining interpreter, or a backward chaining interpreter, or an interpreter which mixes

the two types of inferencing? If you think the object-oriented programming paradigm
. is suitable then you should prepare an argument in its defense. If you think it is not,

you should prepare an argument as to why it is not. If you want to sit on the fence you
should prepare an explanation as to why you can’t decide and what you would need to
do to find out.

Tim Smithers
February 1988
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