Knowledge Representation and Inference Two

Lecture Three:

Non-Monotonic Reasoning

and Truth Maintenance Systems

1 Introduction

This set of notes leads on from the non-classical logics discussed in lecture two and
presents a discussion of some aspects of non-monotonic reasoning. First, a development
of first-order predicate logic called circumseription is presented. This was developed to
meet some of the inadequacies of the situational logic presented in lecture two, and thus
represents an attempt to formalise non-monotonic reasoning. The second part of the
notes presents three kinds of Truth Maintenance techniques, which are used to support
the workings of a problem-solver which reasons non-monotonically, A bibliography is
included at the end for further reading on the muterial covered, together with this
week's reading (which includes no required reading), and the next small group tutorial
preparation.

2 Monotonic Reasoning

Classical propositional logic is an example of 2 monotonic logic. If S is the set of formulas
provable from a set of axioms A, then if the set A is enlarged by the addition of ane
or more axioms, the size of the set of provable formulas S increases (or possibly stays
the same size). There are no axioms which can be added to A which will result in the
number of provable formulas in S being reduced. The set S is thus said to monotonically
increase as the number of axioms in A increases. In other words, the addition of new
kunowledge (in the form of axioms in A) will never cause a previously derived fact {in
the form of formulas in S} to become invalid, or untrue.

There are several advantages to using monotonic reasoning systems based upon one
of the classical logics. These include:

L. When a new fact is added to the system, no checks need to be carried out to
ensure that it is consistent with those already known to the system.

2. It is not necessary to record for each derived fact introduced the facts upon which

its truth fundamentally depends, since there is no danger of previously added facts
being removed.

Monotonic reasoning is, however, not able to deal with three kinds of situations
which often arise in the real world. These are:
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i) Situations in which only incomplete knowledge is available, or in which konowledge
about the situation is discovered as a result of carrying out the actions that have

to be reasoned about. :ﬂil-fﬂﬂ.Hh

ii) Situations in which the knowledge being reasoned about changes due to changes
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iif) Situations in which the reasoning system generates essumptions as part of its
problem-solving strategy — generate and test, for example.

3 Non-Monotonicity and Non-Monotonic Reasoning
Consider the following example from the records of an agents reasoning:

1) Given fact: Robin lives in the United States.

1 2) Already known: Boston is in the United States.

3) Infer: From (1) and (2) it is possible that Robin lives in Boston.

4) Given fact: Robin lives in Amherst.

l 5) Already known: Amherst is not a part of Boston.

6) Infer: It is not possible that Robin lives in Boston.

In this example inference (6) can be seen to be the negation of inference (3). Thusthe
reasoning processing illustrated involves the reversal in the truth value of a possibility- |
qualified proposition. This type of reasoning is called non-monotonic reasoning, and is
to be contrasted with the strictly mon oltom'c reasoning supported by classical first order
logics. )

3.1 Default Reasoning and Circumscription

3.1.1 Default Reasoning

i One type of non-monotonic reasoning is called default reaso ning.! It occurs in situations |
' ' in which a fact, or belief, is derived from a given fact because it usually follows and |
because there is no evidence to believe it does not in the particular case. However, if, at I
some later stage, evidence for the negation of this derived belief is presented the derived |
default fact is withdrawn. Such beliefs are said to be defeated in such situations, and a |

belief (sometimes called a conclusion) which may later be defeated is called defeasible. |
For example:

* At an important public lecture Robin (the invited speaker) is introduced as a !
Professor of Computing Science. You therefore concluded that Robin has a i



PhD, which need not necessarily be the case. Some way through the Chairman’s To illustrate how circumscription can be used consider the following scenario:
y X
| introduction of Robin, while he is summarising his career, you realise that Robin .. . . . . . ,
! never actually obtained a PhD. You therefore withdraw your previous conclusion Anne h_“ been invited by Simon to dinner. On »a.rrl\rl}'tg at Simon’s flat
| that he has one, ! . Anne discovers that he has forgotten to buy any wine. Simon asks Anne to
’ go round to the off-licence to buy some, adding that she may use his car,
This pattern of reasoning can be generalised as follows: and hands her the keys saying the car is just outside. Anne agrees to go,
| concluding that she would have to pay for the wine. After failing to start
If X is a professor of Computing Science Simon’s car and concluding that it has a flat battery, Anne walks round to
P puting : _ y !
and  there is no evidence that X does not have a PhD . - the off-licence to buy the wine, and on the way back decides that Simon will
then conclude X has a PhD. pay for it. :

. The conclusion of this rule is a default. In order to drive a car there are a number of requirements, two of which are:

. The novel part of this rule is the there is no evidence that X does not have a PhD éart.

‘Formalising what this means requires more subtlety than it might seem. One important k: having the keys to the car, and

attempt at doing so is due to McCarthy and is called Circumscription. Building c: being able to get to the car. a

computer programs to reason in a non-monotonic way is not so hard though. How -

this can be done is the subject of the secand part of these notes on Truth Maintenance ' These requirements or prerequisites for driving a car are expressed by the formula:

| Systems.

i a: prerequisite(k) A prerequisite(c).
3.1.2  Circumscription In the above sceneric Anne assumed that il the prerequisites were satisfied (that-is that
X ) ing th . ]
In reasoning about some problem we often assume that the problem involves only those ; th?re wexe no problems concerning these ?SPQC." s ?r driving a car) she could and would
. . . . . . drive the car round to the off:licence. This belief is expreased as follows:
; objects and relationships that are of immediate relevance to the particular problem, and
that no others are involved. For example, in the well known missionaries-and-cannsbals
problem of how to get the missionaries across the river without being eaten by the
| cannibals, we do not usually think of solutions involving bridges, rockets, handcuffs,
murder of the cannibals, or holes in the boat, etc. '

o ¥X[prerequisite(X) — noproblems(X)] — buy(anne, wine).
When Anne weat to drive Simon’s car she had two prerequisites:

| Circumscription is a formal method for representing default reasoning using pred- ; noproblem(k) A noproblem(c).

: icate calculus. It uses a mechanism for adding to a set of predicates one or more .

| new formulas which express a default, or closed world, assumption. In other words, it
formalises a mechanism in which it is assumed that all qualifications to the solution to

The circumscription of prerequisite in a is the schemas:

.. k) A — isi isi .

a problem are stated explicitly, ‘ {[% (k) A¥(c)] AVX[¥(X) — prerequisite(X)]} — VX[prerequisite(X) — ¥(X)]

Let a be a formula containing an n-ary predicate symbol p. If ¥ represents a formula . From this circumscription we can derive Anne's first conclusion. We begin by taking
with n designated free variables, then we use a[¥/p] to denote the result of substituting ) for ¥ the expression (X = k) v (X = «¢).
¥ for each occurrence of p in a, such that the kth free variable in ¥ is replaced by the The antecedent of the circumscription is true, so we may conclude the right-hand
kth argument of p in the occurrence. If the occurrence of p has the form (X, -y X5), side: 3
which is abbreviated to p(X), then the oceurrence of W that replaces it can be denoted ) H
T(X).

: ¥X{prerequisite(X) — ((X = k) v (X = ¢))]
! Then the circumscription of p in a is the follawing schema for generating formulas ;

which says that the keys and access to the car are the only prerequisites. This formula

{a|¥/p] AVI{'II!(J,’) - p(X)]} — YX[p(X)— (X)) is then added to the set of theorems, and it can be used to deduce new theorems.
. . . . X Now since k and ¢ are the only prercquisites, and for, Anne both of them are satisfied,
' Th!s schema re‘presenta the fe,:a.ertmn.that. the cnly‘ob]ec!;s T that satisfy p are those the antecedent of (@) is true, thus the consequence that buy(anne, wine) followa. Note '
: which must satisly p, to avoid inconsistency, assuming a is true. ) p

that without circumseription, there would be no basis for proving the antecedent of (a)

. .
' The reason why Robin doca not have a PhD ls now one of the legends of the AT Department, and . ____

T Ty —— - ey R S ——
‘beyond belief, were It not for the fact it is true, and only to be related late at night after a auitable . “The non-msnotonic fegation of ARtie’s initial conclusion that she would pay for the i
| intake of some alcoholic beverage at some favourite hostelry. wine occurred after two further facts became known: !
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prerequisite(b): the battery of the car must not be Hat, and
—nopreblem(b): the battery of the car is not functional.

A way of dealing with Anne’s change of mind is thus to remove from the set of theorems
the right-hand side of the circumscription of prerequisite in a as soon as the new facts

the circumscription. The new fact may be conjoined with a to form a new formula:
a': neproblem(k) A noproblem(c) A noproblem(b).

A new circums-cript.ion of prerequisite in a’ may be constructed in the hope of deriving
new useful conclusions, but it is no longer possible to prove the formula buy(anne, wine),
since —noproblem(b) prevents the antecedent of (a) being true.

3.2 Some Comments

An advantage of circumseription, over some other methods for dealing with
non-monotonic reasoning, is that it is an extension of first-order predicate logic, which al-
lows all the reasoning, except circumscription itself and the instantiation of the resulting
schernata, to be handled by methods already available, such as resolution, for example.
However, the practical application of circumscription is awkward in comparison with
the adoption of specific defaults or the use of negation-as-failure assumptions in logic
programming. )

Since 1980, when McCarthy first introduced circumscription as a formal way of
dealing with the problems of using situational logic — the frame problem and the
gualification problem, it has developed into almost a subject in its own right. There
are now different types of circumscription, starting with the predicate circumscrip-
tion presented above, there followed domain eircumscription which was an attempt
to improve the generality of predicate circumscription. Formula eireumseription came
next as another improvement, and more recently there has been something called
prioritized circumscription, which is intended to be more general yet. All this work
on circumscription, mostly reflects one of McCarthy’s firm and long held beliefs, that
trying to develop a formal language for expressing general commonsense knowledge for
inclusion in a general database is the key problem of generality in AL

The use of non-monotonic reasoning techniques is not limited to those classes of
problems which specifically require this type of reasoning, Non-monotonic reasoning
may also be the only way of building a practical system, ie one which produces results
in a reasonable amount of computational time, for example, to solve types of problems
which are theoretically monotonic but which when expressed in first-order predicate

_logic are undecidable in finite time. Playing chess, for example, can be formulated as a

monotonic reasoning problem, but in practice this is of little value, and chess playing
programs usually have to choose a move after a certain time interval; increasing this
interval for consideration might change its decision as to what move to make next, thus
introducing a degree of non-monotenicity in its behaviour. Such systems can be thought
of as using non-monotonic reasoning to approximate the theoretically posaible monotonic
reasoning.
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4 Truth Maintenance
4.1 Introduction

When problem-solving systems which reasoned non-monotonically were first built they

- “conld be viewed s programs which perforimed a nilxtute of house-keepingand deduction,

with much of the house-keeping serving to decide what deductions to make. This
typically resulted in bits and pieces of deductions being strewn throughout the program
execution (as Drew MeDermott appropriately put it). This somewhat ad hoc state
of affairs continued until Truth Maintenance systems were invented, first by Doyle and
MeAl]lester, and more recently by de Kleer, to collect and maintain the bits of deductions
produced and used by a problem-solving system. . !

Truth maintenance systems record and maintain proofs. The proofs are made up
of justifications connecting data structures called nodes. Nodes typically represent
agsertions, rules, or other types of system beliefs. They may be the consequence of

. several justifications, each of which represents a different method of proving belief in

the node. Also each justification may have several nodes as its antecedents. Some nodes
may be designated hypothesis, or assumptions. For each node, the truth maintenance
systems computes whether or not belief in the node is supported by a non‘circular
proof from the basic hypotheses and the set of recorded justifications. The set of such
non-circular proofs is recorded as the well-founded support of the believed nodes. In
other words, a truth maintenance system is used to maintain a proof structure about
the beliefs of a problem-solving system over its database:of facts, or rules, etc. It is
therefore not a reasoning, or problem-solving, system in itself but a reason support
system, or belief support system; they are used to provide an important service to
problem-solving systems. Truth Maintenance systems are therefore sometimes called
Reason Maintenance Systems or Belief Revision Systems. The term Truth Maintenance
System (TMS) will be used in these notes and is taken to be synonymous with the other
two terms,

4.2 Chronological Backtracking

The simplest way of providing truth maintenance to a problem-solver is like that pro-
vided by the prolog language. This is straightforward tree searching with backtracking.
In such a system all hypotheses and the consequences inferred from them are recorded
at the search node that created them. When an inconsistency is generated, the system
simply backtracks to the next node from which there remain unexplored search paths.
The hypotheses and their consequences disappear automatically. This mechanism of
maintaining a consistent database of hypotheses and consequences makes no attempt
to record node dependencies. It consequently operates by removing facts in the order
in which they were generated by the problem-solver, the prolog theorem prover for
example.

For example, suppose our problem-solver were to generate the following sequence of
hypotheses (Hi) and consequences (Ci) as a result of some reasoning:

H1: The next King’s Cross to Waverley train leaves at 14:00 hours.
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____produced the sequence of hypotheses and consequences described in-the previous-section—

Cl: The next train from King's Cross will arrive at Waverley at 19:00 hours. :
H2: The walk from Waverley staticn to Royal Terrace will take 20 minutes.

C2: The time of arrival at Royal Terrace on catching a train from King’s Cross to
Waverley will be 20 minutes after arriving at Waverley Station.

And then, on receiving news that the departure] of the 14:00 hours King’s Cross to
Waverley train has been delayed by 30 minutes, introduces a new hypothesis and
consequence:

H3: The next King’s Cross to Waverley train leaves at 14:30 hours.

C3: The next train from King’s Cross will arrive at Waverley at 19:30 hours.

which contradicts consequence C1, based upon hypothesis H1. The backtracking mech-
anism of our simple truth maintenance system will remove all database entries made
subsequent to and including H1, leaving the new hypothesis and consequence about

when the train from King's Cross will depart and arrive. The database of the problem-
solving system will thus becomes: . "

H3: The next King’s Cross to Waverley train leaves at 14:30 hours.

C3: The next train from King’s Cross will arrive at Waverley at 19:30 hours.

and all the reasoning about how long it takes to walk from Waverley Station to Royal
Terrace will be lost, despite the fact that it is still valid, and could be used to infer the
new time of arrival at Royal Terrace having travelled from King’s Cross on the delayed
King's Cross to Waverley train.

4.2.1 Some Comments
This kind of truth maintenance is usually referred to as Chronological Backtracking.
Although it is the simplest to implement, it comes free with prolog, and the cheapest

{in terms of stciage space required, it is typically the most expensive in terms of com-
putation, For anything but very simple problems it usually proves to be unacceptably
expensive, and is thus rarely used in practice. Because of this, and because it does not
attempt to keep any records of the dependencies between the nodes in the database, it
is not usually called a Truth Mainténance System, but just Chronological Backtracking.

4.3 Dependency-Directed Backtracking and the Doyle Type TMS

In 1979 Doyle proposed a truth maintenance system which made use of a more efficient
method of modifying the contents of a database called de pendency-directed backtracking,
first proposed by Stallman in 1977, Using dependency-directed backtracking enables the
hypothesis nodes in the database, and any nodes that have been inferred from them, to
be added and removed in any order. Thus, for example, if the reasoning system which

had been supported by a dependency-directed backtracking system the database, after
the entry of bypothesis H3 and its consequence C3, would have become:
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H2: The walk from Waverley station to Royal Terrace will take 20 minutes.

C2: The time of arrival at Royal Terrace on catching a train from King’s Cross to
Waverley will be 20 minutes after arriving at Waverley station.

H3: The next King's Cross to Waverley train leaves at 14:30 hours,

C3: The next train from King’s Croas will arrive at Waverley at 19:30 hours.

Thus saving it from having to re-make hypothesis H2, and infer the consequence C2.

In the Doyle Truth Maintenance System, a node justification may be either valid or
invalid, usually invalid justifications start off being valid, but become invalid as a result
of some action of the problem-solving system. Any node which has at least one valid
Justification is said to be IN, that is, in the set of believed nodes. Nodes with no valid
justifications are said to be QUT, that is, not in the set of believed nodes. Note that an
OUT ndde may have a use in the reasoning system, it may, for example, be mentioned

in the valid justification of some IN node which is believed because the OUT node is
not believed. .

In the Doyle type TMS there are two kinds of justification:

* Support List justifications, of the form:

l’bﬂmm pdo s  (SLINNst OUTIist) \

5 a5 olut

where INlist and O UTlist are each lists of nodes. The justification is valid if all
the nodes in the INlist are IN, and all the nodes in the O UTlist are OUT.

» Conditional Proofjustifications, of the form:
(CP node INIlist OTUTlist)

which is valid if node is IN whenever all the nodes in INlist are IN and all
the nodes in OUTlist are out. This can be thought of as being (CP consequent
IN-hypotheses OUT-hypotheses), or the consequent node has a valid justification

when all the nodes in the IN-hypotheses list are in and all the nodes in the ouT-
hypotheses list are out. -

The above type of justifications enable some useful kinds of nodes to be built in the

following ways:

* A fact or rule can be made an axiom, ie something to always be believed, by
giving the justification of the node an TNlist and OUTliat which are both empty
so that it is always TN,

* Nodes that have a non-empty OUTIlist are hypotheses or assumptions; there are

* CP nodes can be used to support deduced rules, for example;

8
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Node | Fact or Rule Justification

nl A possibly none valid

n2 B possibly none valid

n3 | if A then B (CP n2 (1) ()

n4 C possible none valid
T T s Tif Cand A then B | (CP n2 (u3 nd) ()

The algorithm used by a Doyle type TMS to move nodes IN and OUT as the validity
of their justifications change typically works as follows, Assume that N is some node
whose contents are discovered by the reasoning of the problem solver to be inconsistent
with some other riade, and that it has decided that IN is the cause of the trouble. The
TMS then proceeds by: )

1. Tracing the dependencics backward from N, which is currently IN, to find the set
of hypotheses that support it. Find the maximal set, ie those that do not support
other hypotheses, denoted H,; ... H,,. ’

2. Creates a new node called no-good, or NG to represent the occurrence of the
contradiction, by defining the rule:

not(H; and ... and H,)
giving it the justification:

(CP N (8, .. H,) () |

which means that it is currently IIN, S

3,.Pick, possibly at random, one of the set Hy ... H,,, denoted by H;, so that if it
were forced OUT, N would also be forced QUT.

4. Since H; is a hypothesis it has a non-empty O UTlist in a valid justification. Find
the set of nodes D) ... D,, which are currently OUT, such that if any one came
IN then H; would go OUT. Pick one, denoted D;. .

5. Give D; a new valid justification so that it comes IN. A suitable justification
would be:

I3

(SL (NG Hi ... Hy=1 H;+1 ... Hy)) (Dy . D;—1D;+1 ... D))

D; will become IN so H; will become OUT, and N become OUT. If any other
D comes IN, or if any other H goes OUT then D; will be OUT. This may bring
H; back IN without bringing N back IN, so the arbitrary choice of H; is not
irrevocable. Also, the NG node records the nature of the contradiction so that
the reasoning system will not be troubled by this particular inconsistencey again,
at least not in that particular form.

To illustrate this procedure, suppose, for example, that we have a reasoning system
trying to solve a timetabling problem, and in the process assumes that the KR+1-2
lectures will be held at 2pm in Appleton Tower (AT). The database might thus look
like this:

%.

Node | Content Justification
nl time = 2pm [ (SL {) (m2)
n2 time # 2pm | ...
n3 place = AT | (SL () (n4))
nd place=FH |..

and that at this stage the IN set is {n1 n3}. Now suppose that the reasoning system
discovers a problem, such as:

[ o5 ] the problem | (SL (nl n3) ()) |

that is, some node n5 is inferred, based upon time = 2pm and place = AT, which turns
out not to be possible. The TN set is now {nl n3 n5}. To clear the problem, introduce
the no-good node:

[26 [ not(nl and n3) [ (CP n5 (ul n3) ()) |

T‘h'le maximal hypotheses are nl and n3. Pick n3. It has one OUT node, nd, which
can be brought IN to take it out. Thus, give n4 the justification: '

{4 | place = FH [ (SL (u6 a1) () |

The IN set becomes {nl n4 n6} and the problem is cured. The existence of n5 and

n6 prevent the TMS allowing the problem-solver creating the same problem for itself

in future. (The problem-solver then goes on to discover that FH does not have a room
large enough to hold the KR+1I-2 class!)

4.3.1 Some Comments

In a more sophisticated system, the problem-solver may be used to help the TMS make
a more rational choice about which node is causing the problem, rather than just picking
one at random. This algorithm is not without its problems. For example, suppose that
the TMS tries to force OUT some newly-discovered contradiction C, and the cause of
the contradiction is 2 hypothesis ~C, which is currently IIN. In this case the TMS may
get into an infinite loop. Although it is not difficult to patch up the system to deal with
this kind of failure, there are mote complex versions of it which are harder to recognise
and deal with.

This kind of TMS can become very inefficient if it has to move large numbers of
nodes IN and QOUT all the time. Under such circumstances the problem-solving support
system, the TMS, takes up more computational power than the problem-solver itself.
It’s a bit like a virtual memory paging system continually swapping memory segments
between main memory and disc while the application program hardly crunches anything.
However, for problems whose search spaces are such that this kind of behaviour is not
easily provoked by a problem solver, and for classes of problems for which only one or
a relatively few solutions are required, this type of TMS can be effective.
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In de Kleer’s TMS, justifications are always considered to be valid, if they are made from
tules and facts which hold true for some set of assumptions. The task of his Assumption-
based TMS (ATMS) is to record under what sets of assumptions any conclusion holds.
Each node has, in addition to its contents, indicating what it denotes, a label which
contains a set of sets of assumptions. Each of the sets of assumptions in the set denoted
by a nodes label can be used to prove the contents of the node. If a node turns ont
to be false, according to the reasoning of the supported problem-solver, the ATMS
notes all the sets of assumptions labelling the node as no-good sets. The convenient
way of doing this'noting is to have a node whose content is false, and to add any sets
of no-good assumptions to its label. A check must then be made to see that none of
the sets in the label of the false node is a superset of any other; if there are any they
should be deleted. For this to work properly the system must also take care that no
superfluous assumptions appears anywhere in a set in a label. In other words, that

only assumptions directly involved in the proof of a nodes contents are included in the

label sets. Whenever the label of the false-node is changed, due to a new no-good set
of assumptions having been discovered, the new false-node label entry, or any superset
of it, must be removed from any other node label containing it.

For example, suppose that at some stage in the reasoning of our problem-solver we
have nodes for five assumptions a; ... ag, and three nodes for some derived facts A, B,
and C with the labels shown below.

Node | Contents Label |
nl assumption 1 | {a; }
n2 assumption 2 | {a;}
n3 assumption 3 | {ag}
n4d assumption 4 | {a4}
n5 assumption 5 | {as}
né A a1 a2} {a; as}
n7 B ai} {B: &3} {aq}
n8 C {a, a3 aq}
I

so that B holds if a1 does, or if a; and ag do, or if a; does. Suppose also that the only
contradiction found so far is that a4 and a5 can be used to prove false. So that we have
a false node entry, typically numbered node zero, looking like this:

[n0 | false | {as as} |

Itis important to remember that the ATMS does not use a concept of believed nodes and
unbelieved nodes in the Doyle sense; there is no question about nedes being IN or OUT.
Instead, it records only how nodes, whose contents are inferences from other nodes,
would depend upon any assumptions were they to be believed. In other words, the
ATMS only seeks to record all possible proof paths from consistent sets of assumptions
to the contents of each node in the database.

Continuing with our example, suppose our problem-solver wants to add another
justification to the database, that A and B imply C. The ATMS records the justification

11
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and from the labels of A and B creates a new label for C as follows (note if C were a
new deduction it would first have created a new node for it);

i) Form the cross-product of the labels of A and B from the unions of all the pairs
of sets; these are: .

1. {a; a3}

2. {ayazaz}~ . I

3. {ay a2 a4} :k"‘ SWPERE Luous
4. {5.1 ag 35}

5. {az a3 a5}

6.

{azaq a5} =  CoRrTRADILTRY.

if) Remove any resulting set which has another as a subset. In this case, sets (2), (3),
and (4) all have (1) as a subset. This is to remove any superfluous dependencies
upon assumptions. Thus only sets (1), (5), and (8) remain.

emove any set which has a contradictory set of assumptions as a subset of it.
Since {aq as} is already know to be a no-good set, this disposes of set (6}, leaving
sets (1) and (5) to form the new label for C.

If C forms a new node (1) and (5) become its label. If it already exists, as in this
example, (1) and (5) are added to its existing label, having first checked that it is
either not a superset of an existing set in the label, or that it is not a subset of
one, in which case the older superset is removed from the label,

iv

v) If the Ml whole process changes the label for C, and the recorded justifications
show that other nodes depend upon C, then the changes made to the label of C
have to be propagated forward to those nodes, and from these nodes on to any
that depend upon them, and so on. Note that this process does terminate, as a
little thought will make clear.

By this stage the database of our problem-solver in this example looks like this:

Node | Contents | Label
no false {a4 ag}
nl | assumption 1 | {a;}
n2 assumption 2 | {a;}
n3 assumption 3 | {as}
nd | assumption 4 | {as}
ns assumption 5 | {as}
né A {a1 a2} {a2 as}
n?7 B ' {a1} {22 a3} {a4}
' n8 C {ar 23 a4} {a; a7 a3 a5}

4.4.1 Some Comments

The de Kleer type ATMS has two advantages aver the Doyle TMS. First, all conse-
quences of a set of assumptions can be explored together; no backtracking is involved,
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and the system does not have to attempt to maintain a single consistent set of as-
sumptions, as in Doyle’s TMS. As a result it avoids the problem of having to try to
decide which assumption, or assumptions, should be put OUT, and thus the possibility
of getting into some complex INing and OUTing loop. Second, it can be efficiently
implemented,; since the main operations involved are set union and superset/subset

checking operations. If the sets of assumptions for each node are represented.as_bit..

strings these kinds of operations can be performed directly by hardware.

The obvious disadvantage of an ATMS is that the systermn can only really support
forward-chaining reasoning by a problem-sclver. There is no natural way in which it
can be made to support reasoning towards a particular goal. This characteristic reflects
its origina. De Kleer first proposed his ATMS as a more efficient truth maintenance
system for his Qualitative Reasoning systems, which typically work by envisioning the
way the world might develop over time, ie forward inferencing from some initial state
of the world to all the possible future world states. De Kleer has, however, recently
published a proposal for a variant of the basic ATMS which combines the advantages
of the Doyle type dependency-directed backtracking systemns with those of the ATMS,
and which avoids the disadvuntages of each, see [dKK88).

This forward inferencing support capability tends to mean that an ATMS is best
for problems in which most, or all, possible solutions are required to be found by a
problem-solver.

One application, not anticipated by de Kleer, but for which an ATMS has some
important advantages is in AJ-based Design Support Systems. These are systems which
aim to support a broad range of the activities engaged in by Designers during the
design process. By characterising the design process as the exploration of the space of
possible designs, an ATMS can be used to support effective and efficient explorations of
a particular design space. (More on this will be said in lecture O when the Edinburgh
Designer System will be discussed.) )

4.5 The Scaffolding Analogy

One way of comparing the three truth maintenance mechanisms described above is to
draw an analogy between the proof structures built by each of them — to support the
construction of solutions by the problem-solver — and the kinds of structures which
can be built using scaffolding — to support buildings during their construction. This is
referred to as the scaflolding analogy, inspiration for which came from Peter Ross,

Chronological backtracking does not build any scaffolding since it does not attempt
to maintain any proof structure ovaer the database of the problem solver. It simply dy-
namically builds and pulls down a tower representing the current proof being considered
by the problem-solver. At the end of the task no record is kept of how any solutions
found were derived.

In the Doyle type TMS which uses dependency-directed backtracking a scaffolding
structure is built from a number of roots which form a set of cansistent hypotheses, or
assumptions. When an inconsistency between two, or more, hypotheses is found - by
deriving a false node from them, a hypothesis from the root set is selected and removed
in order to re-establish consistency. All the scalfolding built up from the hypothesis
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removed is taken down, but a record of how to re-build it is kept, so that if the removed
hypothesis is ever brought back into the consistent se t; as a result of another hypothesis
with which it is inconsistent being removed for example, the scaffolding it supported
can be recreated.

An ATMS builds a scaffolding from a set of roots which represent all the assumptions

made by the problem=sol verIf atiy Set; of §6ts, of theae assumptions becomes incon-

sistent - by the problem-solver deriving a false node from them, the assumptions are |

marked as being inconsistent and no further scaffolding is built from this combination
of roots. At no time is any of the scaffolding taken down.

5 Required Reading

No required reading is set for this lecture due to the shortage of Big Red KR books.
Recommended reading is (dK84] and [Doy79]. This is designed to give you more
opportunity to read what has has been set for lectures one and two.

6 Next Small Group Tutorial Preparation |

Using the material contained in the required readings for lectures one and two (Chap-
ters 1, 2, 3, 5, 14, and 18 from the Big Red KR book) preparte a defence of logic as
a representation of commonsense knowledge and commonsense reasoning. You should
aim to present your defence in about five minutes, and be prepared to take questions
specifically on your case for a further five minutes. This is to be done for the next amall
group tutorials to be held on Thursday 4 February (for MSc students) and Friday 5
February (for AI/CS-3 students). .

You are reminded that all full class and small group tutorials are to be considered
mandatory, and that material covered in small group tutorials is classed as examinable.

7 Date For Handing In Class Work Exercise One

The date for handing in the first class work exercise set at the end of the notes for
lecture two is Tuesday 2 February, ie by the end of lecture three.
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Knowledge Representation and Inference Two

Lecture Four:

Uncertainty: A Question of Belief
or

Not Magic Numbers Again

“They say that Understanding ought to work by the rules of right reason.
These rules are, or ought to be, contained in Logic; but the actual science of
logic is conversant at present only with things either certain, impossible,
or entirely doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic for this world is the calculus of Probabilities, which
takes account of the magnitude of the probability which is, or cught to be,
in a reasonable man's mind.”

— James Clerk Maxwell.

1 Some Introductory Comments and Questions

What is uncertainty? Is it different from not knowing? Can you be uncertain about
something you don’t know? Perhaps it would be better to ask what is certainty? Is
there a difference between knowing and being certain about something? Can you be
certain about something you know? If we are certain or uncertain about something
what is it that we are certain or uncertain of — what we know, or the knowing of

something? Where does the degree of beliel of something, or the confidence in a belief
corne in to all this?

It seems to be hard to be certain about what uncertainty is! For example, you are
probably certain of your age, but not of when the next general election in this country
is going to take place. We can describe your certainty about your age as a certain
belief, that is something you believe in with no reason to think that your belief might
be mistaken, and probably you have never believed otherwise. You may have a belief
about when the next general election will be, but you can probably think of many
reasons as to why you could be mistaken in that belief. Perhaps the only thing you can
be certain of in believing when the next general election will be is that you cannot be
certain about it. Can we say by how much we are uncertain about something, or how
uncertain our belief in something is? For example, is it meaningful to talk of being 90%
certain of when the next general election will be, or 50% certain, or 10% certain. If so,
what does it mean to say this? Are these absolute values? If so how are they to be
obtained? Or are they relative numbers? If so what are they relative to, and again how
are they to be obtained?

Despite this uncertainty about what uncertainty is we can know a great deal more
about uncertain situations besides the degree or strength of belief. There ate many
different kinds of uncertainty and a large number of approaches to resolving or dis-
counting it. Some forms of uncertainty are preferable to others , and certainty depends
not only on evidence, but also on the importance of-the uncertain situation. The utility

i evidence can be estimated; and then decisions éan be made as o whether it 18 worth

collecting any.

“Which way ought I to go to get from here?’

‘That depends a good deal on where you want to get to.’ said the Cat.
‘I don't much care where —' said Alice.

“Then it doesn’t matter which way you go,’ said the Cat.

Lewis Carroll — Alice in Wonderland.
Another example, consider the following scenario:

John and Sally are lying dead in the middle of the living room surrounded by
broken glass and water. The window is open. Who murdered them?

This is the scene for one of those puzzles in which you are allowed to ask the person who
described the scene questions that can be answered yes or no. Is it from a position of
uncertainty that you start to try to solve the puzzle, or one of not knowing, ie ignorance,
or both? Do you try to formulate questions in order to try to reduce your uncertainty, or
your ignorance, or both, or uncertainty with some questions and ignorance with others.

Often when faced with these kinds of situations we consider the evidence and then
form hypotheses or conjectures for their explanation, which we then seek to prove or
disprove by the collection of further evidence. But suppose that on the basis of what
we are told in the scenario about John and Sally we form a hypothesis which after
some questioning of the presenter results in additional knowledge, or evidence, which
all confirms our hypothesis. Does this mean that we should adopt the hypothesis as a
certain explanation? Probably not, since it may just be the next question that uncovers

some contrary evidence that defeats the hypothesis. How long do we need to gD on

collecting supportive evidence for a hypothesis before we become certain of it?

Remarkably, in a world in which almost nothing is eertain, our knowledge of uncer-
tainty enables us to act as if almost nothing is uncertain. How can we represent and
reason with knowledge about uncertainty in artificial systems?

tIn these notes lour approaches to representing and reasoning about uncertainty are
described: Bayes’ rule, the Dempster-Schafer theory of belief, Alan Bundy’s incidence
calculus, and Paul Cohen’s hueristic approach based upon his model of endorsements.

2 Bayes’ Rule

2.1 Introduction

Thomas Bayes was a nonconformist minister who lived in Tunbridge Wells and was
a Fellow of the Royal Society. He lived in the first half of the 18th century. In a
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memoir, published posthumously, Bayes showed how you could caleulate the probability
of a hypothesis, or explanation, in the light of the evidence available, it provides a
simple mathemnatical method for updating the probability of a hypothesis as evidence
is accumulate. It is therefore of potential use in diagnosis type problems.

2.2 Theoretical Development

Suppose you want to know the probability of Liverpool winning the first division of the
English football league if by halfway through the season they have net lost a game. The
probability we want is called the conditional probability, because it is the probability that
Liverpool will win the league in the event of them having not lost a game in the first half
of the season. If win denotes Liverpool winning the league and notLostInFirstHalf
denotes the event of Liverpool not losing 2 game in the first half of the season, then
P(win|notLostInFirstHalf) denotes the conditional probability that Liverpool will
win the league i the event of them not having lost a game in the first half of the season.

The conditional probability of a hypothesis given some evidence is given by:

"(2.1) P(hle) = P(hne)/P(e), where N denotes set intersection,
similarly
(2.2) P(elh) = P(hne)/P(h),

from which we can derive one form of Bayes’ rule:
(2.3) P(hle) = P(e/h)P(h)/P(e).

Thus if we know the prior probability, P(h), that Liverpool will win the league;
the likelihood, P(efh), that not losing any games in the first half of the season will
result in Liverpool winning the league; and the probability of the evidence P(e); we
can calculate the conditional probability, P(hje), of Liverpool winning the league given
that they have not lost a game in the first half of the season. Using this form of Bayes’
rule it is straightforward to revise the conditional probability of a hypothesis in the light
of one piece of evidence.

This form is, however, not suitable if we want to deal with more than one competing
hypothesis. For this situation we can extend equation (2.3), noting that the denominator
of (2.3) can be written in terms of the conditional probabilities of e given h and =h:

(2.4) P(e) = P(eh)P(h) + P(e|~h)P(-h).
Then Bayes’ rule can be written as:

(2.5) P(hle) = P(e/h)P(h)
P(elh)P(h) + P(e[-h)P(-h)

This can be generalised for the case where h; is one of n hypotheses:

(2.6) P(bje) = _ P(e[h,)P(h,)
E;"'_IP(G{ ll_,')P (h;)
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Note that the denominator of (2.6) involves the assumption that the n hypotheses
are mutually exclusive and exhaustive, just as h and -~h were mutually exclusive and
exhaustive in (2.5).

‘The next extension of Bayes’ rule is to deal with the situation in which there are
several pieces of evidence for a hypothesis, instead of the single piece of evidence, e, of
the forms presented so far. Equation (2.6) is extended to cope with two or mare pieces
of evidence per hypothesis as follows:

(2.7) P(hile; &k en) =  Ple; &l enh)P(h;)
S P(e; &..& e |h;)P(h;)

Bus, a difficulty arises in trying to use'this form of Bayes’ rule to combine an arbitrary
number of pieces of evidence in favour of a hypothesis. The denominator of (2.7)
implies that we need to know the conditional probabilities of all possible combinations
of evidence for all possible hypotheses. This requirement is clearly impractical for most
applications, it is discussed further in section 4.2 when talking about Bundy’s Incidence
Calculus. To reduce the problem, by reducing the amount of information required, an
assumption of conditional independence is often made. Formally, this is:

P(eidcejlb) = P(e;h)P(e;lh)
In other words, if h ia the true state of the world, then the observation of evidence e;

is independent of the observation of evidence e;. This assumption allows us to rewrite
(2.7) as:

{2.8) P(h,‘lel & & Em} = P(Eﬂh;} Kana X P{emlh;)XP{hi}
Z;":lP[ellhl) XanX P{&mLhJ)XP(h:}

This is the form of Bayes’ rule usually used to revise the probability of one of a
number of exhaustive hypotheses by pooling the weights of the pieces of evidence. We

have seen that it is derived from the definition of conditional probability, and that it )

involves three assumptions:

1. that the n hypotheses h; are mutually exclusive,
2, that the n hypotheses h; are exhaustive, and

3. that there is conditional independence of the evidence for each hypothesis.

2.3 An Example

The use of Bayes’ rule will now be illustrated by an example. Consider two boxes, each
containing a set of red and yellow bricks, set A in the proportion of two red bricks for
every yellow brick, and set B in the proportion one red brick for every two yellow bricks.
To start with we don’t know which box contains which set. Suppose we choose either
one box or the other according to whether an ordinary coin, when Aipped, lands heads

put it back; da this, say, four times. Suppose the result of our four selections, which we
will call our evidence are:

- — —or-tails—Now. select-a-brick-from- the-chosen box;-withous-looking;-nete-its-colour;-and— ~—— —-——-——




red
red
yellow
red

- selection

nn

1
2
3
4

]

o= = — - ———In-the-light-of the-evidence; what-is-the-probability-of the chosen-box containing-one or
other of the sets of bricks?

Having chosen one of the boxes we can form two mutually exclusive and exhaustive
hypotheses:

h;: that the chosen box contains the set A.
hy: that the chosen box contains the set B.

. . .
If we have made our choice of box on a purely random basis the prior probabilities for
each of these hypotheses will be the same, that is 1/2. This is written:

P(h;) = 1/2 and P(hy) = 1/2.
Next we need to calculate the likelihood of the evidence given each hypothesis, that is
P(ejh1) and P(ejh;). This calculation is presented in the table below: note the chances
of selecting a red brick from set A is 2/3 and a yellow brick 1/8, and visa versa for set

B.
Evidence e Likelyhood
selection Set A Set B
1 = red 2/3 1/3
2 = red 2/3 1/3
3 = yellow 1/3 2/3
4 = red 2/3 1/3
P(elh;) = 8/81 | P(elliy) = 2781

Table 2.3.1 — Evidence and Likelibood for first four selections.

We can now calculate the probability of the evidence, P(e), using equation (2.4) above:
P(e) = (8/81)x(1/2) + (2/81)x(1/2) = 10/162

| The conditional probabilities for each hypathesis, P(hy|e) and P(hz|e), can thus be
calculated using the form of Bayes’ rule in equation (2.5) or (2.6):

8 Xrly -
Pule) = HpZ = &

162

2 .1

X5 2

P(hzle) = =7 = 10

162
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From which we might conclude that the selected box contains the set A, and not the
set B. So, although hy and hy are equally probable initially, after the evidence is in, hy
has become more likely to be true than h,.

If you were still not certain enough of this conclusion you can go on to collect some
more évidence. For example, suppose you make four furthe: se]ectlons The evidence
—~and-new likelihoods might leok like table 2.3.2 Gelow,

Evidence e Likelihood
selection Set A Set B
1 = red 373 1/3
2 = red 2/3 1/3
3 = yellow 1/3 2/3
4 = red 2/3 ) 1/3
5 = yellow 1/3 2/3
6 = red 2/3 1/3
7T = red 2/3 1/3
8 = red 2/3 1/3
P(e[h,) = 64/6561 | P(e]h;)’ = 4/6561

Table 2.3.2 — Evidence and Likelihood for the eight selections.
The new evidence probability is given by:
P(e)' = (64/6561)x(1/2) + (4/6561)x(1/2) = 168/13122,

and the new conditional probabilities become:

64 X1

Paijey = B L = 2 - 1
13122
4 X}, .

P(hyle) = E%J = 5'22 = %
13122

From which we might become more confident that our first conclusion, that the selected
box contains set A, is true.

2.4 Some Comments

This example is an uncontroversial application of Bayes' rule. Controversy arises when
we cannot fix the prior probabilities objectively by the spinning of a coin, for example.
Forinstance, there is no objective way of fixing the prior probabilities of different possible
causes of the result of some clinical trial. In such cases, when forming prior probabilities,
one would have to rely, in part, on subjective impressions and untested ideas. This
suggests that hoped for scientific conclusions, as expressed by conditional probabilities,
would be similarly subjective.

More recent work on Bayes’ rule has shown, however, that prior probabilities nor-
mally have relatively little influence on the corresponding conditional probabilities, and
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what influence they have diminishes rapidly as the evidence accumulates. This means
that even if two scientists started out with very different initial probabilities for vari-
ous hypotheses, sufficient evidence would soon bring about virtually indistinguishable
conditional probabilities. For example, if, instead of making P(h;) and P(h;) = 1/2
in the above example, we had started of with P(h;) = 2/3 and P(h;) = 1/3, and we
had collected the evidence alter eight selections, t.he posterior probabilities for h; and
h; turn out as:

P(hyle)" = 32,
P(hyle)” = La

which compares well with the % and == 34, obtained above for P(h;) and P(h,) respec-
tively.

You will find that the larger the sample you take, the more similar are the two sets,
of posterior probabilities.. So, although there is a subjective element in the Bayesian
approach to uncertainty reasoning, this does not imply that scientific conclusions in the
Bayesian scheme are subject to the overriding influence of purely objective evidence.

There are however other problems which must be faced in any application of Bayes’
rule in a reasoning system intended to cope with uncertainty. The most obvious derive
from the assumptions which were made in the development of the general form of the
Bayes’ rule presented in equation (2.8) above. It is not always possible to satisfy the
exclusive, exhaustive constraints on the set of hypotheses, and the requirement for
conditional independence of evidence for each hypothesis.

Other difficulties include the problem that the Bayesian view of probability does
not allow a distinction to be made between uncertainty and ignorance. In other words,
it is not possible to tell whether a degree of belief has been directly calculated from
evidence, or indirectly inferred from an absence of evidence. A related problem is that
the single degree of belief is a point estimate, and we know nothing about its precision.
An assessed degree of belief of 0.5, say, might mean that the probability of an event
is exactly 0.5. Alternatively it might mean that the odds of the event occurring are
somewhere between 4/6 and 6/4. Another problem is that single degrees of belief
combine reasons for believing with reasons for disbelieving, when one might want them
kept separate.

For a more extended analysis of the more practical problems associated with using
Bayes' rule see [Cohen 85|,

3 Dempster-Schafer Theory

3.1 Introduction

The Dempster-Schafer (D-5) theory, like Bayes’ rule, relies on degrees of belief to
represent uncertainty. Unlike Bayes' rule, however, it permits the assigning of degrees

constructed over all individual singleton hypotheses, but in the D-S theory, a distribution
is constructed over all subsets of hypotheses. This is of great advantage. For example,

imagine a world in which there are four ear manufacturers: Nissan Toyota, General
Motors (GM) and Ford. Imagine also a small, newly developing country, and the
hypotheses about which car manufacture will come to dominate this country’s car sales.
In addition to the four singleton hypotheses there are three others: that Japanese car
makers will dominate, that US car makers will dominate, and that one of the four will
dominate. The D-S theory provides us with a way of assigning probabilities to all the
hypotheses in this scenario; some of the intuitive assignments permitted by D-S theory
are not handled cleanly by Bayes' rule.

3.2 Theory and Example i

Suppose we obtain evidence that the probability of Japanese domination is 0.4. In
the D-8 theory we can assign the probability 0.4 to the set {Nissan, Toyota} without
committing any of the 0.4 to either one of the sets. Using Bayes’ rule we would have to,
possibly artificially, divide the 0.4 between Nissan and Toyota, with the consequence that
we appear to know more about their position in the market than we do. Furthermore, in
the Bayesian scheme, we would be forced to assign the remaining 0.6 of the probability
distribution (1.0 — 0.4) to the US car makers where it, too, would have to be,divided
between GM and Ford. In contrast, the D-S theory allows us to assign the remaining
0.6 to the set {Nissan Toyota GM Ford}, that is to the set that reflects our ignorance
about who will come to dominate the market.

The property of the D-S scheme illustrated in the above example is that it dis-
tinguishes between uncertainty and ignorance. Evidence that Japanese car makers
will dominate the market is just that — it is not evidence about Nissan or Toyota
individually, and it is not evidence that US car makers will net dominate. Any claim
about US car makers is made out of ignorance since we have only one piece of evidence,
and that is about Japanese car makers. Ideally we want to limit our claims to the
set {Nissan Toyota}, for which we have evidence of dominance, and to the set {Ni.ssa:;
Toyota GM Ford}, that is, the set reflecting out ignorance.. The D-S theory- permits
this assignment because it permits probability distributions over subsets of {Nissan
Toyota GM Ford}, whereas the Bayes’ rule does not because its probability distribution
is constructed over the individual hypotheses {Nissan}, {Toyota}, {GM}, and {Ford}.

The largest set from which we construct subsets, the set of all the singleton hy-
potheses we know, the set that reflects our ignorance about which singleton is true, is
called the frame of discernment, denoted by ©. The singletons in © are assumed to
l:m mutually exclusive and exhaustive. Thus for our example, the frame of discernment

= {Nissan Toyota GM Fcrd} If we have no evidence about which subset of © will
dommnte the market, then the prcbablhcy assigned to € iz 1,0. To the extent that
evidence favours hypotheses constructed from subsets of 8, such as {Nissan Toyota}, to
that extent will the probability assigned to © be diminished. The D-S theory introduces
a function, called a basic probability assignment, denoted by m, to assign probability te
the subsets of ©. Thus, if our only evidence favours Japanese domination of a market
to degree 0.4, them m({Nissan Toyota}) = 0.4 and m(8) = 0.6.

... It is desirable to be able to sum up the probability assigned to subsets to determine

the degree of beliel in a superset. For example, suppose we obtain evidence about
dominance of the car market in our imaginary developing country by GM and Ford




o such that m({GM}) = 0.45 and m({Ford}) = 0.15. Then the degree of belief in US
"dominance of the market is:

Bel({GM Ford}) = m({GM}) + m({Ford}) = 0.45 + 0.15 = 0.6.

subsets of 6.

To use the D-5 theory in an inference system, we need a method to incrementally
update the values of beliel functions Bel; as evidence becomes available and directs the
assignment of probability to subsets of 8. The mechanism for this is called Dempster’s
rule of combination. Given two pieces of evidence and their probability assignments
and mz, Dempster’s combination rule provides a means of computing a new probability
assignment mj @ m; and a new belief function Bel; @ Bel;. The method works as
follows. Suppose we have two pieces of evidence about dominance of the market
by members of ©® = {Nissan Toyota GM Ford}. The first evidence is summarised
by m({Nissan Toyota}) = 0.4, and the second by m({Toyota GM Ford}) = 0.8 1,
Intuitively, it seems that since we have two pieces of evidence about Toyota, we should
be able to'make a probability assignment to {Toyota} alone; in fact, it seems we should
assign a good probability to Toyota, since the assignment made by m; does not favour
Nissan, Also, if we are able to make a probability assignment to Toyota, we should
reduce the probability assigned to {Toyota GM Ford}, because a good part of the 0.8
assigned by m; we now know was assigned on behalf of Toyota. Similarly, we should
reduce the probability assigned to {Nissan Toyota}. Table 2.1 shows an arrangement
that captures these intuitive arguments.

-~ =~ Obviously; Bel(6) = 1.0, since it is the sum of thie basic probability assignments of all

mz
{Toyota GM Ford}(0.8) | ©(0.2)
cline2-4 m; _{Nissan Toyota}(0.4) | {Toyota}(0.32) {Nissan Toyota}{0.08)
' 6(0.6) | {Toyota GM Ford}{0.48) | ©(0.12)

. Table 2.1 — Table Form of Dempster's Rule of Combination

In each cell of the above table we put the intersection of two sets: The intersection

of {Toyota GM Ford} and {Nissan Toyata)} is {Toyota}; the intersection of © and © is

+©; the intersection of © and any subset of © is that subset. We then simply multiply

the probability assignments of the original sets to obtain the probability assignment for
their intersection. Thus:

my @ ma({Toyota}) = 0.32,

m; €D mz ({Nissan Toyota}) = 0.08,

my & mz({Toyota GM Ford}) = 0.48, and
my €@ m; (©) =0.12.

!Note: this latter hypothesis illustrates how the D-S theory is used to represent negation: m({Toyota
GM Ford}) = m; makes assignments not only to its subset of 8, but also to © itself, that is, prior to

combination, m, 2ssigns 0.4 to {Nissan Toyota} and 0.6 to 8; and ma assigns 0.8 to {Toyota GM Ford}
and 0.2 to ©.

— e ey

Beliefl functions are calculated as before. Thus, belief that the Japanese will dominate
a market is given by:

Bely @ Bels{{Nissan Toyota})

+ my @ my({Nissan}) + my ﬂamg({Toyc;ata}]

= m; P my({Nissan Toyota})
0.08 + 0.0 + 0.32

= 0.4

This simple scheme for combining probability assignments gives rise to a2 number of
problems, but these will not be discussed here. See [BS84] for more details.

4 Incidence Calculus

4.1 Introduction

Incidence Calculus is a mechanism for reasoning about uncertain knowledge propased
by Alan Bundy in 1984. It attempts to overcome some of the problems associated with

Bayes’ rule and the Dempster-Schafer theory, and those of other numerical uncertainty
representation schemes.

The two approaches described so far, and others like the system of confidence factors
used in MYCIN, involve the assignment of numerical values to hypotheses, and the
definition of arithmetic functions to the connectives AND, OR, and NOT in the case
of rules, such as those used in MYCIN. The problem with such assignments is that
the final computed value may not represent a meaningful probability of a h ypothesis or
assertion, They can often only be taken to be rather ill-defined measures of some kind
of strength or cost. As such it is difficult to use these techniques for true probabilistic

reasoning. Bundy argues (see [Bun84]) that no method based purely upon assigning
numerical values can be so deseribed.

4.2 Some Limitations of Purely Numerical Approaches
The laws of probability theory can be presented as:
© LPI: P(A A B) = P(A)xP(B), if A and B are independent

LP2: P(-A) = 1.0 - P(A)

LP3: P(AV B) = P(A) + P(B) — P(A A B)
These laws are contradictory if the condition of independence of A and B in LP1 is
ignored. In probability theory, a correlation value, corl(A,B), between two events is
used to denote their degree of dependence. This correlation function is defined by:

LP1: P(A A B) = P(A)xP(B) + corl(A,B)x P(A) xP(~A) xP(B)xP(~B).

The formula LP1’ can be used to replace LP1 when A and B are dependent. However, to
use LP1’ in general requires us to know the values for the correlations of all combinations.

10
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of the evidence involved. This would be reasonable if we had rules which allowed us
to calculate corl([A A B], C) from P(A), P(B), P(C), corl(A,B), corl(B,C). However,
Bundy has shown that it is impossible to develop such a calculus. Thus, the “expert”
knowledge provider would have to provide correlations for all combinations of evidence
and hypotheses, which is impractical for all but the most trivial of problems.

4.3 Incidents

Incidence calculus is based upon the set-theoretic roots of probability theory, in which
the probability of a formula is based upon a set of situations (interpretations, or pessible
worlds). Bundy calls these situations incidents. For example, imagine that we have a
six-sided die and a coin. There are twelve possible incidents: .

- ete.

Let W denote the set of all possible worlds, or incidents, in which the formulas of a
theory are to be evaluated. So, from the above example,

W = (1,head), (1,tail),(2,head),(2,tail), etc...
" The incidence i(A) of a formula A with respect to W is the subset of W containing all
those incidents in which A is true. In continuing the above example, if A represents
face 2 being up on the die, then: /
i(A) = (2,head),(2,tail)
The dependence or independence of two formulas is the amount of intersection between

their incidences. If two formulas are independent, then this intersection would be that
obtained from a random assignment of values to the elements of their incidences.

4.4 Incidence Calculus
The following set of formulas define incidence calculus:
1. i(T) = W, ie T, denoting true, is true in all incidents in W.

2. i(1) = {}, ie false is true in no incidents.

8. i(-A) = W \ i(A), where \ denotes set difference.

5. {{AVB) = i(A) U i(B), where U denotes set union.
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To illustrate the use of this calculus, we will use the example introduced above about a
die and coin. In this example: '

* W = (1,head),{1,tail),(2,head), (2,tail), etc...
+ A = die with face 2 up
i(A) = (2,head),(2,tail)

* B = coin with head facing up
i(B) = (1,head),(2,head}, (3,head),(4,head), etc...
i(AAB) = (2,head)

L]

L]

4.5 Weighted probabilities

If wis an incident, let P(w) denote the probability of w occurring. If W is a set of
incidents, then the weighted probability of W, denoted P(W) is given by:

p(W) = Z;P(w;), wje W

In other words, the weighted probability of W is the sum of the probabilities of the
incidents of W, !

In our example, since the incidents of W are disjoint, P(W) = 1.0. If A is a formula,
then P(A) is the probability of A being true and:

P(A) = P(i(A))
For example, if A represents die with face 2 up then

P(A) = L ueia)P(w) = P(2,hed) + (2,tail).

4.6 Representing Incidents

) P
Incidents can be represented by bit strings. For example, using the die and coin again,
we can represent the twelve disjoint incidents as follows:

w=111111111111
1
where the first 1 denotes (1,head), the second 1 denotes (1,tail) etc.

Now suppose that A denotes die with face 2 up, then i(A) may be represented by:

i(A) =001100000000

Similarly, !

e M2A) = L1000 L NN
i(AA=A) = 000000000000
{Av-A) = 111111111111

12




incidence:
e o B ] 0 B0 BB 0 B A0 e s s s
giving:

i(AAB)=001000000000
i(AVB)=101110101010

bence:

P(AAA) = 1/12
P(AVB) = 9/12 = 3/4
assurning that each incident is equally probable.

4.7 Use of Incidences

- Given i(A) and a rule: [if A then XJ, we need to be able to calculate i(X). There is,
however, a problem: from [if A then X], all we can infer is that i(A) € i(X) since X
might also be true in incidents in which A is false. Thus, we can only calculate a lower
bound on the incidence of X. But, if we have several rules each with the same consequent
X, then we can take the union of the lower bounds as the lower bound for i(X).

' For example, suppose that we have a set of rules:

1. if A then X
2. if B then X
3. if C then X

we can then compute a lower bound for i(X) as follows:
(i(A) ui(B) L i(C)) € i(X)
Continuing with our die and cein example, suppose we have the three rules:
R1: if(3,tail) then {odd,tail)
R2: if(5,tail} then (odd,tail)
R3: if(7,tail) then (oddtail)
A lower bound for an {(odd, tail} event can be computed as using:

1((3,tail)) U i((5,tail)) U i((5,tail)) =00000100010 1
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- Hence P(AA-A) = 0 and P(Av-A) = 1. Thus, the method gives the required results
for the two related events die uith face £ up and die not with face 2 up.

Suppose now that B denotes coin with head up. We can assign to B the following

S _Z_JEat.cach0£.I;he--t\m-min--faces—were-equalh:—iikel—y; -

giving a lower bound for P({odd,tail}) = 3/12 = 1/4.

That is, if we knew nothing about a particular die/coin throw other than the facts:

1. that each of the eight die faces were equally likely,

3. that (headAtail) had probability 0.0, and (dieFacel A dieFace2) had probability
0.0, etc.,

4. that the die and coin events were independent, and

5. that the three rules R1, R2, and R3 applied,

then we would have a lower bound of 3/12 = 1/4 for P({odd,tail)). However, if we
had another rule R4: if {1,tail) then {odd,tail}, then we could improve upcn this lower
bound, it would become 4/12 = 1/3.

4.8 ‘Some Comments

For a more detailed presentation of Bundy's Incidence Calculus see [Bundy 84]. This ap-
proach to representing and reasoning about uncertainty has not received much attention
by implementers of systems, and it needs more experimental testing to gauge how useful
it is. One particular problem illustrated abave which requires further investigation is
that only being able to calculate a lower bound on the probabilities of formulae may
not be strong enough in practice. However, it does offer some important advantages
over other approaches: it captures the properties of probabilistic reasoning which purely

numeric mechanisms can not, and it can be efficiently implemented using bit strings and
set operations.

5 Heuristic Reasoning about Uncertainty

‘What's one and one and one and one and one and one and one and one and
one and one?’

‘I don't know,' said Alice, ‘I lost count.’
‘She can’t do addition,’ said the Red Queen.

Lewis Carroll — Through the Looking-Glass.

In this last section a rather different approach to the representation and reasoning
about uncertainty is briefly described. It is based upon the work of Panl Cohen who
was concerned to develop a heuristic approach, as epposed to one based on numerical or
probabilistic methods. Cohen’s method is based upon what he calls amodei ‘of endorse-
ment. Endorsements are structured objects which represent reasons for believing and
disbelieving the propositicns, of hypotheses, with which they are associated. Reasons

for believing are called pesitive endorsements, and reasons for dishelieving are called
negalive endorsements.
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5.1 The Model of Endorsement

The explicit marking of factors relating to one’s certainty is called endorsements. The
records of these factors are called endorsements. First, in order to set up a comparison
of a probabilistic approach and one based upon endorsements, a semantic interpretation
of probability theory is introduced.

The semantics of a probability theory provides us with, among other things, mental
devices to facilitate comparisons of the situations we are interested in, or concerned
with. For example, if we adopt a frequency semantics for probability, we might employ
the mental device of a spinning pointer that comes to rest in some randomly determined
sector of a disk. We can use this device to help interpret the statement P(A) = 0.9,
by imagining that the disk is painted red in one sector and blue in the other, and that
the red sector is nine times the size of the blue sector. Then the interpretation of
P(A) = 0.9 becomes: my support for A is comparable to what would be provided by
agsociating A with the red sector and spinning the pointer. This mental device not only
helps interpretation of P(A) = 0.9 with frequency semantics, but it also helps us think
about whether the frequency semantics is appropriate for the situation we are trying to
represent,

An analogy, or metal device, with which to introduce the model of endorsements
is that of a bureaucracy. A piece of work in a bureaucracy proceeds from one stage
to the next contingent upon the endorsement of a bureaucrat. The job must sat-
isfy certain, often formal, requirements before it is endorsed at any stage. Imagine,
in place of bureaucrats watching over a job, a collection of rules watching over the
development of a line of reasoning. Each rule endorses a step in the argument if it
satisfies certain requirements, Thus, endorsements are just records that a particular
kind of inference has taken place, and endorsers are just the computations that assert
the records. Bureaucrats can require a job to be cleared by lesser bureaucrats before
they even consider it; for example, a city council won’t consider a propesal for some
development project unless it is cleared by the planning department, and the planning
department won’t look at a propesal until it has been checked that it complies with the
regulations first. Similarly, an endorser may require the conditions of a rule to have
a certain level of endorsement before it will endorse the conclusion of the rule. For
example, one endorser might endorse the conclusion of a rule only if the conditions were
therngelves endorsed as pararnelers derived from rules that do not introduce uncertainty,
such as simple arithmetic transformations. Most conclusions accrue several, more or
less stringent endorsements. The certainty of a hypothesis can be represented at its
strongest endorsement. In terms of the bureaucracy analogy, one’s confidence in a job
is proportional to the degree of scrutiny and stages through which it has passed.

Accrual of endorsements as if by independent bureaucrats is a useful way to view
the evidence for and against a hypothesis, but we need to extend this analogy to deal
with the weighting of evidence. To do this we can imagine a bureaucrat using something
rather like 2 ledger book in which there are three columns; one for evidence in support
of a hypothesis, one for evidence which contradicts a hypothesis, and one for irrelevant

evidence—Weighing evidence thew hastwostages: First; decide whichcolumns each piece

of evidence belongs, and , second, do the accounting of the evidence for and against.
Endorsements are structures associated with evidence which provide the information
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necessary for carrying out such operations.

5.2 Some Comments

Cohen has implemented his model of endorsements approach to reasoning about uncer-
tainty in a system called SOLOMON, more details about which can be found in [Coh8s).
Again, this technique has yet to be widely applied and so it is difficult to assess how
effective it is in general. However, it has one attractive aspect to it which should make
it appeal to those who do not like using any of the various magic number techniques, in
that it attempts to model the heuristic reasoning it seems we adopt in reasoning about
situations in which we are in some way uncertain.

6 Required Reading

The required reading for this lecture is all taken from the Big Red KR book:

]
1. Chapter 21, page 371 — Davis, R., Buchanan, B.G., and Shortliffe, E., Production
Rules as o Representation for ¢ Knowledge-Based Consultation Program.

2. Chapter 22, page 389 — Davis, R. and Buchanan, B.G., Meta-Level Knowledge:
Querview and Applications.

3. Chapter 27, page 457 — Garvey, T.D., Lowrance, J.D., and Fischler, M.A., An
Inference Technique for Integrating Knowledge from Disparate Sources.
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Knowledge Representation and Inference Two

. Lecture Six:

Planning and Planning Systems

1 Introductéry Comments

Planning: deciding upon some necessary actions before executing any of
them.

Research into planning and planning systems constitutes a major subjact of research in
Al, and has done s0 since its beginnings. There is therefore a large amount of work
reported in the literature. These notes aim simply to outline the major distinctions
between the different approaches that have been developed, and to introduce some
of the representation and reasoning issues involved by describing two of the earliest
planning systems. )

A final section reviews the relationship between the actions represented and reascned
about by planning systems and how they are actually executed in the real world. This
leads to the identification of an important difference in approach to planning, and Al
as a whole, being adopted by members of the robotics group in the Department. This
approach is referred to as the Task-structured approach, or sometimes the Behaviour-
based approach, since it uses task-achieving behaviours.

]

2 Approaches To Planning

' Five approaches to planning problems can be identified. They are:
1. non-hierarchical planning,
2. hierarchical planning,
3. script-based planning,
4 ;];;oﬂ.unintic planning,

5. non-linear planning.

Before outlining each of these approaches the meaning of the term hierarchical as
used in planning needs to be explained. Most plans have nested subgoal structures,
and so might be described as having hierarchical structures. However, hierarchical has
another interpretation, and it is this second one which is used to distinguish between

approaches to planning problems. The intended distinction is that hierarchical planners -
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generate a hierarchy of representations of a plan as they are built, in which the highest
level is a simplification, or abstraction, of the plan and the lowest level is a detailed
plan, sufficient to solve the particular problem. in contrast, non-hierarchical planners
have only one representation level of a plan. This kind of planner is typified by the

STRIPS systermn (described in section 3). Both kinds of planner can generate plans

“with hierarchical subgoal structures, but only hierarchical planners use a hierarchy of
representations of the plan,

2.1 Non-Hierarchical Planning

Non-hierarchical approaches do not distinguish between problem-solving actions that
are critical to the success of a plan and those that are simply details of the plan.
As a result, plans developed by non-hierarchical planners often get bogged down in
unimportant details. For example, in planning a shopping trip to buy foed efc. for a
dinner party you are giving, you do not need to worry about the details of how you
are going to negotiate your way around each shop. But you do want to worry about
making sure you get everything you need, so that you do not end up having forgotten
to buy the wine. Planning with too many details is a waste of effort, but plans that are
too vague may not specify all the problem-solving operators necessary to satisfactorily
solve a problem; a balance between these two extremes needs to be found for efficient
planning. This balance is typically both problem and domain dependent.

Non-hierarchical planning is still useful in domains where there is very little or no
difference between the importance (level of detail) of the actions that must be carried
out to solve a problem,

2.2 Hierarchical Planning

The approach of hierarchical planning first seeks to construct a basic plan consisting of
only the important, or critical, subgoals: buying both the food and the wine for your
dinner party, for example. This high-level plan is then refined into a more detailed plan:
which contains more detailed subgoals. This refinement process is repeated until the
initial plan has been refined into a complete sequence of subgoals expressed at a level.
which can be achieved using known operators. The advantage of this approach is that
the plan is first built at a level at which details are not computationally overwhelming,
and at which unsuitable plans can be identified without first going into detail.

Hierarchical planning can take several forms. One approach, typified by the AB-
STRIPS system (described in section 4), is to determine which subgoals are critical to
the success of the plan and to ignore, at least initially, all others. For example, the
problem of acquiring a piano cannot be solved unless the two subgoals select a piano
and arrange for its delivery are successfully accomplished. Thus, an initial plan for
acquiring a piano might simply be described as: select a piano; arrange for its delivery.
This plan might be refined to include more details that are important at the next level
8o that the plan becomes select suitable musical excerpts with which to assess a piano
in a few minutes; locate a good piano store; select a piano; select a good piane removal
company; arrange for its delivery. The advantage of considering the critical subgoals
at a number of levels before going in to details is that it reduces search: by ignoring
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details, one effectively reduces the number of subgoals to be accomplished at any given
level, or abstraction space as it is often called.

The first hierarchical planner was implemented by Newell and Simon in their GPS
(General Problem Sclver) theorem prover. The GPS approach to hierarchical planning
differs from the ABSTRIPS approach. In the ABSTRIPS system, a hierarchy of
abstraction spaces (plan representation levels) is defined in terms of some subgoals being
more important than others. In the GPS approach there is only a single abstraction
space defined by treating one representation of the problem as more general than others.
GPS planned in an abstraction space defined by replacing all logical connectives by a
single abstract symbol. The original problem apace, or ground level of GPS defined
four logical connectives, but many problem-solving operators were applicable to any
of the connectives. Thus, they could be treated as details and abstracted out of the
initial formulation of the problem. A problem was then solved in the abstraction space
(the space with only one connective) and the solution mapped back into the original
four-connective space.

Other approaches to hierarchical planning are different again from the ABSTRIPS
and GPS systems. The ABSTRIPS system abstracted critical goals and the GPS
system abstracted a more general representation of an aspect of its problem space.
Another approach is to abstract problem-solving operators: plan initially with gener-
alised operators that are subsequently refined to problem-solving operators required in
the problem space. This approach can be taken one step further by abstracting beth
the operators and the objects in the problem space. In all cases, however, hierarchical
planning involves defining and planning in one or more abstraction spaces. A plan is
first generated in the highest, most abstract space. This constitutes a skeleton or outline

plan to which details are added as lower abstraction spaces are searched. Hierarchical

planning provides a means of ignoring the details that might obscure or complicate the
search for a solution to a problem.

2.3 Script-Based Planning

A third approach to planning makes use of outline plans, but unlike hierarchical plan-
ning, these outlines are recalled from a store of plans, rather than being generated. The
stored plans contain the outlines, or strategies, for solving different kinds of problems.
They range in detail from specific plans for particular common problems to general
plans for whole classes of problems, In this approach planning proceeds in two steps:
first an appropriate outline plan is selected from the store for the given problem, and
then the abstract steps in the plan are filled in with problem-solving operators for the
particular problem. This éinstantiation process involves large amounts of domain-specific
knowledge, often working through several levels of generality, and thus outline subplans,
until a problem-golving operator is found to accomplish each outline step. If a suitable
instantiation is found for each abstracted step, the plan as a whole will be successful.

This approach has much in common with that of seripts developed by Schank et al for
natural-language understanding. - Like the hierarchical planning approaches described

~m—--~—above-it-provides-a-top-down-approach to-the creation -of plans:-It does thiz by building ~— -~ ————-—=—~

into the outline plans it stores ezpectations about the way problems can be solved, and
thus about what a plan to solve a problem must contain.

®
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24 O pportunistic Planning

A fourth approach to planning is described as opportunistic planning and has bean de-
veloped by Hayes-Roth and Hayes-Roth in their studies of how human planning is done.
Opportunistic planning is characterised by using a more flexible control stratégy than
in the previously described approaches. It is usually implemented using the Blackboard
maodel of problem-solving: the blackboard being a “clearinghouse® for suggestions about
plan steps, these suggestions being made by a set of planning specialists (Knowledge
Sources). Each specialist is designed to make a particular kind of planning decision
at some level of abstraction in the hierarchically structured blackboard datastructure®.
Specialists do not operate in any particular order; the asynchrony of planning decisions
being made only when there is reason to do 8o gives rise to the term opportunistic. In
the Hayes-Roth’s model of planning, which they suggest is like human planning, the
ordering of operators that characterise a plan is developed piecewise. In other words,
the plan grows out from concrete clusters of problem solving operators. For example, it
is only after the subgoal select a piano has been identified, as a subgoal of the overall
task of acquiring a piano, that the aubgaal select excerpts of musie ... ia identified. In
other words, if the subgoal select a piano had not been identified, then the subgoal select
music ... would not have been identified. ik

Opportunistic planning includes a bottom-up element, since it is driven by oﬁportu-
nities to include detailed problem-solving actions in the developing plan. For example,
having identified the overall task of acquiring a piano, a planning specialist may have
recognised the need to pay for it and introduced in to the developing plan detailed
actions such as going to the bank first, or testing for the presence of your cheque book
in your jacket, etc.. It contrasts with the top-down refinement process characteristic
of hierarchical planning, in which detailed problem-solving actions are not decided
upon until the last stages of building a plan. Another difference between opportunistic
planning and other approaches is that it can develop islanda of plan actions, ie parts of a
plan independently, while hierarchical planners try to develop an entire plan at each level
of abstraction. This means that discovering a problem at one level of abstraction does
not necessarily prevent the planning system from going on to do useful plan building at
more detailed levels in other, unrelated, parts of the overall plan. >

!
2.5 Non-Linear Planning

Two related problems recur in all approaches to planning. They are how to limit search
and how to deal with interacting subgoals. The problem of search is concerned with
finding an ordering of subgoal actions which will achieve the overall goal from the
potentially very large number of subgoals that could be considered. This problem is
sometimes referred to as the problem of combinatorial explosion, since the number of
possible combinations of subgoals increases exponentially with the number of possible
subgoals.

The problem of interacting subgoals occurs whenever a task has conjunctive goals,
in other words, more than one goal has to be achieved to complete the overall task. The

'Note: this in a different use of the term hisrarchical, it refers to structure lavels, not repreassntation
lavels,
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.order in which conjunctive goals are to be achieved is not always specified (it may not
be known), but it can critically affect the finding of a solution. Sometimes interactions
of this sort prevent any solution being found, for example, if the task of painting a room
involves the conjunctive goals of painting the walls and the ceiling, the second goal

should be achieved first, otherwise it becomes very hard to paint the ceiling without

" splashing”the walls {which we are assuming are to be painted a diffecent colour). If
you did not know this you might find it impoasible to paint the walls and ceiling of &
room different colours, or you would have to work it out by some form of commonsense
reasoning — which people are ironically typically not very good at.

The problem of search is related to the problem of interacting goals or subgoals
because additional search results from premature commitment to an arbitrary ordering
of them. In the painting the room example, a planner which arbitrarily decided to
paint the walls first and then discovered that it would have difficulty painting the ceiling?
would need to backtrack to the decision in the plan to paint the walls first. Backtracking
- involves replanning from the decision point that failed, in this case to paint the walls

first. The disadvantage of backtracking is that it can be computationally expensive,

depending upon the backtracking technique used and how much has to be done. This
. problem of not knowning how to order conjunctive goals and subgoals is a kind of
. uncertainty, which is why backtracking can become involved.

" The interactions between subgosls have been called constraints, by Stefik. They
can be inferred from the preconditions of operators if the preconditions are represented
explicitly. For example, if the operator PatntCesling has several preconditions such as
HavePaint, HaveBrush, and HaveLadder, a planner might be able to infer that painting
the ceiling can proceed, and suggest arbitrarily that it is done after painting the walls,
despite the fact that it is not a good idea to do so if the walls are also to be painted. If

_the constraint WallsNotAlreadyPainted was added to the precondition list, our planner,
if it suggested painting the ceiling second, would discover that this would contradict one
of the preconditions of PaintCeiling operator. It should therefore be able to construct
a plan which does not suggest painting the ceiling second.

Some of the early planning systems generated plans that violated such ordering
constraints and then tried to go back and fix the plans. These systems applied a
powerful heuristic called the linear assumption which says:

subgoals are independent and thus can be sequentially achieved in any order.

In an historical perspective, this can be seen to be an important heuristic. The
number of orderings|of the problem-solving operators is the factorial of the number of
available operators, so clearly a problem-solver cannot, reasonably examine all orderinga
in the hope of finding one which does not fail because of interacting operators, at least
not without being computationally very expensive, The linear assumption says that in
the absence of any knowledge about necessary orderings of operators, assume that any
ordering that achieves the goal or subgoal will work. Notice that this is an example of
a type of default reasoning. In this case it is a strong default assumption about the way
in which subgoal operators can be combined to achieve higher level goals.

The linear assumption is used in cases where there is no a priori reason to order

The plannar having some yet to be realised commonsense reasoning capability to infer this.
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operators. An alternative assumption is that it is better not to order operators at
all, than to order them arbitrarily. This assumption has been applied in two different
ways in planning syastems. Partial orders of subgoal operators can be established by
considering the interactions, if any, of their preconditions, For example, an agent taking

e e SN K DOW]ed ge Representation and Inference Lcourse-may-know-that-it-has-twosubgoalg—-—- =~

attend the lectures and do the required reading set each week, but initially it may not
commit itself to an ordering of these operators. However, when it expands each of these
goals, it realises that: i) the lectures can only be attended in the order they are given by
the lecturer, and ii) a precondition of understanding successive lectures depends upon
having done the reading set in previous lectures, it thus decides to order its subgoals
as alternate attend each lecture one, do required reading, attend lecture 2, do required
reading, ..., etc.. A planner can order operators only to eliminate problems that might
arise from choosing an arbitrary ordering, or it can also not order operators until it
knows how to order them. This second approach is called least-commitment planning,
and planning systems which adopt it have to be able to represent, and perhaps express
in the final plan, partially ordered operators. Such planning systems are called non-
lincar planning systems. An important aspect of this type of approach is that it is
constructive; since planning decisions are made only when the planner knows they will
not interfere with past or future decisions, the planner need never backtrack and undo
a bad decision. In fact even non-linear planners use backtracking to some extent since
it can turn out to be cheaper than trying not to make bad decisions.

3 STRIPS: A Non-Hierarchical Planner

3.1 Introduction and Historical Note

The STRIPS planning system was built as part of the mobile robot project carried
out at the Stanford Research Institute (SRI) between 1966 and 1972. It is normally
referred to as the Shakey project since this was the name of the mobile robot system
used. In those days small portable computers were not available so the Shakey robot
was controlled by a fixed PDP-10 computer which communicated with the mobile robot
by a radio link. It was driven by two large stepper motors driving two wheels. It also
had two load bearing castors, front and back. The main sensors were a camera {with
motorised pan, tilt, focus, and aperture control), mechanical touch sensors, drive wheel
shaft encoders, and a rangefinder. The robot moved about in an environment specially
designed and constructed for it which consisted of four rooms connected by doorways
and containing a few large, regular objects such as cubes and wedges, some of which
were movable and some of which were fixed.

3.2 The Basic STRIPS System

The world model. The STRIPS system represented the world of rooms, doorways, and
objects that the Shakey robot inhabited as a set of well-formed formulas in Brst-order
predicate calculus. Some formulas represented constant facts, such as which objects
were pushable and which rooms were connected by doorways. Other facts, such as the
current location of movable objects, were modified to reflect the actions executed by the
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robot, and the consequent changes that occurred in its world.

‘Operators. The actions available to the robot for changing the world were de-
scribed, for the purpose of finding a plan of actions, by eperatars. Typically operators
described actions for going somewhere and for pushing an object somewhere, the loca-
tions being given as parameters. Each operator had preconditions to ita application; to
push a box, for example, the robot had first to be next to the box. The application
of an operator was represented, in the world model, by making appropriate changes
to it. These changes were defined by a delete list and an add list, which specified the
formulas to be removed from and added to the world model as a result of the operation,
respectively. Thus, each operator explicitly describes what it changed in the world
model.

An example of a STRIPS operator is gotoB®, which denotes an action for the robot
to go to an object in the same room:

BotoB(Bx) ;;; goto object Bx
preconditions: type(Bx,object),
thereExista(Rx) such that
[inRoon(Bx,Rx) and inRoom{rebot,Rx)]
deletelist : at(robot,_,_), nextTo(robot,_)
addList : nextTo(robot,Bx)

The precondition statement requires that Bx be an object and that both Bx and the
robot be in the same room, Rx. the “.” in the delete list represents arguments with any
values whatever.

‘Method of Operation. The STRIPS system proceeded by searching a space of
world models to find one in which the current goal could be achieved. It used a astate-
space representation in which each state was a pair (world model, list of goals to be

" achieved). The initial state was denoted (Wg, (Gg)), where Wy is the initial world

model and Go the given goal. A terminal state denoted a world model in which no
unsatisfied goals remained.

Given a goal G, stated as a formula in the predicate calculus, the STRIPS system
first tried to prove that G waa satisfied in the current world model. It did this using a
modified version of the resolution-based theorem prover QA3. Typically the proof would
fail, within a prespecified resource limnit, because no more resolvents can be formed. The
STRIPS system then had to find a different world model that the robot could achieve
and which satisfied the desired goal. Since such a task is not suited to a simple theorem
prover a means-end analysis strategy was used for this stage of the planning problem,
similar to the one used in the GPS of Newell and Simon.

To do the means-end analysis, the system extracted a difference between the goal
and the current world model and selected a relevant operator to remove, or reduce,

_this difference. The difference consisted of any formulas from the goal that remained

outstanding when the proof attempt was abandoned (possibly pruned if this set was

_large). A relevant operator was defined as_one whose add list contained formulas that____

*Note: a Prolog style of notation is adopted in these notes: predicates and constants are given names
beginning with lower-case letters, and variables are given names beginning with upper-case letters,

7

s b PR A

would remove some part of the difference, thereby allowing the proof to continue.

If the operator was applicable, the system applied it and tried to achieve the goal
in the resulting modified world model; otherwise, the chosen operator's preconditions
became new subgoals to be achieved. Since there could be several relevant operators at
each step, this procedure generated a tree of world models and subgoals. The STRIPS
system used a number of heuristics to control the search through this tree.

- L
3.3 An Example of the Basic STRIPS System’s Operation

As an example, suppose the robot is in rooml and that the goal is for it to be next
to box1, which is in the adjacent connected room, room2. The initial world model Wy
would then include clauses of the form:

inRoom(robot,rooml),
inRoom(boxl,room2) ,
type(boxl,object),
connecta{doori2,rooml ,room2),
status (doori2, open),

and the goal Gy is given by:
go = mextTo(robot,boxl).

Go is not satisfied by the initial state of the world model, and the difference between
it and the initial model is —nextTo(robot,box1). The STRIPS ayatem would then
determine that gotoB(Bx}, defined above, is a relevant operator, with Bx instantiated as
box1. The operator instance goto(box1), denoted OP1, is not immediately applicable
because the robot is not in the correct room, so its precondition,

G$_1% = type(boxl,cbject) and
thereExists(hx) such that
[inRoom(box1,Rx) and inRoom(robot,Rx)]

becomes a new subgoal. Relevant operators for reducing the difference between G,
and the initial world model Wy are: OP2 = goThroughDoor(Dx,room2) and OP3 =
pushThroughDeor (box1 ,Dx,rooml1), ie., move the robot to the room with the box in
it, or move the box to the room with the robot in it. If the former operator is selected
(as one would hope it would be), the precondition

G2 = stntus(Dx,openj and nextTo(robot,Dx) and i
thereExists(Rx) [inRoom(robot,Rx) and connects(Dx,Rx,room2)]

is a new subgoal. The difference —nextTe(robot,door12) can be reduced by the
operator OP4 = gotoDoor(door12), which is applicable immediately. Applying OP4

—————adds the-clause-nextTolrobot doort2)to-the world model, “creating a new model " "~ —

Wi. G; is now satisfied with Dx = door12, so OP2 can be instantiated as got-
through(door12,room2) and applied. This deletes the clause inRoom(robot,roomt)
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— e OP2:  goThroughBoor(deori2, room2) . . . o i e e e,

and adds inRoom(robot,room2). Gj is now satisfied, so OP1 is applied, deleting
nextTo(robot,doori2) and adding nextTo (robot,box1), the desired goal. The gen-
erated plan is thus:

r .
0P4: gotoDoor{doori2) '

i+ OP1: gotoB(box1)

The corresponding solution path through the state space tree is as follows:
(Wo, (Go)) |

|
|

(w0| {cl;l, Gﬂ])
|

l.
(Wo, (G:i Gy, Go))

| OP4
] .
(Wy, ((I;A, Gq))
I OP2
1
(WS,E(GOJ}

| OP1

. L
(Ws, 0)

3.4 Generalisation of Plans

In the basic STRIPS systems, each new problem had to be solved from scratch. Even
if the system bad produced a plan for solving a similar problem already, it was not able )

[ ‘to make use of this fact. A later version of the STRIPS system incorporated a scheme
for generalising plans and storing them, to assist both in the solution of subsequent
problems and in the monitoring of the robat’s execution of particular plans.

Triangle tables. A specific plan to be generalised, say, (OP1, OP2, ..., OPn), was
first stored in a data structure called a triangle table. This is a lower triangle of an

array representing the preconditions for and effects of each operator in a plan. Some of:
its properties are:

1. Cell{i, 0) contains clauses from. the original world model that are still true when
operator 1 is to be applied and that are preconditions for operator i, OPi.

2. Marked clauses {with-a leading *) elsewhere in row f are preconditions for operator
¢ added to the world model by previous aperators.
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3. The effects of applying operator 1 are shown in row -+ 1. The operator’s add
list appears in cell (i + 1,1). For each previous operator, say, operator 7, clauses
added by operator j and not yet deleted are copied into cell (i + 1, ).

4. The add list for a sequence of operators 1 to i, taken as a whole, is given by the
__clauses in row i+ 1, excluding column 0. ..

5. The preconditions for a sequence of operators i to n, taken as a whole, are given
by marked clauses in the rectangular subarray containing row i and cell(n + 1,0).
This rectangle is called the i-th kernel of the plan.

The triangle table for the previous example is given below, where the number of the
operators has been changed to reflect the order in which they are executed:

1 . *inRoom OP1
(robot,rooml) goToDoor !
*connects (door12)
(doori2,roonl, room2)
7. "inRoom
2 (robot,roomi1) *nextTo OP2
*connects (robot,doori2) | goThroughDoor
(door12, roonl, room2) (door12,room2)
*status)
(door12,open)
3 *inRoon i
(box1,room2) nextTo *  *inRoom OP3
*type (robot,doori2) | (robot,room2) gotoB
(box1,object) '
4
inRoom nextTo
(robot,room2) | (robot,boxl)
| 0 1 2 ) 3

Method of generalisation. The plan is generalised by replacing all constants in
each of the clauses in column 0 by distinet parameters and the rest of the table with
clauses that assume that no argument to an operator has been instantiated. The result
may be too general, so the proof of the preconditions for each operator is run again,
noting any substitutions for parameters that contain the generality of the plan. Some
further corrections may need to be made for any remaining overgeneralisation, which
might make the plan either inconsistent or inefficient in use. Finally, the generalised
plan, termed a MACROP, is stored away for future use.

In the above example, the generalised plan would be:
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gotoDoor(Dx)
goThroughDoor (Dx, Rx)
gotoB(Bx)

with preconditions:

inRoom(robot,Rx2)
connects (Dx,Rx2 , Rx1)
atatus (Dx,open)
inRoom(Bx,Rx1)

type (Bx,object)

and add list:

nextTo(robot Bx)
inRoom{robot ,Rx1)

That is, the generalised plan sends the robot from any room through a connecting
doorway to an object in the adjacent room.

Using the MACROP to guide execution. When the STRIPS system produces
a detailed plan to achieve a goal, it did not necessarily follow that the robot executed
the plan exactly as generated. One possibility was that some action failed to achieve its
intended effect, or goal, so that the corresponding step of the plan needed to be repeated.
Another was that the plan was found to be less than optimal and could be improved by
omitting some steps entirely. The necessary flexibility during execution was provided
using the MACROP rather than the detailed plan in monitoring the robot’s actions.

At the beginning of execution, the parameters of the MACROP were partially
instantiated to the case at hand. The robot then attempted, at each stage, to exe-
cute the highest numbered step of the plan whose preconditions were satisfied. This
procedure omitted unnecessary steps and allowed repeated execution, possibly with
changed parameters, on a step that had failed. If there was no step whose preconditions
were satisfied, replanning occurred. Determining which step could be done next was
accomplished by a scan that exploited the design of the triangle table.

Using MACROPs In planning. When the STRIPS system was given a new
problem, the time taken to produce a plan was considerably reduced if a MACROP
could be incorporated into its solution. The MACROP given above, for example, could
be used as the first part of a plan to fetch a box from an adjacent room. The part of the
MACROP consisting of its first two suboperators, if used alone, could also give a ready-
made solution to the problem go ¢o an adjacent room or it could be used repeatedly in
golving go to a distant room.

The triangle table provided a means of determining whether a relevant macro
operator existed. To determine whether the sequence of operators to 1 of the MACROP
was relevant, the STRIPS system checked the add list of this sequence as given by
the row (i + 1) of the table. Once a MACROP was selected, irrelevant operators

desired add list. The operator’s preconditions were taken from the appropriate cells of
column 0. Thus, almost any subsequence of operators from a MACROP could become a
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macro opetator in a new plan. To keep new MACROPS3 from producing an overwhelming
number of different operators to be considered during planning, the system contained
provisions for preventing consideration of redundant parts of overlapping MACROPs
and for deleting MACROPs that have been completely subsumed by new ones.

4 ABSTRIPS: A Hierarchical Planner

A combinatorial explosion faces all problem-solvers that attempts to use heuristic search
in a sufficiently complex problem space. A technique called Aierarchical search or hier-
archical planning, implemented in a system called ABSTRIPS by Sacerdoti, represented
an early attempt to reduce the combinatorial problem. The ABSTRIPS system used

- an approach which tried to recognise the most significant features of a problem, develop

an outline solution in terms of these features, and then deal with the more detailed
features of the problem only after the outline plan had been shown to be adequate.

The implementation of this approach involved two distinct levels of problem repre-
sentation. A simplified version of the problem, from which details had been omitted,
was used to represent the high level problem space or abstraction space, and the detailed
version, in a ground space. By an extension which allowed for several levels of abstraction
instead of just two, a hierarchy of problem spaces is obtained. In general, each space in
the hierarchy serves both as an abstraction space for the more detailed space just below
it and as & ground space with respect to the less detailed space just above it.

4.1 Abstraction Spaces

Given the world models and operator descriptions of the basic STRIPS system, the
first question is how to define the “details” that are to be ignored in the first pass
at a solution. Sacerdoti’s answer was to treat as detail certain parts of the operator
preconditions. At all levels of abstraction, the world models and the add and delete
lists of operators remain exactly the same. Such a definition of “details” was found to
be strong enough to produce useful improvements in the problem-solving performance,
while keeping a desirable simplicity in the relationship between each abstraction space
and its adjacent ground space.

The preconditions for an operator are stated as a list of preconditions, or literals
(as Nilsson often calls them), concerning the world model to which the operator is
to be applied. The relative importance of literals is indicated by attaching to each a
number called its ¢riticality value. The hierarchy of problem spaces isthen defined in
termas of levels of criticality: in the space of criticality n, all operator preconditions with
criticality less than n are ignored.

The assignment of criticality values is done only once for a given problem domain.
The general ideas which should be reflected in the assignment are:

1. If the truth value of a literal cannot be changed by an operator in the problem
domain, it should be assigned the highest criticality value.

2. If the preconditions for an operator include a literal L that can be readily achieved
once other preconditions for the same operator have been satisfied, then L should
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be less critical than these other preconditions.

| 3. If the possibility of satisfying literal L depends upon additional preconditions
' apart from those referred to in (2), then L should have a high, but less than
| maximum, criticality.

""" T 77 The actual assignment of criticalities is done by s combination of manual and
automatic means. First, the system builder aupplies partial ordering information, a
ranking, for all the predicates that can appear in operator preconditions. The partial
ordering serves two purposes: it supplies an initial criticality value for all instances of
each predicate, and it governs the order in which the system will consider literals for
possible increases (but not decreases) in criticality.

For example, consider an operator turnOnLanp(X), with preconditions:

type(X,lamp) and thereExists(R) such that
[inRoen(robot,R) and
inRoonm(X,R) and
pluggedIn(X) and .
nextTo{robot,X)]

The partial ordering of predicates, reflecting an intuitive view of their relative impor-
tance, might be as follows: ' N

Predicates Initial Rank

type
inRoomn
pluggedIn
nextTo

Lo - I

The assignment algorithm would first find that the truth of type(X,lanp) is beyond
the power of any operator to change and therefore would set its criticality to .the
maximum; in this case 6. The algorithm would then find that type(X,lamp) is an
insufficient basis for achieving inRoon(robot,R) or inRoom(X,R); so these two literals
would have their criticality raised to the next highest level, 5. Next pluggedIn(X) is
considered, and a plan to achieve pluggedIn(X) found using only the literals already
processed as a starting pdint. Hence, the pluggedIn literal retains its initial criticality
of 2, and similarly, nextTo(robot,X) is given c%iticality 1. The result, after similar
processing of the preconditions of the other operators in the domain, is a hierarchy of
at least four, and possibly six, distinct problem spaces. The results of the assignment
algorithm so far are summaries as follows:

Literals Assigned Criticality
type(X,lamp) 6
inRoom({robot,R) 5
inRoom(X,R) 5
pluggedIn(X) 2
nextTo(robot,X) 1
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4.2 Control Structure

A problem statement for the ABSTRIPS system, as for the STRIPS system, consisted
ordered set of operators, for achieving the desired world state. The ABSTRIPS system

refining it. The executive controller was a recursive procedure taking two parametera:
the current level of criticality, defining the abstraction space in which planning is to
take place, and a list of the nodes representing the plan to be refined. Before the
initial call, criticality is set to the maximum, and the outline plan initialised to a single
operator — a dummy operator — whose preconditions were those of the goal to be
achieved. The ABSTRIPS system computed the difference between the preconditions
and the current world model, found operators relevant to reducing the difference, and
if necessary, pursued subgoals to satisfy the preconditions of the selected operators.
During the process, any preconditions of less than the current criticality were ignored.
A search tree was built from which, if the process succeeded, a fuller operator sequence
leading from the initial world model to the goal could be reconstructed. This new
outline plan, together with the next level down of criticality, were passed recursively to
the executive for the next round of planning.

The search strategy adopted by the ABSTRIPS system was called length-first,
because the executive procedure formed a complete plan for reaching the goal in each
abatraction space before considering plans in any lower level space. This approach has
the advantage that it permits early recognition of dead ends, thus reducing the work
wasted in extending the search tree along fruitless paths involving detailed precondi-
tions. If a subproblem in any particular space cannot be solved, control is returned to
its immediate abstraction space, and the search tree is restored to its previous state in
that space. The node that caused the failure in the lower level space is removed from
further consideration and the search continued in the higher level space for a new outline
plan. This mechanism, which clearly involved backtracking, suffers from the problem
that no information was available at the higher level as to what caused the plan to fail.

Since backtracking can be computationally expensive, and also because each opera-
tor in an abstraction space may be expanded to several operators in the ground space,
it was important for the ABSTRIPS system to produce goad plans at the highest
level. Two modifications to the STRIPS system were made to try to ensure that the
ABSTRIPS system would do this.

First, whereas in the STRIPS system search tended to be depth-first and therefore
sometimes found non-optimal solutions, the ABSTRIPS system made the order of
expanding nodes in the search tree dependent upon the level of abstraction. At the
highest level it used an evaluation function that sometimes increased the search effort
but which ensured that the shortest possible solution sequence was found?.

The second meodification was to do with the instantiation of operator parameters,
in cases where two or more choices were equally good. While the STRIPS systemn made
a choice arbitrarily, the ABSTRIPS system deferred the choice until a greater level of
detail indicated which one was preferable. Backtracking still sometimes occurred since
the choice could still turn out to be a bad one.

#Note its relationships to the A" search algorithm.
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of a description of the state of the world to be achieved. A solution was a plan, or an .

| —e._proceeded by forming an outline plan at the highest level of abstraction and successively .



4.3 Performance

The performance of the STRIPS and ABSTRIPS systems was compared over a series
of problems. One of the longest, needing eleven operators for ita solution, required the
robot to open a door, go through the adjacent room to another room, push two boxes
together, and then to go through two more doors to reach the room where it was to
stop. The basic STRIPS system (ie not using MACROPS) took over 30 minutes of
computer time to find the solution; the ABSTRIPS system took about five and a half
minutes and generated only half the number of search-tree nodes.

5 Some Comments

5.1 The Frame Problem and Qualification Problem Again

The frame problem, introduced in lecture two, can be understood using the analogy
of the changes between the frames of an animated film. In very simple animations,
certain characters move in a fixed background in successive frames. In more complicated
animations (and perhaps more realistic ones) changes occur in the background as well.
The STRIPS operators can be thought of as only being able to represent the 5’pings on
in a simple animation in which the background is fixed.

The problern of specifying which formulas in a STRIPS world model should change
and which should not is what is called the frame problem in AL The best way of dealing
with it depends upon the complexity of the world and actions being modelled. Roughly,
if the components of a world model are closely coupled or unstable, then each action
might have a profound effect upon the world state. In such worlds STRIPS operators
would be very hard to build which adequately represented the goings on in the world.
If, however, the components of the world being modelled are sufficiently decoupled to
permit the assumption that the effects of actions are relatively local, STRIPS type
operators may be adequate for representing the goings on in the world. Typically, the
frame problem becomes more pressing as the level of detail of the world model required

_increases, since the representation and operators must take into account couplings
between components which might be safely ignored at higher levels of description.

The Qualification problem concerns how to deal with anomalous conditions. For ex-
ample, the STRIPS operator gotoB(Bx) with its defined preconditions, can be regarded
as an appropriate representation of a robot action under normal conditions. But what

happens if there is something in the path of the robot not represented in the world.

model, or some other unusual situation which would cause gotoB (Bx) to fail? It would
not be practical to include as preconditions the negations of all the conditions which
might cause the failure of the operator, since we probably cannot know them all. Yet if
any of them did occur our simple model would fail.

5.2 Circumscription Again

AN TE Clos> Word ASSuprg.

The STRIPS world model and operators with preconditions, and add lists and delete

" lists, can be viewed as a weak implementation of McCarthy’s Circumscription calculus.
The approach attempts to deal with both the Frame problem and the Qualification
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problem in an adequate,.yet tractable way. It is worth noting that although its weak-
nesses in this respect can clearly be seen no other approach to planning problems has
demonstrated a significant improvement upon the performance of the STRIPS and
ABSTRIPS systems in this respect.

5.3 Failure-Directed Backtracking

Oune of the weaknesses of the ABSTRIPS system identified above was that if a plan
failed at one level the system had to backtrack up to the next level of abstraction to
try an alternative refinement, but without knowing anything about why the previous
attempt had failed. As a result the next attempt may fail for the same reason. For
a different approach to this problem see Chris Malcolm’s MSec Thesis, Planning and
Performing the Robotic Assembly of Soma Cube Constructions. The approach used in
this system is called failure-directed backiracking. It attempts to make use of knowledge
about why one plan generation attempt failed to prevent others suffering from the same
problem being considered. .

Chris Malcolm’s planner is also an example of a system which uses abstractions
over operators and objects at the different levels of a hierarchical planning scheme.
It introduces the various complications of getting a robot wanipulator and gripper to
perform certain pick and place operations gradually.®

5.4 Hierarchical Planning and Diagnosis Problems

It is worth noting that despite the strong similarity between generating plans of actions
for robots, or people, and that of generating diagnoses of illnesses, there has been few if
any attempts to use techniques typically used planning systems for diagnosis systems,
or the other way around. For example, the hierarchical, least commitment approaches,
and criticality value techniques used in the ABSTRIPS system could clearly benefit
some of the problems of constructing a diagnosis for complex or multiple illnesses. The
combined use of hierarchical representation, least commitment and eriticality values,
provides a much sounder approach to dealing with uncertainty than the Confidence

Factors, or magic numbers, used in MYCIN type systems, for example.

6 Task-Structuring and Task-Achieving Behaviours

8.1 Historical Note

From an historical perspective it is interesting to note that many of the early approaches
to Al-based planning were motivated by thoughts of programming robots. Some people
even built robots to execute their plans, the Shakey robot being the most famous
example. The Freddy-2 robot system built in the Department in the early 1970’s was
another example, this time of a robotic assembly system. Since those early days robots
have been less and less visible in the thoughts, concerns, and writings of Al-based

not during term time. It is the first robot planning system to produte reliable plans that are robustly
executed by a real robot manipulating real objects since Shakey.
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planning people, though the problems of programming any sort of rebot to do anything
are still far from solved.

6.2 Building Robots Is Harder Than Programming Computers

There seems. to be two reasons for this; one to do with timing, the other to do with a
well known classical effect. First the timing. In the early 1970’s it was much harder
to engineer a robot system capable of doing interesting and useful tasks reliably, than
it was to write computer programs. In thase days LISP was quite widely available in
the US, and POP-2 had been developed in Edinburgh, but the “industrial robot” had
yet to be invented. This led to a situation in which the second effect became active.
This is the classic effect that when faced with two problems, one of them easier than
the other, it is alwaya the easier one which is attacked. Consequently robot planning

. people became increasingly interested in trying to simulate the real world and to build

planning systems which could construct plans that worked in these simulated worlds.
The task of understanding how to build reliable robot systems waa forgotten about in
Al research.

.

6.3 The Cost Of Simulation

In order to simulate even a limited subset of the real waorld you have to make assumptions

about the coupling between objects and events in the real world; the cauasal relationships -

and about the way the objects in it behave, otherwise the problem of simulating it
becomes too large and complex. It is one of the great advantages of computer based
simulations that you can decide how complicated it is to be, and so can always keep the
scale of the problem down to one you can manage, which meauns you seldom choose to go
and do something else — like build a real robot, for example. In making these necessary
assumptions about the real world you also make, usually by implication, assumptions
sbout the way in which tasks can actually be done in the real world. It turns out that
in the case of robots these implied assumptions lead us to believe that many things are
possible to do with a robot which are actually either very difficult, or impossible.

This situation is reflected by the fact that the most successful Al-based planning
systems today are those that are concerned with problems of resource planning (the
resources being used by people}, and project planning (the project being conducted by
people). The reason for this can be explained in terms of what the reliable operators are
that the plans are expressed in terms of. If the operators of a plan are to be executed
by people, then, unless they are particularly difficult for people to perform, they can
usually be taken to represent reliable operators. They are also likely to be robust with
respect to the numerous anomalous events that it is very hard to take account of in a
planning system. This is because people are typically very good at correcting for such
events “an-the-run”, and at also recognising what to do to maintain the world in such
a way that it always adequately matches the world model used in a planning system,
ie., people are good at maintaining the normality that is necessarily assumed to a high
degree in planning systems to make the planning problems tracktable.
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6.4 Robot Systems Cannot Mamtam The Normality Required By
The Planmng Systems

Robots, on the other hand are very different. Gnmpared to our apparently trivial ability
to maintain normality, robots are typically u s, They can work well if the world in.
" which they operate stays within some tightly bounded sense of normality, but if anything
happens for it to stray just a little outside these bounds, anything can happen, and often
does. It is for this reason that today’s robot systems can only operate successfully, and

therefore economically, in highly engineered worlds, or only very poortly in unengineered
natural worlds.

In this sense then, today’s robot systems are very unintelligent compared to us.

Their ability to cope with anything other than a highly engineered normality is almost
nil.

6.5 Task-Structuring: A New Approach To Al

The problem of understanding how to build rebot systems which are able to deal with
a wider degree of variation in their working environments, and thus be more useful,
and intelligent, has stimulated a number of people to adopt a new approach to building
intelligent systems, and therefore to Al. This approach is perhaps best represented
by Brooks [Brooks85| who advocates the building of insect-like robots as the way to
understanding how to build intelligent agents which can operate usefully in the real
world that we occupy, as opposed to the symbol processing worlds most people build in
today's computer programs.

In the Al Department at Edinburgh a similar approach is being adopted towards the
problems of planning and programming robotic assembly tasks, and to the problem of
building artificially intelligent systems in general. It is referred to as the Task-structured
approach or the Behaviour-based approach. Its principle aim is to understand how the
task of operating reliably and robustly in a real world can be broken down into sets of

subtasks which can be realised in practice using the various engineering techniques and

knowledge we have today for building real artificial systems — not simulations; It also
seeks to take advantage of work already done, and still being carried out, in various
other fields of animal and human physiology, neurophysiology, cognitive psychology,
philosophy of mind, and cognitive science, An important difference between the Task-
structure approach, and that of the classical approach, which make assumptions about
what tasks a robot system will be able to successfully execute and about how their
execution will be coupled in the real world, is that it seeks to explicitly identify how
tasks can be, and are, structured in terms of reliable and robust operators that can be
realised by human engineered devices:

The Task-structured approach has, therefore, a strong bottom-up theme which
distinguishes it from the strong top-down approach adopted by people trying to replicate
and model parts of the so called higher cognitive abilities of man.
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7 Required Reading Tim Smithers
. . February 1988
: There are no papers explicitly on planning in the Big Red KR Book®. This weeks !
required reading is therefore designed to support material to be covered in the next
two lectures.

1. Chapter 12, page 245 — Minsky, M., A Framework for Representing Knowledge. ! |

2. Chapter 28, page 467 — Hayes, P.J., The Second Natve Physica Manifesto.
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' 9 Class Work Exercise

Construct a suitable set of STRIPS-like operators for use in planning the repair of -
punctures in the back wheels of bicycles. Assign criticality values (by hand) to the [//
literals of the preconditions and explain how many levels of abstraction you would
expect a planner to use in constructing & plan using your operators and criticality v
values./Briefly describe how similar this STRIPS-like method of planning is to how you -

generally plan activities, illustrating your answer with examples. _~"

This exercise is due to be handed in by the end of the lecture on Tuesday 1 March.

“This is probably due more to the interests of the ed|tors, rather than it being the case that there
are no papers on planning suitable for such a collection.
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