Knowledge Representation and Inference Two_

Non- C]assma] Logics
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or
Why Classical Propositions and Predicates

are not Enough

1 Introduction

These notes are intended to provide sufficient detail for an introduction to the subject of
non-classical logics via the description of a selected subset of the many possible different
kinds. They assume a basic knowledge of propositional and first-order predicate logic.
The idea is not that you should become intimately familiar with all the details presented
here, but that you should obtain a clear understanding of the reasons for the different
non-classical logics, and how the three kindy discussed below are constructed, and what
their properties are.

2 Some Background

The use of logic in knowledge representation systems has received a certain amount of
criticism from people working in Al. Various problems with using loglc were raised, the
most common being:

i) That loglc is not expressive enough. In other words, that
the knowledge that can be represented using it is too limited.

if) That logic cannot deal with incomplete, uncertain, imprecise,
vague, and/or inconsistent knowledge.

iii) That the algorithms for manipulating knowledge, which derive
from logic, are inefficient.

Such criticisms are largely due to a common misconception that logic encompasses
classical first order propositional and predicate logic only. This, however, is not the
case. There are many other logics, most of which were specifically designed to overcome
some of the deficiencies of classical logic listed above.

2.1 What is a Logic?

It is important to understand that any system for manipulating knowledge may be
regarded as a logic if it contains:
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a) A well-defined language for representing knowledge.

b) A well-defined model-theory (or semantics) which is concerned w0
with the meaning of the statements expressed in the language. g\w\\)\ﬂ

¢) A proof theory which is'concerned, with the syntactic 'mampulaﬁo—n_ T
and denvatlon of statements from other statcments

In other words, a logic consists of a well-defined notation for the representation of
knowledge, together with well-defined methods for interpreting and manipulating the
knowledge which is represented. The ‘mport.ant term here is well-défined. Therefore,
it would appear that people who criticise logic are either unwittingly or deliberately
condoning the use of ill-defined methods for knowledge representation and inference.

2.2 Some Non-Classical Logics {_Nov\ -5[7;«!1\6[01;’0()

The subject of non-classical logics is now a large and extensive one. These notes do not
attempt to even survey the subject. The aim of these notes is to introduce three which
are intended to illustrate the subject, and be more immediately accessible and useful
than some of the others tend to be. A list of non-classical logics might include:

epistemic logic
fuzzy logic
higher-order logic
intensional logic
many-sorted logic
many-valued logic
modal logic
non-monotonic logic
situational logic
temporal logic

From this list many-sorted logic, situational logic, and modal logic will be considered in
some detail. For t'ur_cl}'evr information on any of these you are referred to the bibliography
at the end of thesé notes.

3 Some Distinctions

The terms non-classical logics or, as they are also sometimes called, non-standard
logics are generic terms used to refer to logics other than those based upon classical
propositional or predicate calculus. The term non-classical will be used here, rather
than non-standard, but they are taken to be synonymous.

Non-classical logics can be divided into two kinds: those that attempt to replace
classical logics, called rival logics, and those which extend classical-logics, called ex-
tended logics. The first kind includes multi-valued logics, fuzzy logic (if indeed this
can be fairly described as a logic since it dispenses with a degree of formality normally
associated with logics), and intuitionistic logic, for example. The second kind includes
many-sorted logics, modal logics, and temporal logics, for example.

o
-

ELS

19/ 1/ %5

b)

s



[

3.1 Rival Logics

Rival logics do not differ from classical logics in terms of the language employed. Rather,
they differ in that certain theorems of classical logic are rendered false in the non-
classical systems. Probably the most notorious example of this concerns the law of the
excluded_middle, A_or not_A. This_is provable in classical propositional logic_but_not.
in either intuitionistic logic or in any of the standard three-valued logic systems. (See
below for more on problems of classical logic.)

3.2 Extended Logics.

Extended non-classical logics sanction all the theorems of classical logic but, generally,
supplement it in two ways. Firstly, the languages are an extension of those of classical
logic, and secondly, the theorems of these non-classical logics supplement those of

classical logic. Usually, such supplementation is provided by the enriched vocabulary. -
. For example, modal logic (of which more latter) is enriched by the addition of two

new operators {1, for it is necessary that, and O, for it is posstble that. Under this
extension the sentence (JA — A is taken as axiomatic. The addition of such axioms,
and appropriate rules of inference involving these operators, facilitates the derivation of
theorems which are not even expressible in first order predicate logic, for example.

This division of non-classical logics is not intended to be a definition, just a useful
way of characterising tho different kinds of non-classical logics.

4 Problems with Deduction in Classical Logics

In Al and Knowledge Representation in particular what counts as a deduction, or valid
inference, or proof, in a representation language is of central importance. In classical
logic deduction is based upon material implication, where A — B.is taken to mean A
materially implies B. This form of deduction can lead to some paradoxical theorems in

classical logic. For example:
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. i) p—(a—p)
i) -p—(p—q)
i) (p—q) V(a—rp)

where (i) reads that a true proposition is implied by anything, (ii) reads that a false
proposition implies anything, and (iii) reads that given any two unrelated propositions,
at-least one will imply the -other: -Non-classical logics-have-been developed to try to
provide improved notions of implication which do not suffer from these problems. For
example, the strict implications of the Lewis modal logics (of which more latter) were

‘motivated by a desire to present a better account of implication, in that they avoided

several of the paradoxical properties of the classical material implication since they were
not theorems of the new modal logics. However, Lewis’s attempts to deal with these
problems were not entirely successful, and he seems to have given up on them. Work
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on modal logics subsequently went into decline until Al researchers became interested
in improving upon classical logics.

We will start our brief look at the world of non-classical logic by introducing many-
sorted logics.
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5 "Many-Sorted Logics { Jov's)

In classical first order predicate logic a relational structure contains a single domain E
of entities. Subsets of this domain are defined by use of unary (one-place) predicates.
In many-sorted logics, the universe of discourse is regarded as comprising a relational
structure in which the entities in the domain E are regarded as being of various sorts.

The sorts are related to each other in various ways to form a sort structure. There are ‘

different kinds of sort structure:

1. Structures in which the sorts are all disjoint. For example, E might contain
enterties of the sorts: man, women, bicycle, car.

2. Structures in which the sorts are related in a aubset tree structure. For example:

E

N

MAN WOMAN

/ —— \
ENGLISH-MAN RENCH-MAN

YORKSHIRE-MAN LANCASHIRE-MAN

3. Structures in which the sorts are related in a lattice. This is the most general sort
structure. The following is an example of a lattice type sort structure:

N

~.
N
NON-POSITIVE NBN-ZERO NON-NEGATIVE

.. NEGATIVE _ ZERO ___ _POSITIVE _
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The advantage of dividing the enterties in the domain of a relational structure into
different sorts is that it can help to improve the efficiency of automated reasoning by
reducing the search space.

For example, sorted logics prevent formulas from interacting as freely as they might

cannot interact directly. Also, meaningless assertions such as the ford s married to the
mercedes can be easily detected. It should be noted, however, that many-sorted logics
are no more expressive than unsorted logics.

Two kinds of many-sorted logic will now be described.

5.1 Many-Sorted Logics with Restricted Quantification

This kind of many-sorted logic is described in terms of a disjoint sort structure, since
it is for this type of domain that it is most suitable.

In clagsical first order predicate logic universal quantification concerns cvery entity
in the relational structure in question. That is, every entity is taken into account when

determining the truth value of a universally quantified formula. For example, consider
the following formula:

VX [car(X) — numberOfWheels(X,4) vV numberOf Wheels(X,3)]

This formula, when written in clausal form is:
{—car(X), numberOfWheels(X,4), numberOfWheels(X,3)}

which means that for all entities in the domain, either € is not a car, or e has four or
three wheels.

Instead of using universal quantification, an alternative method of representing the
® knowledge given above is to use a formula containing a restricted quantifier:

W"“””f‘ SoRT & RETRICTN a— JBXT oF
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The restricted quantifier, VX/car, ranges over a subset of the domain of the relational
structure, ie over only those entities which are a sort of car, The symbol which expresses
the restriction on the quantifier (in this example car), is called a sort symbol; and the
subset of the domain which denotes is called a sort.

5.2 Using Restricted Quantification to Improve the Efficiency of
Query Answering )

Assume we have a gorted knowledge base containing the following:
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Disjoint sorts: women = {mary, jane}
' men = {peter, paul}

Proper axioms: {likes(mary, mary)

o likes(mary, jane)
_‘"lik'e?a(pét‘é?,‘ﬁfa?y)' Tt T T T T T

likes(jane, paul)}

Consider the following query:
Q1 = X | VY /women likes(X,Y)
which is read as: find all entries which like all women. The answer, denoted Al, can be |

obtained from the completely open query Q2 = {X,Y | likes(X,Y)}, denoted by A2,
as follows:

Al = §Y/women A2
where §Y /women is a sorted relational algebraic division operator. We obtain all tuples

{X,Y) from which likes(X,Y) is true, and then extract those values of X which are
related to all values'of Y taken from the sort women. That is:

A2
X Y
mary mary Al = §Y/women
mary jane and X
peter mary mary

jane  paul

giving mary ag the answer.

Applications of sorted division operators as described above is, in general, more
efficient than application of unsorted division operators. Also, certain, negative facts I
need not be stored (the assumption being that, if an entity is not represented as being 1
of a particular sort, then it is assumed not to be of that sott - an extension of the closed
world assumption used in first order predicate logic databases). These two factors |
mean that certain types of query evaluation, and consistency checking can be made
more efficient using a sorted logic to represent the knowledge of a domain compared to
using an unsorted logic.

5.3 More Expressive Many-Sorted Logics

A sorted logic in which the sortal behaviour of functions and predicates can be defined
and in which restricted quantification is not used is described next. This logic is
described in terms of a lattice sort structure, since this is the kind of sort structure
for which it is most suitable.



_.empty sort. This sort is called bottom.. . __

5.3.1 Sort Lattices"

Consider the sort lattice presented earlier. The symbol T at the top of the lattice is
interpreted as the sort containing all entities in the domain of the relational structure.
This sort is called top.: The symbol L at the bottom of the lattice is interpreted as the

The sorts immediately above bottom, NEGATIVE, ZEROQ, and POSITIVE, from
the previous example, are disjoint sorts. Bottom is the most specific sort. Moving up
from bottom to top, the sorts become, more general, top being the most general. A sort
which is higher in the lattice than another sort, and which is connected to that sort by
downward arcs, is called a supersort of the more specific sort. The more specific sort,
in turn, is called a subsort of the more general sort. The subsort/supersort relationship
is denoted by:

S1C S2

indicating that S1 is a subsort or is equal to S2. For example, POSITIVE C NON-ZERO
in the lattice example given above.

Sorts are related in other ways; for example, by dyadic operators lub, gib, and comp:

a) lub — least upper bound: The sort S3 = S1 lub S2 is the most specific sort in the
lattice which is a supersort of both S1 and S2. For example, in the lattice above,
NON-POSITIVE = NEGATIVE lub ZERO. lub is related to the union operator
in set theory.

b) glb — greatest lower bound: The sort S3 = S1 glb S2 is the most general sort in the
lattice which is a subsort of both S1 and S2. For example, in the lattice above,
NEGATIVE = NON-POSITIVE glb ZERO. glb is related to the intersection
operatorin set theory. '

¢) comp ~ complement: The sort S3 = S1 comp S2 is the sort containing all entities
in S1 minus those in S2. For example, in the above lattice, NEGATIVE = NON-
POSITIVE comp ZERO.

lub, glb, and comp can be used to define sorts without having to explicitly name them.

5.3.2 Sorting Functions F

Associate.d with every function symbol f in the language of the sorted logic is a sorting

_ function f, whose purpose is to define the sort of I’s output given the sorts of {’s inputs.

For example, suppose { is a multiply function which takes arguments such that:

Sorts.of arguments Sorts.of result. .. ... . .

ZERO, ZERO ZERO
NON-POSITIVE, ZERO ZERO
NEGATIVE, POSITIVE NEGATIVE

S m{

T
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The sorting function multiply is then defined by:

multiply(ZERO, ZERO) = ZERO
multiply(NON-POSITIVE, ZERO) = ZERO
= NEGATIVE

multiply(NEGATIVE, POSITIVE)

That is, sorting functions map the set of sorts S onto itself. Sorting functions are

MoST GMAL necessary to accommodate polymorphic functions; functions which take arguments of
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different sorts, or types. Sorting functions may also be used to define the sortal
behaviour of predicate symbols, but, in this case the sorting functions map the ser.
of sorts S onto the boolean set {EE, TT, FF, UU} where:

EE means that the atomic formula is ill-sorted; ie the arguments of the predicate are
of the wrong sort.

TT means that the atomic formula is well-sorted and is true.

_ FF means that the atomic formula is well-sorted and is false.

UU means that the atomic formula is well-sorted but that its truth value is not defined.:

These boolean sorts also form a lattice:

uu

EE

5.3.3 Well-Sortedness of Functions, Expressions, Atomic Formulas, and
Arxbitrary Formulas

A function expression is well-sorted iff ! the sorts of its terms match the sorts required
by their respective arguments positions. In some of the many-sorted logics that have
been deﬁned thesort S1 of a term only matches the sort 52 of-an argument position, if
S1°¢ st However, a more expressive logic may be obtained if match is defined such'
that-a match fails Soly if S1g/bS2 = 1. For example, consider the fiinction husbandOf °
and thc fol]owmg sort lattice:

PERSON

MAN WOMAN

'iff denotes if and only if.
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Suppose that the sorting function of huabaudO/is defined such that:

husbandOf(MAN)
husbandOf(WOMAN)

L
MAN

" "Suppose, further, thatpat is of sort PERSON but it is not known if pat is & man or a

woman. From the more ezpressive definition of match, it follows that husbandOf(pat)
is well-sorted even though if pat is interpreted as a man then husbandOf{pat) fails to
denote. .

‘An atomic formula is well-sorted iff the sorts of its terms match the sorts required
by their respective argument positions. For example, consider the predicate married To:

married To(MAN, WOMAN) = UU
married To{ WOMAN, MAN) = UU
married To(MAN, MAN) = EBE
married To( WOMAN, WOMAN) = EE

If the more expressive definition of match is used then it follows that:
married To(PERSON, PERSON) = UU

Note, however, that when this more expressive definition of match is used, the most
specific sort of an entity must be used when determining the well-sortedness of the
expressions in which it occurs.

An arbitrary formula is well-sorted if there exists an assignment of the sorts to its
terms such that:

a) All sub-expressions are well-sorted.

b) The assignment is compatible with the predefined sorts of the constant symbols.

For example, suppose that john and peter are of sort MAN, that mary is of sort
WOMAN, and that the married To predicate has the sortall behaviour as defined above.
Then, the following formulas are well-sorted:

. F1: married(john, mary) A-married(peter, mary)

F2: VXVY [married(X, Y) — married(Y, X)]

Note that in this approach restricted quantification is not used. This would reduce the
value of allowing polymorphic functions since an instance of a variable would then have
a unique sort associated with it. Instead of using restricted quantification, the sorts of
variables are determined by the sorts of the argument positions in which they occur.
When variables occur as arguments of a polymorphic function or predicate symbol,
they may range over several sorts and the sort of the entire formula may then vary as
a function of the sorts of such variables. For example, an instantiation of the second
formula, F2, above is well sorted if the sort of X is MAN or PERSON and the sort of
Y is WOMAN or PERSON, or vice versa. In all other cases the formula is ill-sorted.

f . ,,_/ alawe forntila
ks o bk ©65:C 1

|

5.3.4 Using a More Expressive Many-Sorted Logic for Integrity Checkiug

Suppose that we are constructing a knowledge base using a language of a many-sorted
logic as the representation formalism. We could proceed as follows:

T T T T Ta) Webegin by defining thé sort Iattice. THis involves naming the sorts and indicating

the relationships between them.

b) We then define the sorts of the entities which are to be represented. Errors can
be detected if an entity is specified as being of two disjoint sorts.

c) We then define the sorting functions for the required functions and predicates.
Errors can be detected if an inconsistent definition is given. For example, the
following definition is incompatible with the lattice defined above;

related(MAN, WOMAN) = UU
related( WOMAN, MAN) = UU
related(MAN, MAN) = UU
related(WOMAN, WOMAN) = UU
related(PERSON, PERSON) = EE

d) We then input assertions into the knowledge base. Errors can be detected if
formulas are ill-sorted. For example, suppose that the marriedTo predicate has
the sortal behaviour defined above and that hasBrother and hasBrotherInLow are
defined as follows:

" hasBrother(MAN, WOMAN). .. = EE .. etc.
hasBrotherinLaw(MAN, WOMAN) = EE ... etc.

- t. N A

Then the following formula is ill-sorted:

VXYYVZ [marriedTo(X, Y) A hasBrother(Z, Y)] — hasBrotherInLaw(Z, X)

5.3.5 Using a More Expressive Many-Sorted Logic to Improve the Effi-
ciency of Automated Reasoning
Ll

The efficiency of an automated reasoning system can be improved if it is designed so
that it does not attempt to perform inferences with ill-sorted formulas. For example,
consider the formula F2 above. If this is converted to clausal form, we get:

{-married(X, Y), married(Y, X)}
Supposed that pat and jan are both of sort MAN. If the deductive system is designed
as suggested it would never generate the following instantiation:

{~married(pat, jan), married(jan, pat)}
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e In the many-sorted logic approach, the knowledge represented by unary predicates
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5.4 Some Concluding Remarks

Although it is well established that many-sorted logics can be used to improve the
efficieacy of automated reasoning, there is some controversy as to whether this is the
best way of achieving such improvements.

in an unsorted logic is regarded as meta-knowledge and held in a sort structure. An
alternative approach would be to treat unary predicates, and formulas defining relation-
ships between unary predicates, in a different way to other predicates in implementation

rather than in principle. An advantage of the latter approach is that it does not result .

in the rather messy interface which exists, in many-sorted logics, between the sort
structures and formulas. For example, consider the following formnla in an unsorted
logic:

V X [bloodTemp(X, warm) A numberOfLegs(X, 4)
A skinCovering(X, fur)
A eats(X, eucalyptusLeaves)
A australian(X)]
— koalabear(X)

In defence -of the use of many-sorted logic for knowledge representation it does
provide a formal way of expressing sort, or type, knowledge about the entities being
represented. This is often knowledge that is known, or should be known, at represen-
tation, or assertion, time, but which it is often difficult to express in representation
languages. A related’issue arises in the subject of computer programming languages
where some people prefer untyped languages, such as Prolog, while others prefer fully
typed languages, such as Standard ML.

SHTONToN i 5778 O QUUEF-

Classical logics and the many-sorted logics described above are primarily concerned
with static relational structures. However, for many applications there is a need to be
able to represent and reason about a change in universe of discourse. Situational logic
was developed by McCarthy and Hayes for this type of application.

In situational logic all predicates are given an extra argument which denotes the
situation in which the formula is true. For example, consider the following formula:

on(bl, b2, s1)
This formula states that bl is on b2 in situation sl.'Suppose that bl and b2 are blocks
(inevitably — this is Al after all). In a subsequent situation block b2 might have been
moved elsewhere, resulting in the following formula:

-on(bl, b2, 52)

The transformation of sl to s2 is assumed to have been caused by an event: the event
of b2 being moved from being on bl to somewhere else.

11

Situations and events are related by a relation R, where R(e, s) denotes the situation
which is obtained when event e occurs in situation s. For example, consider the following
assertion concerning the movement of blocks:

VX [on(b1, b}, s) A—on(X, b3, s) — on(bl, b3, R(move(by, b3), s))}

This-is veadM,—thatlf-bz-lsaon-bg-and-no-block—ls«on-bii,—then-the-new—stbuauon-dcnotcd— —_— e —

by R(move(b2, b3}, s), which results from moving a block from bl's tower to b3's tower,
will have bl on b3.

The assertion above adequately describes the relative positions of bl and b3 in the
new situation s’ = R(move(b2, b3), s). However, we can infer nothing about the relative
positions of all other blocks in 8’. A solution to this problem would be to state that
a block stays where it is unless it is moved. In general, we would then need to make
assertions of the form:

® ([s]] Aale) = w2[[R(e, 5)]]

where ¢ [[s]] denotes a set of formulas, every situation in which is an occurrence of s. af(e)

is a set of formulas which are affected by the event e. Hayes calls such assertions frame’

azioms, or frame laws, and refers to the problem of determining adequate collections of
such axioms as the frame problem. This problem will be referred to again in the lecture
on planning.

Other problems arise as a consequence of a changing universe of discourse. Beliefs
must change to accommodate a changing world. Consider the following example first
presented by Hayes (but de-anthropomorphisised by me).

A robot concludes from a theory, which includes its beliefs as assertions, that it can
drive to the airport. However, when it attempts to do so it finds that it has a flat tyre.
A human would simply add a new assertion, a tyre fs flat, to her knowledge base and
conclude that she cannot now drive to the airport until it is fixed. Adding the new
belief renders an earlier conclusion false even though it was a valid conclusion from the
earlier set of beliefs. If the robot is using classical logic, then the only way in which it
can make such an amendment to its beliefs is if its earlier conclusion were if none of
the tyres are flat, then it 1s possible to drive to the airport. However, there are many
potential mishaps which might prevent the robot from driving to the airport and it
would be unreasonable to qualify the conclusion with all such possibilities.

Hayes calls this the gualification problem and states that belief logics cannot be
expected to obey the monotonicity property of classical logics. In order to overcome the
qualification problem associated with monotonic logics, Hayes introduced a new unary
connective called proved which means can be proved from the current set of beliefs. Using
this connective, it is possible to write assertions such as:

—proved flat(tyres, s) — at(robot, airport, R(drive(airport, s))
which reads, if it cannot be ;;rovcd that any tyres are flat in situation s, then the robot

can drive to the airport giving situation R{drive(airport), 8), and in this new situation
the robot is at the airport.

Proved could be defined as follows, where a and ¢ stand for arbitrary sets of formulas:

12
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Rl : ot proved &
R2 : plaifpl/a

Unfortunately, Rl and R2 are inconsistent. Suppose that B I/ A but that A is consistent
with B. By R2 we can conclude ~provedA from B. However, if we now add A to B (which

“we'can do without obtaining an immediate inconsistency) then, by R1 we can conclude

proved A. A solution to this problem is to tag proved with a belief state marker in a

similar way to the way in which predicates are tagged with external situation markers.

R1 and R2 then become:

R1' : al proved(s) (s)
R2' : @t —proved(s)a(s), where oI/ a(s),
and every member of ¢ has index s

Therefore, assertions of the form proved a now have an extra index which identifies the
state of beliefat the time the inference was made.

Use of this extended logic requires that:

a) Whenever R2’ is applied, ¢ contains all assertions with index s.

b) Whenever an assertion is added, every belief index s is replaced by a new one s’
except those on proved assertions.

These ideas are what led to the development of non-monotonic logics which are the

subject of next week’s lecture.
MasT e

7 Modal Logics STRTE OF AAAIRS Mav 3¢

Classical logics and the non-classical logics described so far are called truth-functional

logics.. When we determine consistency or prove theorems in theories of such logics,
we consider interpretations each of which assigns a value of true or false to the atomic

formulas of the theories concerned. For example, consider the following, where N is
some number:

A stands for N is divisible by eight
B stands for N is-divisible by four
C stands for N 1s divisidle by two

It is intuitively obvious that A — C is a logical consequence of A — B and C — C
irrespective of what the Number N actually is.

However, suppose that:

A stands for Reagan was born in France
B stands for Reagan speaks French
C stands for Reagan speaks French in the White House

then, in this case, it is not intuitively obvious that A — C is a logical consequence of A
— B and B — C. In other words, given the two sentences S1 and S2, defined below, it
is not reasonable to infer the sentence S3:
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S1: Reagan was born in France implies that Reagan apeaks French
S2: Reagan speaks French implies that Reagan speaks French in the White House

S3: Reagan was born in France implies that Reagan speaks French in the White House

“~'This'inference is intuitively wrong because the sentences S1 and S2 relate to different
states of affairs or possible worlds. The first sentence, S1, has to do with a state of affairs
in which, other things being as close as possible to the actual state of affairs, Reagan
was born in France rather than the USA. The second sentence, S2, has to do with states
of affpirs in which, other things being as close as possible to the actual state of affairs,
Reagan was a French speaking man living in the White House. But the other things
aren’t the same in the two cases, and as a result, the state of affairs that the S1 has
to do with do not overlap with those of the sentence S2: if Reagan had been born in
France he wouldn’t have been President of the USA and thus presumably would not
have been living in the White House.

Classical logics and the non-classical logics considered so far cannot accommodate
the distinction between states of affairs, or possible worlds, such as those which occur
in the example above; neither can they accommodate states of affairs which exist in
people’s beliefs, moral codes, etc. In order to deal with such things logicians have
developed logics called modal logics. ‘These can be thought of as logics of necessity and -
possibility, or logics of must be and may be.

7.1 What is a Modal Logic?

Modal logics are distinguished by the use of modal operators. A formal feature of modal
operators is that they form statements whose truth values are not a function of the
truth values of the statement(s) being operated on. For example, consider the following
statements:

a) John has appendicitis.
b) It is the case that John has appendicitis.

c) It is possible that John has appendicitis. MoDAL

Statements (a) and (b) are not modal. Statement (b) is true iff (a) is true. Statement

- (¢) is modal. It is true if (a) is true but may be interpreted as true ar false if (a) is false.

Early work on modal logic was primarily concerned with statements containing the
operators_it is necessary that and it is possible that and their negations. Later, logicians
consndered staternents containing modal operators such as:

it will always be the case

Gopa WL it is obligatory that

it is permissible that
it is known that
it is believed that

and so on. Modal logic, then, is concerned with states of affairs or possible worlds in
addition to the one that exists.

14



7.2 Monadic and Dyadic Modal Operators

Monadlc modal operators range over single statements. All of the examples above
are monadic. Dyadic modal operators form new statements from pairs of statements. |
+ Various attempts have been made to formalise a dyadic modal if ... then operator. Two
— ‘—»'~-operators1n—parucularhave been-defined:-strict-implication-and-entatlment: hrclmcai‘?'{g H——?-A?@—

___in alethic modality, as given above. More complex temporal logics include:

7.2.2 Temporal Modality

The simplest temporal logics interpret the operators necessary and possible as always‘:'
and sometimes: Formulas which are not in the scope of such operators are assumed to

be represented in the present state of affairs. The axioms in such logics are the same as

logic the material implication formula P — Q is equivalent by definition to the negation
of the conjunction P A=Q. In other words, P materially implies Q iff it is not the case
that P is true and Q is false. The strict implication formula:
P=0 bt 3 PA"LQ.

P strictly implies Q -

is, however, equivalent to the impossibility of the conjunction P A-Q. °

The following sections briefly described a number of types of modality.

. 7.2.1 Alethic Modality

Alethic modality is concerned with necessity and possibility. The name comes from the
Greek word for truth. In the same way that our intuitions demand certain properties of
the logical connectives of truth-functional logics, they also demand certain properties of

|modal operators. For example, adequate systems of alethic modality would be expected
to bave the following theorems:

AS1  : if necessary P then possible P

AS2 : if necessary P then P

AS3  : if P then possible P

AS4 : if not possible P then not necessary P

AS5 : if not P then not necessary P
AS6  : if not possible P then not P

AS7 : possible not P iff not necessary P
AS8 : necessary not P iff not possible P
AS9 : either possible P or possible not P

AS10 : not both necessary P and necessary not P

There are various types of alethic modality depending upon the interpretation of
necessary and possible. For example, consider the following statements:

a) It is necessary that it will snow tomorrow or it will not snow tomorrow. LOLAL |
b) It is necessary that a bachelor be male.

[ ZZ2 Ny o S

¢) It is necessary that an action have an equal and opposite reaction. pHysmL

The first example is one of logical necessity, the second of definitional necessity, and

the third of physical necessity. W\odlﬂ L—lo] , OM [ZM‘
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a) Logics with tense operators such as it has been, it will be, it has always been, and

it will always be. These logics have appropriate sets of logical axioms defined for
them.

b) Logics which include time variables as well as variables for entities.

7.2.3 Deontic Modality

Deontic logics contain the modal operators it 1s obligatory and it s permissible. . They
differ from alethic logics in that the ten logical axioms, AS1 to AS10, given above are
not all appropriate. Whether or not something happens to be true has no bearing npon
whether it is obligatory or permissible from a moral or legal stand point. The axioms
AS2, AS3, AS5, and AS6 have no counterparts in deontic logic} However, the following
logical axioms should be theorems of any deontic logic:

DS1 : if obligatory P then permissible P

DS2 : if not permissible P then not obligatory P
DS3 : permissible not P iff not obligatory P

DS4 : obligatory not P iff not permissible P

DS5° : .either permissible P or permissible not P
Dsé ,i, not both obligatory P and obligatory not P

7.2.4 Epistemic Modality

Epistemic logics are concerned with knowledge and belief. Simple epistemic logics
involve modal operators it is known that and it s believed that. These two operators
are not inter-definable as are the operators necessary and possible. Also, our intuitions
vary as to what we mean by know and believe. However, most simple epistemic logics
contain the following logical axioms:

“ ES1 : if known P then believed P
ES2 : if not believed P then not known P
ES3 : not both known P and not know P

More complex epistemic logics include notions of agents or indexed modal operators

which allow them to be used to represent statements like John knows P.

7.3 Possible Worlds, Accessibility Relations, and the Notion of Ne-
cessity

Rather than discuss each of the above modal logics individually which have a good deal of
overlap this section will be based upon the modal operators n ity and possible. The
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¢ e worlds, s also presented... .

possible worlds interpretation and the relationship between possible worlds, and why
some logical axioms are more appropriate for some types of modal logic are presented.
Following that some modal operators are defined more formally and a definition of a
modal propositional logic given. A description of the various categories of modal logics
which are related to different properties of the accessibilily relation between possible

The world in which we live is the actual, or real world. However, it is not the only

“ World wé ‘are interested in ‘(indeed some would no doubt say that Al researchers are

SNmmETRIC

o
Smme UL

bardly interested in the real world at all). Often we use the notion of non-real possible
worlds in our thinking and discussions. For example, we make statements like if X were
the case then it would follow that Y would be true, or possible, and we discuss such
possible world in much the same way as we discuss the real world. Indeed we often
make very little attempt to distinguish between the real world and the possible worlds
we discuss.

The conjecture of possible worlds is useful in a number of circumstances. For
example, if politicians are considering a change in the voting system, then it is useful for
them to consider the implications of such a change, ie the possible worlds which could
arise if the voting system were really changed.

7.3.1 Types of Possible Worlds

The term possible world can be used in different ways to dlsungmsh possible worlds fromv
:mpoas:ble worlds. For example:

a) A logically possible world might be defined as a world which conforms to the rules

, of logic. A world in which Edinburgh is or is not the capital of Scotland is logically

" possible whereas a world in which Edinburgh is and is not the capital of Scotland
is a logically impossible world.

b) A physically possible world might be defined as a world which has the same physical
properties as the real world. An example of a physically impossible world is one
in which gravitational mass is distinct from inertial mass. Another example of a
physically impossible world is one in which particles (other than tachyons that is)
can travel faster than the velocity of light.

¢) A morally possible world might be defined as one in which all laws of some
particular moral code are obeyed.

d) A conceivably possible world might be one defined as a world which can be con-
ceived. We might conceive of a world in which there is no concept of colour, for
example.

e) A temporally possible world might be defined as a world which is at the same time
or is in the future of the world under consideration. The definition captures, to

some extent, the idea that we cannot go back in time.

The last two examples indicate the need for worlds to be defined as being possible
with respect to other worlds rather than absolutely defined. For example:
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. 8) Given the above definition of temporally possible worlds, a world of 1989 is tem-
porally possible with respect to a world of 1988, but not with respect to a world
of 1998.

b) A world W in which there is no notion of colour is conceivably possible with
respect to the real world (which has colour for most people). However, the real

world would not be conceivably possible with respect to W since the inhabitants
of W would have no concept of colour.

7.3.2 Accessibility Relations !

A concise way of describing relative possibilities between the worlds in some set of worlds
W is to define a binary relation R, called an accessibility relation, over W, such that for
any wi, wj € W:

{wi, wj) € R iff wj is possible with respect to wi
In other words, a pair of worlds {wi, wj) is a member of the relation R iff wj is possible
with respect to wi.
The terminology of relational theory can now be used to describe R. For example:
a) A relation R is reflexive in the set W iff for all wi € W, {wi, wi) € R. lﬁ other
words, the accessibility relation is reflexive in a set of worlds W iff all worlds

in W. are possible with respect to themselves. In most of the examples above
the accessibility relation is reflexive. However, consider a set of worlds W, each

Expumpes

Deet”
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member of which has a moral code. We might define R such that (wi, w;) € R mem

iff wj obeys the moral code of wi. It is most likely that (wi, wj) € R for some wi
€ W (else why would it be necessary to create moral codes? - if you happen to
believe in the necessity of such codes that is). In this case R is not reflexive.

b) A relation R is transitive in the set W iff it satisfies the following condition for all A""s
wi, wj, wk € W: B=c

A->C

if (wi, wj) € R and (wj, wk) € R then (wi, wk) € R

The accessibilty relation for temporal possibility defined above is transitive.

A relation R is symmetric in the set W iff it satisfies the following condition for
all wi, wj € W:

) f
~

-

if (wi, wj) € R then (wj, wi) € R

The accessibility relation for physical possibility as defined above is symmetric,
whereas the accessibility relation for temporal possibility is not symmetric.

d) A relation R is connected in the set W iff it satisfies the following condition for all
wi, wj € W:

if wi # wj then (wi, wj) € R or (wj, wi) € R
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e) A relation R is an equivalence relation in the set W iff it is reflexive, symmetric,’ from - P infer OP
and transitive in W. For example, the accessibility relation for logical possibility i . .
is an equivalence relation. e g P This rule means that if P is a thcorem of the modal logic being used, ie a logical axiom,

then OP is also a theorem. Note that this does not mean that if P is a proper axiom
T The Noti N d Possible Truth of some modal theory T, then O P is also a theorem of T.
3.3 t of Necessary a ossible t
- e ¢ :t_z_s_n:y— e ~—-In-addition-to-the-above rule-of-inference;-many-modal-logics-include-the- folowing — ————————-—-
The terms necessary and possible truth may be informally defined as: logical axiom and an extension to classical propositional logic:

: ol Avom MoDAL

a) A proposition P is neces;ari]y true in a world w iff P is true in all worlds which ' LAM : O{P — Q| — [OP — Q]
are accessible from w. Necessary truth is denoted by 0.
. b) A proposition P is possibly true in a world w iff P is true in at least one world : That is, if it is necessary that whenever P is true Q is also true, it follows that if P is
B wh?chpis accessible l!:om w Posslzb]e truth is denoted by O necessary then Q is necessary. The axiom LAM follows from our intuitive understanding

of the notion of necessity.
Possible truth can be defined in terms of necessary truth:

1: OP for =01 ~P l 7.4.1 Additional Logical Axioms for Particular Modal Systems
In other words, a proposition is possibly true iff it is not necessary that it is not true. Basic modal systems can be extended by the addition of logical axioms. Adding these
. X A A axioms increases the number of valid formulas in such systems and therefore can increase
As .e.xamples. of the use of necessary a.nd_possd)le truth, consider the following the number of deductions which can be made in their theories. the axioms described
. propositions which we shall assume to be true in the current world. Possible worlds in below are related to the various properties of the accessibility relation. They can
- this example are taken to be temporally possible worlds. In this case, the accessibility { therefore be added, as required, to a basic modal system to construct a logic which is
:  relation R is reflexive and transitive, but not symmetric: | more appropriate for a given domain, or application. For example, if the application has
. PAl : johnSmithlsAlive ' a reflexive and transitive, but not symmetric, accessibility relation, then an appropnate
| read as John Smith is alive in the current world modal system can be constructed from a basic modal system plus the axioms LAl and

5 d below:
. Q(AM?bGs Az . . LA2 defined below

{johnSmithlsDead )
read as in the current world or in some future world of the ) «* a) If R is reflexive then the following axiom is appropriate: (,oQM(,A{(aM-
current world John Smith is dead

LA1: oP — P
- PA3 : O[johnSmithlsDead — OjohnSmithlsDead|

read as in the current world and in all worlds in the future
of the current world, if John Smith 1s dead in that world, -
then he will be dead in all worlds in the future of that

That is, if QP is true in some world w, then P is true in w since w is accessible
from itself.

world. ie once John Smith is dead, he will remain dead. b) If R is transitive then the following axiom is appropriate:
. . . - LA2: gP - QOoOP-
7.4 Special Inference Rules and Logical Axioms for Particular Modal ;o - o
e Logics . That is, if P is true in all worlds wj which are accessible from some world wi, then
_: Alethic modal propositional logic includes (a) all of the machinery of classical proposi- L P is true in all worlds wk, which are accessible from wj,
 tional logic extended to include the symbols O and ¢, (b) the definition DF1 above, -

. . g . c) If R is symmetric then the following axiom is appropriate:
and (c) some additional rules of inference and logical axioms. In this section, we describe

one inference rule and one logical axiom which are found in many basic modal logics. LA3 P — OOP

The rule described is called the Gddel rule, or the rule of necessitation. This rule ; et
is appropriate for most modal logics since it captures the notion that if something This means that if P is true in some world w, then <P is true in all worlds that
..~ -is logically true then it is necessarily true. Since most modal systems deal only with are accessible from w.
© possible worlds which are also logically possible, Gédel’s rule is found (or can be proved) . . . . . .
in most modal logics. The rule is defined as follows: d) If R is an equivalence relation then the following axioms are appropriate:
i
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LAl: OP — P~
LA4: OP — QOP

The following example concerns temporally accessible worlds. According to our

earligr definition of temporal possibility, the accessibility relation R is both reflexive .
.and transitive. (This need_not, however,-necessarily.-be-the -case-for-temporal-logics)y— ———— —-

Since R is reflexive and transitive it is appropriate to use axioms LA1 and LA2 from
above. For example, consider a modal theory T which contains the following proper
axioms:

TAl : johnSmithIsAlive

TA2 : johnSmithlsDead

TA3 : O[johnSmithIsDead — WjohnSmithIsDead]
TA4 : OljohnSmithIsAlive — —johnSmithlsDead]

where TA4 can be read as in all worlds accessible from the current world, if John Smith
is alive then John Smith is not dead.

Since the accessibility relation being used is reflexive and transitive, the axioms
LAl and LA2, defined above, can be used, together with classical propositional logic,
when proving theorems in T. For example, to prove ~(johnSmithIsDead), we proceed
as follows:

TA4 : O[johnSmithlsAlive — =johnSmithlsDead)
: usingl LAL
johnSmithIsAlive —f'—wjohnSmithsDead
using TAI andl modus ponens

!
~johnSmithIsDead

in this example we have shown how different modal logics can be constructed by the
inclusion or exclusion of appropriate logical axioms. It has also been shown that these
axioms relate to the properties of the accessibility relation between the worlds in some
set of possnble worlds. Thus, appropriate modal logics can be constructed for different
applications in which different meanings are ascribed to the term possible world. This
has resulted in the construction of various types of modul logic such as temporal logic
and epistemic logics, for example.

7.5 Modal Properties of Propositions and Formulas
A more formal description of the properties of the modal logics described above will
now be presented.

In each possible world, each atomic proposition has one or other of the values true
or false. Consequent upon this other modal properties of propositions, which determine
the way in which the truth-values of propositions are distributed across the set of all
possible worlds can be defined. For example:
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a) A proposition is possibly true iff it is true in at least one possible world.” If this Po-(gfz.u(
possible world is the real world, then the proposition is really true. For example, R_enu
John Smith lived jor 108 years is possibly true, and Reagan is the President of the
USA is really true. (At the time of writing these notes!)

Possig™

b)-A.proposition is-possibly.folse-iff-it-is false-in-at least-one possible-world:— TR

¢) A proposition is contingent iff it is true in at least one possible world and false in coprw
at least one possible world: For example, the proposition about Reagan in (a) is
contingent and happens to be true in the real world. (Again at the time of writing
these notes!)

d) A proposition is necessarily true if it is true in all possible worlds. The following RUE
is an example of a necessarily true proposition:

John Smith lived 108 years or John Smith did not live 108 years

NeesARILM
e) A proposition is necessarily false if it is false in all possible worlds. For example, ! '

John Smith lived 108 years and John Smith did not live 108 years, is a necessarily FAwe
false proposition.

f) A proposition is non-contingent if it is necessarily true or necessarily false. (OTINGENT

Note that the examples presented above are restricted to notions of logical possi-
bility and logical necessity. As an example of another type of necessity, consider the
proposition:

If a good man knows that his neighbour is in difficulty, then he should help his
neighbour.

This proposition would be morally necessarily true in a moral modal logic based upon
the ten commandments, for example. .

7.5.1 Some Symbolisation

In these notes the modal properties of propositions are symbolised as follows:

@P means P is possibly true
&P means Pis possible false
P means P is contingent

®P means P is necessarily true
®m\P  means P is necessarily false
, AP means P is non-contingent

7.5.2 Modal Relationships Between Pairs of Propositions

Propositions can be related to each other in various ways. Some of these ways are
described below:

22
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N ‘a) A proposition P1 is a contradictory of a proposition P2 if P1 is false in all possible
: worlds in which P2 is true and P1 is true in all possible worlds in which P2 is
false. For example, the proposition, John Smith lived 108 years, is a contradictory

Loagr of the proposition, John Smith did not live 108 years.

- b) A proposition P1 is a contrary of a progosxt.lon P2 if although both may be false

in some world, both may not be true in any possxble world. For example, the
proposition, it is Wednesday, and, it is Friday, are contrary propositions. Note
that a necessarily false proposition is a contrary of any and every other proposition
including itself.

. ¢) Two propositions are inconsistent iff they are contradictory or contrary. A pair of
propositions which includes a necessarily false proposition is always inconsistent.

d) Two propositions are consistent iff they are not inconsistent.

e) A proposition P strictly implies a proposition Q iff Q is true in all those possible
worlds, if any, in which P is true. For example, the proposition, John is married
to Sue, strictly implies the proposition, Sue is married to John. Note, that false

s propositions may have implications according to this definition. The difference
between implication of a false proposition and the implication of a true proposition
+ *7 is that a false proposition has implications some of which may be false, whereas

w. <" a true proposition has implications all of which are true. Note also, that a

necessarily false proposition implies any and every proposition and a necessarily
true proposition is implied by any and every proposition. These consequences of
the definition of implication given above may appear somewhat counterintuitive,
however, arguments can be made for their acceptance. You should try to form
some.

f) Two propositions are equivalent iff they imply one another, ie P is equivalent to
Q iff P is true in all possible worlds in which Q is true and Q is true in all possible
worlds in which P is true.

7.5.3 Symbolisation of Relationships
The relationships defined above are symbolised as follows:

P oQ means P is consistent with Q

P » Q means P is inconsistent with.Q

P = Q means P strictly implies Q + .«

P & Q means P is equivalent to Q ¥~

.1 e
Note that modal implication denoted by = and modal equjvalence denoted by <> are
distinct from material ¥mplication or conditionality, denoted by —, and material bi-
conditionality, denoted By +, in truth-functional logics. ot .

The modal connective =, called strict implication, corresponds to ordinary language
words such as if and implies better than the material implication — of truth-functional

logic. A = B is equivalent to O[A — B} and therefore avoids some of the more bizarre
theorems involving ~.
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7.6 The Syntax of a Modal Propositional Logic

The following context-free grammar defines the syntax of a language of modal logic
called L3:

terminals = {Px Q9 e Ay [ ] D}

- Wi~ T=swil Wil A waI"U‘wﬁ"]—al:"omlc formula™™
atomic formula :: plalrls,

The atomic formulas of L3 are denoted by the use of letters such as p, q, r, or by
character strings. If P and Q are wis, then the following abbreviations are also defined
for L3:

PvQ forg =[~P A=Q]

P—Q for -PVQ

PeoQ for [P— ]/\[Q-'P]
OP for -@O-P

P=Q for OP — Q]

P& Q for 0P« Q)

The following are some examples of wifs of L3 in which strings are used to denote
atomic formula:

a) O|[the moon is made of green cheese v the moon is not made of green cheese] —
read as: it is necessarily true that the moon is or is not made of green cheese.

b

~—

Oall triangles have three sides — read as: it is necessarily true that all triangles
have three sides.

c

~

O |{John has a child A John is male] — John is a father| — read as: it is necessarily
true that if John has a child and John is male, then John is a father. Note that
this formula may be rewritten as:

[John has a child A John is male] = John is a father

d

—

{[Reagan was born in France — Reagan speaks French| — read as: it is possible
that if Reagan were born in France then Reagan would speak French.

e) O[Reagan speaks French — Reagan speaks French in the White House] ~— read
as: it is possible that if Reagan speaks French then Reagan speaks French in the
White House.

f) 0[N is divisible by 8 — N is divisible by 4] — read as: it is necessarily true that
if N is divisible by 8 then N is divisible by 4.

g) D[N is divisible by 4 — N is divisible by 2] — read as: it is necessarily true that
if N is divisible by 4 then N is divisible by 2.

The modal operators 0, , ¥, and A, and the modal connectives o, p,=>, and <
are not truth-functional as are the operators -,V,A,—, and <. For example, given the
truth value of P it is not possible in general to determine the truth value of OP.
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7.6.1 Egquivalence Rules

For the purposes of regularising modal formulas for subsequent processing; the following
equivalence rules can be used in addition to the abbreviation definitions defined above:

P Q= OP A Q]

PpQ « -0[PAQ
P« OP AO-P
AP o QPvO-P

For example:

P = P ¢ Q may be rewritten as O[P — [P A Q]

7.7 The Modal Logics of Lewis

The five modal logics of Lewis, called S1 to S5 are now defined. The logic S5 dates back
to Leibnitz but was named S5 by Lewis to indicate its place in the Lewis hierarchy. The
modal logics S1 to S5 all contain the same language and rules of inference but differ in
their sets of logical axioms. The systems were defined independently of the notion of
accessibility relations.

7.7.1 The Languages S1 to S5

All five languages use the language L3 defined above.
Rules of Inference

All five languages use the following rules of inference:

a) Modus ponens for strict implication: given P and P = Q, infer Q.

b) Uniform substitution: given P, infer Q where Q is the result of substituting some
wif for a propositional variable uniformally throughout P.

¢) Conjunction: given P and Q, infer P A Q.

d) Replacement of equivalents: given P ¢» Q and some propositional context ...P...
involving P, infer ...Q..., where Q has replaced P in one or more of its occurrences
in the initial context. ‘

Logical Axiom Schemas for S1

AS1 PAQ= QAP
AS2 PAQ=P
AS3 P=>PAP
AS4 PA[QAR|=QA[PAR]
ASS5 [P~ QA[Q=R]=[P=R]
AS6 P = OP
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___Iigg_ical Axiom Schemas for S3

Logical Axiom Schemas for S2

Those for S1 plus AS7 : O[P A Q) = OP.

Those for S1 plus AS8 : [P = Q] = [OP = OQ).
Logical Axiom Schemas for S4

Those of S1 plus AS9 : OOP = OP!

Logical Axiom Schemas for S5

Those of S1 plus AS10: OP = OOP.

The modal logics S1 to S5 were defined and categorised before their relationship to
accessibility relations and possible worlds was fully appreciated. To some extent they
were simply regarded as modal logics in which different theorems could be proven. S5 is
said to be stronger than S4 and S4 stronger than S3, etc. This is because all universally
valid formulas of S4 can be derived in S5, and all universally valid formulas of S3 can
bé derived in S4, and so on.

In 1963 Kripke provided a new understanding of modal logics which related them to
properties of accessibility relations discussed earlier. He did this by defining various
modal logics as extensions to a basic logic which is variously called M, T, S2’, or
Feys/Van Wright system. This logic is called M here and corresponds to a reflexive
accessibility relationship. )

7.7.2 An Axiomatisation of M

M includes any complete axiomatisation for classical propositional logic extended to
include O, plus:

a) The definitions:

DF1 : OP for ~O-P _ (" b
DF2 : P = Q for ~O[P A-Q) e lngleeatzin
DF3 : P Qfor[P = QA [Q= P| . .

b) The logical rules:

AS1
AS2

OP — P (the refllexiveness axiom)
Ofp - Q] - [P — DQ)

c) The inference rules:

R1 : modus ponens for —
R2 : uniform substitution
R3 : Godel’s rule: fromt P infer - QP
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The addition of extra logical axioms to M results in various other modal logics. In
particular, Kripke showed that S4 and S5 can be built from M as follows:

a) S4 can be built from M by adding the axiom:

OP — 0 OP (the transitivity axiom) _ -

b) S5 can be built from M by adding the axiom:

Op — OOP

It should be noted that M, S4, and S5 are not the only modal logics that can be
so constructed. Other modal logics can be built which correspond to other types of
accessibility relation.

| 8 Theorem-Proving in Modal Logics

An extension to the tableaux method can be used to prove theorems in modal logics,

but this is considered to be beyond the scope of this course. For a presentation of this

method see Frost, page 349. The subject of theorem proving for Non-classical logics in

general is a major research field within AI'and Computing Science. See Thistelwaite et
I al for an uptodate statement on work in this area.

9 Some Comments on the Logical Modelling of Belief

As a final section to these notes on non-classical logics some work on the modelling of
belief will be outlined by way of indicating one particular research area in which modal
logics are being further developed by application.

The work of Konolige (see bibliography for reference) is concerned with trying to
define a deduction model beliel. A model is an abstract characterisation of the actual
object under consideration. It is an abstraction because, for the sake of simplicity,
it normally does not have all the properties of the object it is modelling. Models
are, therefore, useful for reasoning about a concept, especially if they retain the most

, important or relevant properties of the concept, while discarding confusing details.

Konolige says that for planning and problem-solving agents there are two important

properties of belief which therefore need to be represented by a modal of belief. These
are that:

¢ agents can draw conclusions from an initial set of beliefs, but that

o they do not necessarily derive all logically possible conclusions.

The first of these properties reflects the need for agents to represent facts about their
world, and to make inferences from these facts and to draw conclusions from them.
However, agents, particularly artificial ones, are also computational devices, and, as
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such, they have limitations —— constraints upon the time and space available to perform
inferences. Thus arises the second property of the belief modal: certain inferences may
be logically possiblle, but an agent may not make them.

The best formal models of belief can capture the first property. These models repre-
.sent the beliefs of an agent as a set of possible worlds using an appropriate modal logic.

e — . The possible worlds model is. successful in addressing.a number of representational.issues.. ... ..

concerning knowledge and belief, and also as an elegant and concise axiomatization in
terms of modal logic. However, a problem with the possible worlds model is that it is
inconsistent with the second property defined above. The notion that agents are ideal
reasoners (or as Hintikka puts it, are logically omniscient is inherent in the analysis of
belief in terms of a set of possible worlds, because all logical consequences of an agent’s
beliefs are also true at each compatible world. Thus, while the possible worlds models
are good at predicting what consequences an agent could possibly derive from its beliefs,
they are not capable of predicting what an agent actually believes, given that the agent
may have resource or other limitations restricting or preventing the derivation of all the
consequences of its beliefs.

The Konolige deduction model of belief was developed in an effort to define accurate
models of the beliefs of Al robot planning systems. For these systems, reasoning about
the world is’an inferential process — that is, they perform syntactic manipulations
of the internal language of representation to derive new facts from an original set of
beliefs. From a logical point of view such planning systems are often incomplete in their
reasoning in exactly the way claimed above in property two; there are simple deductions
that are never performed, even with adequate space and time esources. The reasons
for this vary, but an important one is that a complete set of deduction rules for an
internal language with the expressive power of first order logic is not decidable, so there
is no computational procedure that is guaranteed to answer the question of whether a
sentence is a consequence of a set of beliefs in a finite amount of time. So system-builders
design and build deduction systems that arc incomplete, but which are computationally
efficient for a particular domain. Prolog is an example of this approach, and some would
say a successful one!

Because Konologie’s system represents beliefs in a computational, symbol-processing
based paradigm, the model is compatible with current philosophical theories of human
cognitive states. It should not be supposed, though, that the deduction model gives a
completely accurate account of human belief. Our current understanding of human cog-
nitive processes is not even remotely capable of providing formal theories that describe
the intricasies of human behaviour. The deduction model is explicitly not an attempt to
provide such theories, and makes no pretense of being able to model behaviour of this
sort. However, the deduction belief model can capture what Konolige claims are the
two most important properties of human belief and commonsense reasoning: the fact
that people can draw conclusions from their beliefs, and that they do not necessarily
derive all the logically possible ones.

The importance of having a formal model of belief or other components of an intelli-
gent system is often underestimated. Formal models have the advantage of concreteness:
it is possible to prove rigorously what properties the model has and what predictions it
makes. By starting with a formal model, we can outline clearly how the model fits or
does not fit its intended domain. Since all attempts at representing the world involve
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abstraction of greater or lesser degree, having the abstraction on the table and open to
mathematical scrutiny seems to be the only way we can understand, in a precis way,
the nature of the abstraction.

e Fer aformalism to-be useful inbuilding & working AT system, it must be heuristically

| adeguate, that is, there must be some way of efficiently computing useful results from the

i formalism. As experience with AI systems has shown, a heuristically adequate system
can usually be built only when the characteristics of a particular application domain
are taken into account.

10 Bibliography

1. Frost, R.A., Introduction to Knowledge Base Systems, Collins, 1986,

2. Hughes, G.E. and Cresswell, M.J., An Introduction to Modal Logic, Methuen,
1968.

3. Konolige, K., A Deduction Model of Belicf, Research Notes in Artificial Intelli-
gence, Pitman, 1986.

4. Thistelwaite, P.B., McRobbie, M.A., and Meyer, R.K., Automated Theorem-Proving

1n Non-Classical Logics, Research Notes in Theoretical Computer Science, Pitman,
1988.

5. Turner, R., Logics for Artificial Intelligence, Ellis Horwood, 1984.

11 Required Reading:

From Brachman and Levesque, Readings in Knowledge Representation:

1. Chapter 2: McCarthy, Epistemological Problems of Artificial Intelligence, page
23.

2. Chapter 14: Hayes, The.Logic of Frames, page 287.

3. Chapter 18: Moore, The Role of Logic in Knowledge Representation and Com-
monsense Reasoning, page 335,

12 Class Work Exercise

® ® Starting with the example lattice type sort structure given in section 5, page 5,
constructed an appropriate lattice sort structure which contains all the relation-
ship between the object that can be built from the following kinds of numbers:
Zero, Positive, Negative, Integer, Real, and Complex. For this sort structure
define appropriate sorting functions for multiply, divide, addition, and subtraction,
functions. Show, by example, that the sorting functions defined are well defined
over the range of sorts included in the sort structure.
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Briefly explain how you might implement your sort structure and sorting functions

in a polymorphic arithmetic package in either Prolog or Lisp.

+—Using-the-definitions; logical axioms, and inference rules defined for the modal '
logic M, see section 7.7.2, page 27, together with any of those you may require
from classical propositional logic, prove that the following are theorems of M:

1. OP & g[-P — P]
2. Q[P v Q] & [OP vOQ)
3. [P A-P| = Q

Tim Smithers
January 1988
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