-t

Unification Grammars and their Lexiqoné

1. Templates

In the previous sections on representing grammars in a Unification framework such as
PATR-II, you may have been struck by how much information was associated with indivi-
dual lexical entries. For instance, handling agreement by putting the requisite specification
for the path <subj agr> in the lexical entry for a tensed verb means that each such verb
must contain that information. Similarly, the treatment of subcategorisation proposed
above gives rise to extremely complicated lexical entries. Unlike grammar rules, which
come in ones and twos, particularly in lexicalist grammars, lexical entries come in tens of
thousands. Therefore in developing a grammar with a lexicalist orientation, it is very
important to consider the question of how dictionary entries can be specified compactly.

One device that PATR-II provides to make dictionary writing easier is called the template.
A template givesia name to a set of path equations that define a DAG that needs to be used
in several places, The template name can then appear rather than the set of equations.
Some simple examples are:

Let V be A
<cat>=v

Let 3sing be: :
<head subject head agr num> = sing
<head subject head agr pers> = 3
<head form> = finite

A more complex éxample is:
bt bl e D T

Let Transitive be ‘

<subcat ﬁrst; cat> = np

<subcat resti first cat> = np

<subcat restifirst> = <head subject>

<subcat restjre_st>_ = end

| CEV I e Bee ety

Then the entry for a particular transitive verb in its third singular foi'm will just be:
storms: :
V 3sing Transitive

I .

Iy AP A e oot PRI : ¢ T .
This shows the use of templates at the top level. Templates can also be used in path equa-
tions, e.g. = ‘

Let Dummy NP be
<cat> = np
<aform> = it ! .
<lex> = it

seems : | o
<tead subj> < Dumy Ne Ry (oede

Natural Languagtza ProcessingtHO10 v , Page 1

1 Ao .

et

S T T

Also, since a template definition may include a call to another template, the evaluation
procedure must be recursive.

-4

2. Lexical Ruies A

A more elaborate system for specification of lexical entries has been developed by Ritchie
et al. at Edinburgh and Cambridge. Like PATR-II this system em ploys template-like dev-
ices, which are called aliases. This sort of device acts merely as an abbreviatory conven-
tion and is thus similar to a macro in a programming language. It has little linguistic
import. Ritchie's system has three other types of lexical rule. 1 will illustrate these types
of rule, though I will adopt a somewhat different notation.

First are the rules which refer only to a si'ng-le feature structure. The idea behind these is

that there are certain combinations of feature specifications which as a matter of linguistic -

hypothesis always occur together. Therefore mention of one of them is sufficient to
guarantee the presence of others. Conversely, the presence of one without the others is an
indication of an ill-formed feature structure. Ritchie's system chooses to separate out these
two uses of cooccurence information as distinct rule types, that is, having a distinct pro-
cedural interpretation. The two types are called completion rules and consistency
checks, but they ¢an be more generally subsumed under the heading redundancy rules

Examples of the sort of facts that one might wish to describe using redundancy rules fol-
low. : :

‘ S . : .
Grammar rules which refer to verbs will often specify that the verb is finite, without
requiring it to be specifically either present or past. On the other hand, there will be dis-
tinct morphemes for present and past. The lexical entries for these morphemes need not
give a specification for finiteness, only for tense, once the f ollowing rule has been stated:

[tense = _-> finite=yes]
A similar sort of rule might be used in a language which made grammatical distinctions
between humans, animals and inanimate entities:

[human = yes -> animate = yes]
[animate = no ~> human = no)

Notice that if we had the full power of logic we could deduce the second of these rules
from the first. In general, however, if we wish to write a procedurally tractable linguistic
programming language, we must restrict ourselves to some subset of full logic. This is
analogous to Prolog's inability to prove certain conclusions that follow from the Prolog
clauses treated as full FOPC.

More interesting rules of this type are those in which the antecedent is not a single feature
specification, e.g. '

[subcat = intrans 8;.vf6r‘m - pastp -> perf = yes]

Bearing in mind thfa,t in E_nglish. past and perfective participles are never distinguished, but

that infransitive verbs cannot passivise, we get the above rule (assuming that the lexicon
does not have separate entries for the two forms).

A similar type of rule is the default speciﬁcation'. Like other redundancy rules, these will -

add feature specifications to a single entry. Unlike the others, no error condition will arise

Natural LanguageiProcessiﬁg:HOlO ‘ _ Page 2

| .
' . ok a - LI S

if the antecedent holds but the consequent fails, since this merely indicates that the
default has been overridden. In Ritchie’s system, defaults are not a separate rule type, but
merely a way of using completion rules. Typical defaults would be:

[cat = verb -> Vvoice = active]
[cat = noun -> nform = norm]

The second typelof rule in Ritchie's system is called a multiplication rule. Such rules do
not refer to a single feature structure: rather they define how to build a new entry on the
basis of an existing one, and hence multiply the number of entries. PATR-II also has this
sort of rule, and we will illustrate using that notation:

Define DiTrans as

<out cat> = <in cat>

<out head> = <in head> .

<out subcat first sem> = <in subcat rest first sem>

<out subcat first cat> = np

<out subcat rest first sem> = <in subcat first sem>

<out subcat rest first cat> = np

<out subcat rest rest> = <in subcat rest rest>

Here the two special path names "in" and ‘out’ refer to the DAGs that constitute the input
and output to the lexical rule. In this example ‘in’ is an entry for a ditransitive verb,

which would tak:e_ a direct object and an indirect object marked with the preposition "to’,
and ‘out’ is a form which takes two np objects.

Notice that unlike the basic PATR-II system, including templates, a system which contains
the sort of lexical rules that have been introduced above is no longer purely declarative.
Defaults, in particular, are diflicult to give a declarative semantics. ‘I'he elfect of applying a
default rule referring to a particular feature will obviously vary according to whether it is
applied before or' after - multiplication rule which assigns a particular value to the same
feature. '

3. Feature pnssing principles (FPPs)

Just as there has been a trend to move subcategorisation information out of grammatical
rules, there has.also been a trend to eliminate some of the complexity of feature
specifications from grammatical rules. Ritchie's system incorporates three such principles
(which they call! ‘conventions’) in their word grammar, the set of rules that specify
which morphemes may join together in which orders to form words. The idea of I'PPs is
that the DAGs associated with the mother node and daughter nodes in a rule do not in
general vary arbitrarily. We know, for instance, that the head features will be the same
on mother and head daughter, which we can state as the Head Feature Principle. Now,
instead of adding equations of the form: o

<X head> = <X; head>

.

to each rule, we nf;erely need to indicate Which of the X; is in fact the head, e.g. by using
the identifier H. Thus the PATR-II rule:

i

|

i‘ PR AL S K R AR A AEME LI PR I BT - T e
'

|

i

Natural Languagé Pgocessiné:HOlO ‘ | . Page 3

sluler

. !
Xo->X, Xzf
<X o' head> = <X , head>

may be replaced by V

Xo ->X,H

[RN TR PR Mo A Ly YL B e B ,
Other principles 'that have been suggested include: the Control Agreement Principle,
whcih specifies identity of agreement features between various daughter DAGs in a rule
according to certain criteria which need not concern us here: and the Foot Feature Princi-
ple, which concerns the distribution of foot features. By analogy with head features, foot
features are those shared between the mother and one or more of the non-head daughters.
An example of foot features are those concerning the placement of gaps, as illustrated in
the context of DCGs.

4. Conclusion
|

A Unification based approach to linguistic description now seems to be a consensus
amongst computational linguists and theoretical linguists interested in computational
implementation o';f their ideas. We can draw a distinction between those Unification based
formalisms that are intended as tools, and those intended as linguistic theories. In the first
category fall PATR-II and Martin Kay's FUG, which is described in Readings in NLP, as
well as DCGs. In' the latter category are: Generalised Phrase Structure Grammar (GPSG),
whose treatment of subcategorisation was exemplified in HO4 and whose lexical rules and
feature passing conventions are approximately described in this handout (Ritchie's system
being part of a larger project to implement GPSG); Head-Driven Phrase Structure Grammar
(HPSG), which is a development of GPSG with a treatment of subcategorisation as
described in HO9; Categorial Unification Grammar (CUG/UCG), which is Categorial Gram-
mar as described in HO7 plus unification; and Lexical Functional Grammar, a fairly direct
descendant of Chomskyan TG, without the T.

In Britain alone, 'the Institutions and Projects using Unification Grammars include: The
Alvey-funded Edinburgh, Cambridge and Lancaster GPSG system; The Alvey-funded
UMIST English-Japanese Translation System; The IBM Winchester HPSG Project; The
Esprit-funded Acord Project at Edinburgh Cognitive Science, a CUG grammar for Natural
Language Interrogation of Data Bases; and several others.

1 R . - " . &

Natural Languagé Processing:HOlO o | Page 4

