1. Graph Unification and PATR-II continued

| . :
We saw above how features on grammar rules could be interpreted by means of the opera-

tion of unification, but that representing feature structures as terms (i.e. suitable for direct -

interpretation by Prolog) gave rise to certain problems or inelegancies in grammar writing.
Then we discussed an alternative representation as DAGs (or sets of name:value pairs)
which obviated this problem, and started to look at a formalism called PATR-II which
supports grammar rules over structures of this form.

The skeleton of t:z PATR-II rule is a context-free rule which introduces vﬁriable names for
each of the feature structures (DAGs) in the rule, and the remainder of the rule consists of
a set of equations which define the values of those variables in terms of paths through the
DAGs. Thus the rule: o {2 .

s R adlgen
Xy ->x, K e
«o cat> = 8: < . ' w'h,\
xlcas Dy —— Wy dhely
A, cat>=vp - CGLOMU
X1 agr> = X, agr>

has the following interpretation:

Suppose the featuire structure X, is associated (by the lexicon, or by application of a previ-
ous rule) with some string of words S3. and similarly X, with S,. Then the feature struc-
ture X, is associlhtgd with the string of words obtained by concatenating S, and S, (or
vice versa). The values of the X, _are given by the path equations associated with the rule.
Notice that the path equations indistinguishably constrain or define the feature structures.
That is, this inteipretation of a rule is totally declarative - no particular parsing strategy
or order of solution of equations is assumed or will make any difference to the final result.
Asking for the va;lug of a feature and giving a value to a feature are the same operation.
|- o A PR 50w -kt ‘ ’

Here is another example of a PATR-II rule for further illustration. This handles the same
phenomenon as the above rule, i.e. subject-verb (phrase) agreement, but in a different way.
It is assumed that each DAG has two principal features - cat, whose values range over the
standard syntactic categories, and head - whose values are complex, i.e. DAGs themselves.
Head features are those which are shared between the lhs category in a rule and that con-
stituent on the rhs which is deemed the ‘head’ of the rule. Nouns are the heads of noun
phrases, verbs of iverb phrases, verb phrases of sentences, etc.

I
Xo->X, X 2;
X cat> = g
<X cat> = np
<X, cat> = VP ‘
<X o head> = <X, head>
<X 2 head subij> = <X ; head> , ‘ o A .
Notice that agreement features are not mentioned at all. They will have been given values
in the lexical entries as below, and the final two equations in the rule ensure that the
appropriate agreex;nent behaviour follows.

Xo -> fred ; .]) .
<X o cat> = np i » .

<X o agr num> = sing <'2(0 hﬁé«d v oA D)~ 51@
<X agr Pers5 - 3 N & | L(EEI(I_ 6‘3'/ féw@ - 3

e aAw L Laey

!
Natural Iangdage Prb_cessing :HO9
I R o R e O

AL N TGER Ve Lrayit WNT R

'
|
! .
1 ot -
'
|

alulg-

|
|
1
|
Vo
|
|

Xo -> sleeps I

<X cat>= vp ‘

<X form> = finite - ,

<X o head subj agr num> = sing

<X o head subj agr pers> = 3 o L ‘

Applying the rule to the two lexical entries will give the following pairings of strings of
words and associa%led feature structures: . ,

fred sleeps:

cat: s A | % 67[@@)

head: [1] Eform: finite

el D fuar fom gind] o % % A%
red: » _

[1012:(:1: ?g]]

sleeps:

cat: vp
head: [1]
2. Graph Unification Algorithm
i :‘ L ":‘-',:H;:',”j 28 " BN v ! ' .
In order to give some insight into how graph unification might be implemented, here is an
algorithm in Prolog. Only the interpretation of the equal signs in the path equations is
given. The computation of the paths themselves is left as an exercise for the reader.

| N . \ e

¥ U p—

% equal defines the Squality (-l}.;;\r.mlﬂc‘ation) of pairs of
% DAGs each represented as a list of attribute:value pairs
% with variable tail

equal(X.X) :-'1. | Sawo aln
equal([A:V1IR1],F2) :- '
de1(A:V2,F2,R2),
equal(Vl,Vv2),
equal(R1,R2).

% del(Element,LO,L1) if L1 is LO with no occurences of Element. The
% tricky thing is that Element is always in LO after execution, since
% the latter is a list with variable tail ‘

de1(F,[FIX].X) :- 1.
del(F,[EIX],[EIY]) :-
del(F,X,Y).

p o =
Ve

'

Lo oo

Natural Language Processing:HO9 7 Page 2

[T Wi Lailiedd

test(X,Y) :-|
X = [a1iv1,a2:v2,a3:[al1:v11,a21:v211_]1_],
Y = [a2ﬁv2.a45v4.a3:[a21:v21.a31:v31|_]I_].
equal(X;Y). L
i

b 7= test(X.B;{) .

Y = [22:v2,a4:v4,23:[a21:v21,a31:v31.a11:v111_112],a1: vl _57]
X = [al:vl.aZ:vZ.aS:[all:vll.a21:v21.a31:v31I_112].a4:a4|__57]

| . [T PRI TR e e o o,

yes -

The remainder of this handout is culled from Shieber’s "Introduction to Unification-Based
Approaches to foammar". Note that a notational convention has been adopted, whereby
any symbol in the context-free part of a rule other than a (subscripted) X is interpreted as

the value of the feature cat, as well as the variable corresponding to the DAG concerned.
For example, the last rule above would simplify to:

S ->NP VP |

<S head> = </P head>

<S head subj> = <NP head> e s -

This notational convention would be somewhat tricky to incorporate in a Prolog imple-
- mentation of PATR-IL . A . .

¥
! &
i
I
!
|
"o
]
|
'
'
'
H
'
H
|
i
{1
: R
| -
o
| AR
6w el A A v, -
-
|
M e B AL A (R DTN TIT DN YT SR S SRR S

| T . w
Natural Language Processing:HO9
| e B . o erie e

el

Page 3

The astute reader will notice that the first sample g‘nmar al-
lowed no postverbal complements of verbs, a considerable limitation:
Cur second grammar deals with the problem of lexical selection of
postverbal ““subcategorization frames”—the manner in which, for
ezample, the verb “storm” (as in “Uther storms Cornwall”) lex-
ically selects (subcategorizes for) a single postverbal NP, whereas
“persuade” subcategorizes for an NP and an infinitival VP as com-

plements.

A simple solution would be to add rules of the form

VP — V NP }
(VP head) = (V head) (Bs) -
and
VP, — VNP VP, | |
(VPy head) = (V head) (Rs)

(VPy head form) = infinitival

- and so on, one for each subcategorization frame. The problem of

" matching up verbs with a VP rule could be.achieved (as usual) with
- unification. A feature subcet in the verb’s feature structure would

be forced to unify with an arbitrary value specified in the rule. The

follcwing rules and lexical entries achieve such a matching.

VP — VNP
(VP head) = (V head) (Rj
(V subcat) = np

VPy — V NP VP,
(VPy head) = (V head)
(VP; head form) = infinitival
(V subcat) = npinf

(R4

‘at: vV) i

form: finite

storms +— | head: . . number: singular
subject: | agreement: .
' person: third
subcat: np
- feat: . v]

forml:; finite :
" | number: singzdar]j

}persuades}'——* head: subject: agreement:-[

person: th:rd

subcat: npinf

. Early GPSG used this type of analysis W.ith some forty basic verb

phrase rules.

In the second grammar, we adopt a more radical approach that "
“takes fuller advantage of the power of unification. Just as the first
grammar had a “slot” for the subject NP complement, the second

grammar uses slots for all the complements, both pre- and postver-
bal. This is achieved through the feature structure encoding of a

 list with features first and rest and end marker value end. The slots

in the list correspond to the complements in the following order:
postverbal complements from left to right, followed by the preverbal
subject. For instance, the lexical entry for the verb “storms™ would
be given by the pairing ‘

Handout 9 Page 4

AL

[cat: v ' : The convolu" subcat value here lists the complements of “per-

head: f°fm=ﬁm"=] : . £ suades” as, in order, an NP (the object), a VP whose form is infiniti-

r _ - val and whose subcategorization requirement is a single element list

first: [CG“ NP] (i.e., only the subject is missing), and the subject NP itself (marked
T as third-person singular, to fold in the agreement conditions).

_ 3 As each postverbal complement is concatenated onto the VP, its

subcat: firat: » [numbcr:aingular}J feature structure is unified with the next slot in the list. Thus, the

stavma > cat: NP

S—

rest: head: | agreement: person: third verb can impose requirements on its complements—e.g., category
requirements, or requiring a VP complement to be infinitival—by
resti end - <o oo e e e s e ~adding-the appropriate features to the slot; as was done t6 ensure
A - B o ' -1+ o ., .. agreement with the subject in the previous grammar. Let us look at
, ‘. : ' ‘ : o one such VP-forming rule that adds an NP complement to the VP.
whilefor the verb “persuades” we would have the even more complex . © ¢ | - . VPy — VP, NP
pEinng : _ IR R (VPy head) = (VP, head) (Bs) g
’ BT - (VP subcat first) = (NP) d l
Tk (VP subcat rest) = (VP; subcat)
cat: V) ’ T IR The unifications in Rs require, respectively, that

head: form:ﬁnm] | 1 I o Head features are shared by the VPs. - =~ _l

|
v e e
1

first: [cat: NP]

4 ® The NP is unified with the first remaining slot in the sub-
cat: VP ’ ’ T ' categorization frame for the VP.

first,| head: [form:inﬁnitiual] : R © The subcategorization frame for the rewly formed VP is

that of the shorter VP minus the first element just found.
-persuades —— subcalt: [rcst:end] :

L - ‘ The grammar therefore builds a left-recursive structure for verb
subeat; et [ot NP] phrases, so that, for instance, the phrases “persuades,” “persuades
) Arthur,” and “persuades Arthur to sieep” will ail be VPs—the first .
number: singular subcategorizing an NP, a VP and a subject NP (as just seen in the

. ' foregoing lexical entry), the second a VP and a subject NP, and the
third just the subject NP. The phrase structure for this final VP in
rest: end accordance with this grammar would be

L Lb)

ﬁrst:

rest: head:| agreement.

. person: third

Handout 9 Page 5

persuades ' . to sleep

Gfcourse, a similar rule would be required for VP complements.

VP, — VP; VP3
(VPy head) = (VP; head)
(VPy subcat first) = (VPs)
(VP, subcat rest) = (VPy subcat)

(Ro)

Ibw does this left recursion bottom out? We add a rule for just
" this parpose.

- frame with the end marker value end. We also unify the subject NP

VP -V 6
(VP head) = (V head) (R7)
(VP subcat) = (V subcat)

Finally, we need a rule to form sentences from NPs and VPs

- whose subcategorization frame requires no more postverbal comple==<—77~

ments. This latter condition is verified by unifying the rest of the . ! E;

with the last remaining element in the frame.
S — NP VP | ERAs
(S head) = (VP head) A
(S head form) = finite =~
(VP subcat first) = (NP) ‘
(VP subcat rest) = end

" A final optimization can be made. Rather than having separate

- rules for each possible ‘category of postverbal complement, we can -

substitute the following single general rule:®
VP — VP X
(VPy head) = (VP> head)
(VPy subcat first) = (X)
(VPy subcat rest) = (VP; subcat) ‘
Thus instead of the forty basic rules (and the additional rules

derived by metarule) that the early GPSG analysis postulated, we
need just this one. h

(Reo)

Handout 9 Page 6

Artificial Intelligence/Computer Science 3: Natural Language Processing ‘
Syllabus:

1. Introduction: Natural Language Processing as Knowledge Engineering (1)

- types of knowledge - phonetic, orthographic, morphological, syntactic,
- semantic, pragmatic, discourse, real-world.

Readings: Winograd, chap. 1
2. Natural Languages and Formal Languages (2)

- The Chomsky Heirarchy
- Weak and Strong Generative Capacity
~ Finite State Phenomena
. = Context-free Phenomena
-~ ~Non-context free g;hmomena
- Competence and Performance

Readings: Handout
3. Definite Clause Grammars (2)
- review of syntactic categories and structure of English
"L Prolog interpretation, structure-building etc.
i Percira and Warren: Definite Clause Grammars for NL Analysis,
i in Readings in NLP .
- Winograd, 3.1 - 3.5
4. Chart Parsers (3)

--giaoc;iural limitations of Prolog interpretation of DCGs

v - CKY Algorithm, Dotted Rules,
- Earley 1_m%orithm, Proposing, Scanning, Completing, Occurs Check
- Categorial Grammar Notation
‘ -Readings:
Earley: An Efficient Context-Free Parsing Algorithm, in Readings in NLP

Kay: Algorithm Schemata and Data Structures in Syntactic Processing, in
dings in NLP .

3. Unification-based Approaches to Grammar (3)
- Introduction and Motivation for Unification </
'~ Morphology and the Lexicon
- Current matical Theories °-
Readings: Shieber, Ritchie et al.,

A -

R L

P

as Well-Formed Substring Table, the Representation of Ambiguity .

[S

. Nmogr.ad:.B:G_____ e e e e e

6. Semantics (2)

- What is gexghanﬁéx? R "
- Logic and other Semantic Representation Languages
- L':’gICompositiona.Lity
~ Montague Semantics
Readin .
Hando&?
Schubert and Pelletier, From English to Logic, in Readings in NLP

7. Anaphoric Reference (2)

Readings:
Hobbs, Resolving Pronoun Ref erences, in R&danﬁs in NLP

‘Webber, So What Can We Talk About Now, in eadings in NLP
8. Generation (2)

Readings:

. The Generation section in Readings in NLP

9. Conclusion (1)
Current Research in Edinburgh

. Future Directions of Research

" References:

Readings in Natural Language Processing

' 2 Barbara J. Grosz, Karen Sparck Jones, Bonnie Lynn Webber (eds.)
- Morgan Kaufmann, 1986

" A Computational Frameworl.c for. Lexical Description . II), e

G.D.Ritchie, S.G.Pulman, A.W.Black, G.JRusseil

- DAI Research Paper no. 293, 1986

: xsﬂgd Iﬂogzauian to Unification-Based Grammatical Formalisms : N Ay 6@!‘ «9(2' .

 S.M.Shie ; - 2 s,
Center for the Study of Language and Information, 1986: T

.+ Language as a Cognitive Process

Terry Winograd) : I
ddison-Wesley, 1983 _ .. .l . . il

. possibly morphenc;uga: |

3T J

|
|
|
I
|
1
|

An Informal Intr!oduction to Formal.Lan.guages

!. 0 ‘ P A ’ ; e ,' » ‘ .
Mathematically, we can define a language with respect to a vocabulary I as some subset of
Z#* i.e. the (infinite) set of all strings obtained by concatenating elements of the vocabu-
lary. ‘ ¢

Do not be confuséd by the tter»mi.x_uglogy‘c-)f»ten used in texts on mathematical linguistics,
which calls the vocabulary ‘an alphabet’ and each sentence in the language under con-
sideration ‘a word’. We will always refer to the members of the vocabulary as words or

We will look at two alternative ways of defining languages, one by means of grammars
which generate the strings, i.e. sentences, of the languages concerned, and the other by
means of automata which are machines that recognise sentences of the languages.

In particular, we will introduce four types of grammar, and four corresponding automata,
that form a heirarchy, in which the languages that are describable by a type n device can
be shown to properly include those definable by a type n + 1 device. That is, the lower the
number, the more powerful the device. This is called the Chomsky heirarchy.

The import of this for natural language processing is as follows. We can tentatively iden-
tify certain constructions in in natural languages that we know require a certain type of
device for their description - a grammar of a higher type will just not do. We can argue
about the data - whether a particular construction is indeed of a certain form - but once
we agree on the liniguistics. we have mathematical certainty about the sort of formal device
required. .

I
N

1. Grammars

A grammar is defin

| as a 4-tuple G = (N, I, S, P) where

.
(1) N is a finite set of nonterminal symbols (corresponding to syntactic categories).

(2) = is a finite s%ét of terminal symbols disjoint from N (corresponding to words or
perhaps lexical categories).

(3)Sisa distingui:ghed symbol, a member of N, caled the start symbol
(4) P is a finite suﬁset of | o
(NUZ)* N(NUD)s X (N UE)s
i.e. a set of pairs éf strings of elements from the two sets of symbols, the first of which
must include one non-terminal element. These are the familiar rewrite rules of linguistics,
50 We write.an element gq.ﬁ) €Pasa—p. '
The language gener:atéd bya grammar L(G) is defined as follows:
(1) Sisa sententiail form.
) if aByisa sentéential form, and 8 :>‘8 € P, then ady is a sentential form.

(3) a sentential form containing no elements of N is a sentence.

Natural Lnnguage: Processing: HO1 ’ - Page 1

I
|
H
i

|

' .

H.

| -
i

|

|

(4) The language L(G) is the set of sentences generated by G

[3 ,
The position of al grammar on the Chomsky heirarchy. can be determined by examination
of the rules of P. That is, the more constrained the rules are, the higher in the heirarchy is
| £

the grammar.
| i

2. Automata

;‘\u—*w-gn }W i

~ An automaton caxit be pictured as having three componetints:

(1) An input tape, divided into squares, each containiné a symbol from an input alphabet.
There is a tape hetlid. positioned on one of the squares, i%itially the leftmost.

. . - - - "
(2) An auxiliary x‘:nemory. whose behaviour is characterg_sed by two functions:

- a fetch function,:, which maps from the set of memory.configurations to a set of symbols

i ‘ 3
- a store functiorx;r which maps a memory conﬁguratioxli and a control string to a memory
configuration | 4

(3) A finite state control, which mediates between the above two components.

P T , , 5.
A recogniser operates by making a series of moves. Each move consists of reading the input
symbol under the tape head, and probing the auxiliary memory by means of the fetch v
function. These t\a!(o items of information, together with the current state of the finite state A5 ()@‘
control, then determine the rest of the move. This consists of shifting the tape head one .
square left or right, or keeping it stationary; storing information into the memory; and '{(AV!\Aﬁ
changing the state:of the control. \Ml)

Moves are made likntil the input string has been read (the tape head is at the right hand
end), and the control is in one of a designated set of final states. There may also be a con-
dition on the state of the memory. If these requirements are satisfied, then the input string
is in the language defined by the recogniser. If not, then it is not.

1 . . .
The position on the Chomsky heirachy to which a particular recogniser corresponds is
determined by the type of auxiliary memory that it incorporates. That is, the more res-
tricted are the memory functions, the higher in the heirarchy are the languages that can be
recognised. : '

[, "8l L A S AR ‘ g
We can now examine the heirarchy and present the equivalence between the two formal
systems for defining languages. ;

| \ .

! The Chomsky Heirarchy
Automaton Grammar
Type Memor Name Rule Name 0
Unbounded Turing Machine oa—B General Rewrite
Length $n Linear Bounded BAy — B8y Context-sensitive
Stack | Push-down A-B Context-free
None . Finite State A-xB,A-x Right Linear

]

Q |~

W= O
w

B

R B oA

where: n isjthe I,engtﬂ of thé input string.‘_'A._B €N, x € Is, qf/ﬂ 7/ , 5(, (Nv i)’“ , 5 7
3 ’ ﬂa«—@/w(u'q(;

Processing: HO1 ' o _ Page 2

|
|
. |
@ B.7.8 €(NUD)s, 8 e

3. Type 3 devicleé

You should be very familiar with the type 3 automaton, the finite state transition net-
work. The equivalent grammars are those whose rewrite rules have a maximum of one
non-terminal symbol, which must be the rightmost symbol, hence the name right linear
grammar. Formally equivalent are the left linear grammars, in which the single non- ter-

1

minal must be leftmost.
The languages describable are precisely those that can be expressed as regular expressions,
which are expressions such as (a b* ¢) | d which can be glossed as those languages con-
sisting of the single symbol ‘d’, or ‘a’ followed by any number of 'b’s followed bya’c’.

, ;

The equivalent rilght linear grammar would be:

S—=d |

S—aB !

B - bB

B=c '

The equivalent fs!a would be: \
start | input || end \\A'\ '
state | symbol || state =

1 d || 3
1 a | 2
2 b | 2
2 c | 3
initial state = 1 |
final state = {3} |

A.T‘ypozdeviot;:p,_v T
The type 2 grammars are the well-known context-free grammars, in which a single
non-terminal symbol appears on the left hand side of a rule. The name context-free refers
to the fact that thc expansion of a non-terminal does not depend on the context in which
it appears. '

The type 2 automata are the Push-down automata, which are finite state automata
enriched with a stack. In making a transition, a PDA can push a symbol onto the stack,
and in determining which transitions are legal, the symbol on the top of the stack may be
examined and popped.

A typical context!—ijee language wbuid be a"l;". that is any number of ‘a’s followed by
the same number of "b’s. A CFG for this language is:

I R N '

S—aSh |

S —e !

|

and a PDA: !

a
I
'

Natural Languag;e Processing: HO1 | _ Page 3

|
|
*

| . L a
; ok

start | input stack | end | stack / 0

state | symbol|| before | state | after | A . b
0 a | Z 1 4 \ 70 SR
1 a 0... 1 00 O
1 b 0. 2 | .. .
2 v ' o | 2 |. K_,,,/
2 e | Z 0 e

initial state m O |

final states = {0}

N

, 0

S. Type 1devices

1
AT T T A s A
L R e A

The type 1 gramxfnars are called the Context-sensitive grammars. A rule in such a gram-
mar must rewrite at most one non-terminal from the left-hand side, but contextual res-
trictions may beéimposed on this, hence the name. The non-terminal must not rewrite as

the empty string ‘e’. Notice the effect of this is to ensure that no rewriting can decrease the
length of the string, and hence guarantee decidability.

The same constraint is in evidence in the definition of the type 1 automaton, the linear

bounded automaton (LBA), auxiliary memory must not exceed the length of the input
string. f

Some typical context-sensitive languages are a® 5" c”, the languagé consisting of all strings
with a number of ‘a’s folowed by the same number of ‘b’s and then the same number of

‘c’s; and ww, the language consisting of all strings whose first half is the same as their
second half. | :

~
!

A grammar for tﬂeﬁrstof these is:

[| | s - aste - ‘L{A(Wg ¢ un [R)

S-'abC!
bB-'bbf
bC-’bc;
cC=cc !
CB- CD
\CD"’ED,

.
[}

ED - EC/.
EC - BC|

6. Type 0 devices

Finally, the type b devices are the General Rewrite Grammar, in which there are no res-
trictions on the form of the rules, and the Turing Machine, which has an unbounded
auxiliary memory. Any language for which there is a recognition procedure can be defined
using these devices, but in general, the recognition problem is not decidable. That is,
assume we have an arbitrary device of this type, and a string whose membership in the
language is to be tested. If the string is in the language, then we will get the answer “yes’
after a finite time.§ However, if it is not, we may never get an answer.

LT T e HALTNG PR ¢

Natural Language Processing: HO1 | Page 4
I

'
|
|
|

