-)i T l()u

i

|
P B R . . g
' LA " Nlemde O "

Introduction to Unification

: : [N el e e
1. Term Unification
In the fragments of grammars that we have encountered so far, we have often found it
necessary or desirable to add features to categories. We have been fairly ad hoc about
doing this, including features or leaving them off as appropriate to the point under discus-

sion. Now we must be more precise about what is going on in a grammar augmented with
features. ['

We have already encountered a precise definition of how we expect a grammar with
features to behave, when number agreement was discussed in the context of Definite
Clause Grammars. In a rule of the form:

I e I G T 2

s =—> np(Num).vi)(ANﬁrvnv): » o
we expect the rul:é‘to. be u'se:i’if aﬂd only if the same value is bound to both occurences of
the variable Num. In particular, it does not matter whether the final value of Num ori-
ginated in the np, the vp, or both, as long as it has only a single value. And of course, this
rule will still be applicable if Num never gets a value, as in parsing a sentence like:

the sheep can eat :the grass.
| - - 3 B « Tl . Pl TR v . .,,:: A X

So what we inten:d by writing this rule is that the values of Num on subject and predicate
unify. In DCGs, unification is not only the mechanism which binds features, but also
what drives the parse. That is, a rule is determined to be applicable if its left-hand side
unifies with a goal in the right-hand side of another rule that is applicable. In general,
therefore, the objects that we are interested in unifying are terms. A term may be an
atom, a variable, or a compound term, the latter being a functor and some fixed number of
arguments each of which is a term. Intuitively, we want two terms to unify if they con-
tain compatible information. More precisely, two terms unify if there exists an assignment
of values to variables, called a substitution, that when applied to the two terms makes
them identical. A substitution can be thought of as a function that applies to a term and
returns a term with each of the variables replaced by its value as given in the substitution.
So for instance the terms .

p(XE(Y.b)c)
p(g(z.c).f(a.w).\{)

may be made idexiitica_l by the substitution:

(ZX oY ow, o)

Hereisa function; thattake}sbtwgterms reﬁ;'esé;teq ié_LISi’ l‘ist'not.a;tion.
et pafloc)=(altbe) |

and returns such a substitution if there is one, or fail if there is not.

function unify(T1,T2) -> substitution

if T1 is a variablethen
if T1 occurs in T2 then
return fail

Natural Languagb Processing:HO8 T o Page 1

e v o e Pyt s e

-

else return T2/T1
else if T2 is a variable then
if T2 occurs in T1 then
return fail =~
else return T1/T2
else if T1 = T2 then
return nil
%o else

begin

H1 < first(T1)

H2 < first(T2)

T1 <- rest(T1) |
T2 <-rest(T2) .

S1 <- unify(T1,T2)
if S1 = fail return fail
G1 <- apply(S1,T1)
G2 <~ apply(S1,T2)
S2 <- unify(G1,G2)
if S2 = fail return fail
return compose(S1,S2)

end SO o

What is going on here can be simply glossed as:
A variable unifies {with any term it does not o‘ccu.rv in.,

An atom unifies only with an identical atom.
b R R PR TR AN R T P Y R N

Compound terms llmifyﬂif their functors are identical and their arguments unify pairwise,

and the substitutions obtained as a result of each of these unifications are compatible.

The Prolog interpreter embodies an algorithm very similar to this one, except that the
check for occurence of a variable in the term that substitutes for it is not made, as a con-
cession to efficiency. To see the import of this, try typing X = f(X) to the Prolog inter-
preter. ' . R oo ‘e

2. Graph Uni.ﬁcatfioniv
So far, we have uséd features to describe the following phenomena:

.
number: {sing,plur}
subcat: {1,2,3,...} or {intrans,trans,ditrans....}
vform: {fin,bse,inf,...}

gap: {gap.nogap}

As we attempt to extend the coverage of our grammar, we will soon come up against the
limitations of term unification. In a term, the number of arguments that a functor may
have (its arity) is fixed, and each argument is identified solely by its position within the
term. This encoding of features gives rise to the following problems. First, we must
remember the correspondance between positions and features. Secondly, if we want to add
a new feature, we must change our grammar at every point that feature is relevant.
Finally, if we want to refer to the value of a feature in a term, we must specify the rest of

| ' LRI N Cr L

Natural Language broccssmg:HOB . o Page 2

" ol

the elements in the term, perhaps by marking them as anonymous variables. To illustrate
this, consider thé handling of agreement. Suppose we had a term with functor ‘agr’, whose
arguments were ithe values of various agreement features. Initially, we might just include
number, so the term would have the form: _

agr(Num)
If we then wantéd_lx)_ .add agreement for person, we would have to change all instances of
this term throughout our grammar to be of the form: :

agr(Num,Per)

When we specify values for agreement features, e.g. on lexical entries, we must remember
the order - the two terms

agr(sing,3) :
agr(3,sing)

are not equivalent. And if we wished to specify a value only for person, not number, as in
the lexical entry for ﬁshwe must write:

agr(_3) -

not merely agr(3).
All these problen:ls are solved simultaneously by the adoption of an alternative representa-
tion for features; In this representation, the name of a feature is made explicit. Once this
step is taken, features may be referred to by name, so that position in a term is no longer
the means by which a feature is located. Thus we would notate a specification for agree-
ment features corresponding to

agr(sing,3)
as i

num: siné. ' (D 3,4)
pers: 3

This is identical to the specification

P
pers: 3 |
num: sing]

and if we wish to'talk only about the feature person, then we can write .

l.
[pers: 3] TR e o ‘ .
without loss of co:;npatability with other more fully specified feature specifications.

Representations of features in this form are called several different names in the linguistics
literature. The name feature structures is self-explanatory. The name functional struc-
tures can be understood by considering these structures as partial functions from feature
names to feature yalues. That is, the feature structure D 3sg above is a function that takes
the feature name pers’ to the value "3’, the feature name ‘num’ to the value 'sing’, and all
other names to undefined. In set-theoretic terms, the set of name:value pairs comprising a
feature structure may contain at most one pair with a given name, thus conforming to the
definition of a function. . :

Natural Language Processing:HO8 . ‘) , Page 3

lo[hlgy

Finally, the name DAG for such structures refers to the possibility of drawing them as
Directed Acyclic Graphs. Such a graph has nodes corresponding to feature structures, edges
labelled with feature names, and leaves labelled with atomic feature values. These graphs
would actually be trees, were it not for the fact that they can be reentrant. That is,
exactly the same sub-structure can be reached by following different paths through the

graph:.In the notation we have met so far, this reentrancy is represented as follows:

£ \"! [h: a] D
‘g:%\, h'l b Dasg

" Note that "t_his:..::l;iﬂ’efent sfructu; ﬁo\m: , | Nigw /\ ‘
X 3

fre [h: all
L8 [h: a]_ ‘_ :
~.since if . we unify them with S . L }LW W/det.)
[f: [d: b]] Vo }

the first will now!be

f: 1 h: ?a]' |
d: b ']
g: 1

and the second wiill be

f:[h: a];
d: bl |,

) _ a O
g: [h: al], \ ’ \ﬁﬁ AN A
. /
: n\ b . 7
3. The PATR-II formalism b o

Tm—

Jo v e A AT ' .) - {
First note that once we have this general View ©of features, we can represent entire
categories as feature structures. The context-free rule , p f)
s->n -
P | | 4]
can be considered as a shorthand for a rule plus feature specifications of the form: b o G

Xo~->X, X,
<Xo cat> = g
<X) cat> = np
X2 cat> = vp

This rule is written in the notation of a érammar formalism called PATR-II. The feature
specifications enclosed in angle brackets are called path equations. The rule

'
| SRR WP DA andPusia " 2 o

s ->np(Agr) Vp(A;gr)
translates into: :

Xo->X,X,: ‘r 0
Xy cat> =g ' v-ee : RA ’K.
<X'; cat> = npl MW\M 6:9 Ww i

<X, cat> = vpi _ : -

<X; agr> = <X, agr>

Il \ Taadh they o - PRI EREE I S U RN A% IR P LR P

Natural Langua:gé _YP.roqtvz._‘.s _sl'irng :fDS _ ‘ _ Page 4

