Chart Parsing: Pal.rt o

1. Resume

Last lecture we saw how to build all well-formed constituents over an input string of
length 7 licensed by a (restricted form) context-free grammar using an algorithm that has
a time complexity 'O(n®) and space complexity O(n 2).

These constituents were built up in a well-formed substring table or chart. The latter can
" be represented by a graph in which the vertices represent the positions between the words
and there is an edge from vertex i to vertex j labelled C if the string of words between
these points can be analysed as a constituent of category C according to the grammar.

To remove the restrictions on the form of the grammar, the notion of dotted rule was
introduced. A dotted rule is a type of edge that represents a constituent that is not well-
formed, or complete, but rather in the process.of being built. It still lacks certain items,
those which occur after the dot. When these have been found, there will be a complete
consituent of the category of the lhs of the dotted rule. Since this type of edge contains
within it a specification of what needs to occur after it, and thus can be given an active
role in the parsing process, it is known as an active edge. A parser that uses a chart
including active edges is known as an active chart parser. An edge with no indication of
its start and finish 'position is called a state.

2. Top-down aspects of chart parsing ) )
The CKY parser 1s: essentially bottom-up, so that constituents are built regardless of the
possibility of their incorporation into larger phrases.. We can incorporate the dotted rule
idea into a bottom-up parser. We must add an initial dotted rule for each rule in the
grammar to each:entry along the diagonal of the chart. The diagonal of the chart
represents zero length phrases, phrases that span from vertex i to vertex i for any . So
these initial dotted rules correspond to constituents of which no sub-consituents have yet
been) found. They Ic:an be thought of as hypotheses. The dotted rule (in Winograd's nota-
tion): -

(4vp =4 voppp)

embodies the hypo;‘thwis that there is a vp starting at position 4 that will include a v, np
and pp, though none of these have yet been found.

In entering initial dotted rules of every type at every point, we have been rather lavish
with our hypotheses. In fact, at the start of parsing, we have only a single reasonable
hypothesis. This is the characteristic hypothesis of top-down parsers, that there is a sen-
tence starting at position 0. Actually, we need a hypothesis for each way of building a sen-
tence. !

Since it will be theactive edges that dictate the course of parsing, and the only active edges
that are in the initial state of the chart are those that we know will be useful, the number
of useless constituents that are built will be greatly reduced from those built by the CKY
- algorithm. ) : '

|

1

Natural Language Processing:HOG o Page 1

! , . . )
| - LI " . NE ¥

Slulyy



3. Earley’s algorithm

Earley defined hié algorithm in terms of three cases that can obtain when an edge is put
into the chart. These are as follows:

(1 Predicting: The édge that is‘being .entered is active, but there is no edge for it to com-

bine with already in the chart. In this case, the required edge is predicted, by entering
an initial dotted rule for each way that it can be built.

(2) Scanning: Thie edge that is being entered is active, and there are edges already in the
chart with which it can combine. For each of these edges the multiplication rule is
applied. This;gives rise to further edges.

(3) Completing: The edge that is being entered is complete. For each of the active edges
that it can combine with, the multiplication rule is applied, giving rise to further
edges. Note that there must be such active edges, for the complete edge to have been
predicted in tfhe first place.

P

When a number of new edges are created by one of these operations, there is some choice
about how we deal with them. We can add each of them before we add any other edge.
Alternatively, we can add the first and then any new edges that that operation gives rise
to, before considering the rest. The first of these approaches gives rise to a breadth first

strategy and the se:cond to a depth first one. This point is developed further below.

Another choice is how we start the chart off. Do we predict the distinguished symbol or do
we add the lexical edges first. In the former Strategy, we will only enter a complete edge
after we have made all predictions up to the start of that edge. This means that the condi-
tions for scanning;will never arise. All non-diagonal edges will arise as a result of com-
pleting. Hence we will only access the chart by end vertex, retrieving the set of edges that
end at a certain point. If efficiency was a primary concern, this possiblity might be worth
exploiting. In any case, this will be how the algorithm will be presented. '

For the sake of exposition we will assume that the chart is a three-dimensional matrix of
booleans. The second and third dimensions are the start and finish vertices of edges, and
the first dimension ranges over the possible states. In a grammar with rules:

S = np vp

np =+ det n

Vp = v np np

the possible states are:

.S S=np.vp s.
anp np —*det .\n np.
VD VP=V.npnp vVp—vnp.np vp.

.det det. .n! n W v,

procedure chart ars'e
add_chart({.s},0,0)
for j < 1 to ndo,
for state € {A | A =»word; } do
enter_edge(state,j,j-1)

procedure enter_edge(statel,i,j)

if chart(statel,i,j) = false then
chart(statel.i,j), <- true

Natural Language i’rocessing:HOG | Page 2

]




{ T |
for state2 € right_sisters_of(statel) do

enter_edge(initial_state_of(state2),j,j)
complete(statel.i,j)

procedure complete(statel,k,j)
for state2 € left_sisters_of(statel) do
for i in chart(state2,i,k) do
enter _edge‘.:(stateZ*statel.i,j)

Note that before we enter an edge, we must check that an identical edge has not been
entered before. Although this algorithm is top-down, doing only what is necessary, this
occurs check avoids the problem that the Prolog interpreter has with left- recursive gram-
mars. | , ; . A

The rest of procedure enter _edge is the heart of the algorithm. If the edge that we are
entering is an actiye one, we find the constituents that it could combine with to its right
by calling right Sisters_of. Then we predict their initial states. If the edge is complete,
then right_sisters_of will just return the empty set, and procedure complete will be called
directly. ; o

Complete will find the constituents that an edge could combine with to its left by calling
left_sisters_of. If the edge is active, this will be the empty set. If the edge is complete,
however, then each of the appropriate active edges that end at the start of the complete
one will be combined with it. 4 : '

4. The Agenda

We can make this algorithm somewhat more flexible by the use of a data structure called
an agenda. Instead of entering an edge directly into the chart when we have constructed it
(by completing) or determined that it is useful (in the prediction step), we add it to the
agenda. We start the algorithm off by putting the initial edges (the lexical edges and
(:5,0,0)) on the agenda. Then we continue to perform the loop:

while there are edgzes on the agenda do
choose an edge from the agenda
enter the edge into the chart

| :
The rest of the algorithm is the same as before, except that the calls to enter_edge from
enter_edge and complete are replaced by calls to add the edge to the agenda.

Now we can change the order in which things get done merely by adopting different stra-
tegies for choosing an edge from the agenda. If the agenda is treated as a stack, so that the
last edge added to it is the first one to be chosen for entering in the chart, then we will be
realising a depth-first parser. On the other hand, if the agenda is a queue, then the strategy
will be breadth-first. We can even adopt more sophisticated criteria for choosing an edge
from the agenda, such as choosing the edge which progresses furthest through the sentence

(with the highest numbered end vertex).

There are other variations on the basic algorithm, such as adding lookahead. In general,
active chart parsing provides a framework in which all sorts of ideas about efficient and/or
psychologically real parsing strategies can be explored.

Natural Language frocessing‘.HOG - Page 3

-§(hm’ J




