!
i
1
|
i

Chart Parsing: Pai‘t 1

! :
1. Problems with Backtrack Parsing

As we discussed above, the Prolog interpreter can be used directly as a parser for Definite

Clause Grammars.; The parsing strategy that it follows is a top-down, left to right, depth-

first, backtracking one. There is a serious problem with backtrack parsing, and that is its

inefficiency. A simple example will illustrate this point. Suppose a grammar contained the
following two verb phrase expansions:

vp—>vldiransl ip. o0 ol illeveue o 00 ol clave
P . PP Q,% ddlereue iy /op [(A

“vp —> vlditrans], np, np.
Now suppose we are trying to parse a sentence such as (1):
| AR .

(1) I sent the vetfy pleasant double-glazing salesman that I met on holiday in Marbella
last year a postcard.

The first rule will be chosen, and the rather long object noun phrase will be parsed as
such. Then a prepositional phrase will be looked for, and of course there isnt one. Back-
tracking, the second verb phrase expansion will be chosen. All the work of parsing the
object noun phrase will be repeated, and then finally "a postcard” will be parsed as another
noun phrase, and parsing will be successful. Because the results of an unsuccesful search
are not stored, they must be recomputed. Although Prolog is very efficient, this failure to
store well-formed constituents leads to a complexity of parsing that is exponential in the
length of the input string, and for long sentences this is totally unacceptable.

w v

2. Problems with Top-Down Depth-First Parsing

L0

There is an even more serious problem with Prolog’s search strategy. When a grammar
contains a particular type of rule or combination of rules, parsing wil\fail to terminate
altogether. For instance, a perfectly adequate grammar for possessives might contain the
pair of rules: - B N o / (Z C{VZ é{ _

e Sl ;) ; 4 ' 120
np —> det, nom. ' Sear/b Mﬂlém lbl it 9 '
det —>np, "'s. ‘
Looking for a noun phrase, Prolog will first try to find a det. To find a det, the first thing
to be found is a noun phrase. Thus control will arrive again at the same point in the gram-
mar, without any;of the input string having been consumed, and the computation will
continue in this infinite loop until the machine resources allocated to the process are con-
sumed and the computation is aborted. This is a general problem with any grammar that
contains this sort of left recursion. Typically a grammar for English will contain several
instances of left recursion, e.g.

np —>np, appos_rgiod. -
Vp —>Vp, comp.
s —>s, conj, s.

but English is primarily a right branching language, and one can avoid the problem with a
bit of contortion. Other languages, e.g. Japanese, which are primarily left-branching, have
grammars that include left-recursive rules almost exclusively, and so the Prolog search
strategy is totally unacceptable. " o

Natural Language! Processing:HO5 Page 1
it g .

CEMNER A e N N ey e

: L s e
3. Bottom-up parsing
| e

The left recursivity problem can be solved by the use of a bottom-up parsing algorithm.
The simplest such algorithm is probably shift-reduce, which works as follows. Again, we
make use of a stack. Symbols from the input string are read in and stacked. Each time we
stack a symbol we look to see if there is a sequence of symbols on the top of the stack that
matches the right hand side of a grammar rule. If there is, we may perform a reduction,
that is, replace that string with the left hand symbol from the rule. If there is not, then
we must shift the next symbol from the input string onto the stack, and repeat the pro-
cess. i

As with Prolog's:t_op-down algdrithm. this one is non-deterministic. There may be several
rules whose right hand sides match the stack top. It may also be the case that although we
can perform a reduction, we in fact need to perform a shift for successful recognition.

Also note in passing that there are types of grammar which will also cause this algorithm
to cycle indefinitely, for instance, a grammar in which some symbol eventually derives
itself. Another problem occurs when the grammar contains empty productions, since we
can make an arbitrary number of reductions in which the empty string is reduced to itself.
Neither of these problems, however, are as restrictive on the form of grammar as the left-
recursive problem in top-down parsing.

The major drawback to this algorithm is one it shares with Prolog’s backtracking, which is
that time complexity of recognition is exponential in the length of the string. This is pre-
cisely because intermediate results computed on an unsuccessful search path are never
stored, but must, be recomputed even though the identical constituent may be discovered
on the successful path.

The solution to this problem is to move some of the computational complexity from the
control to the data structure. The space complexity of both backtracking parsers is linear
in the length of|the string, but by using a more complex data structure with a size
bounded by n2, we can reduce time complexity to polynomial. We will illustrate this
With a bottom-up tabular parser, in which we ensure that we build no constituent more
than once, at the expense of building some constituents that we do not need. Then we will
go on to generalisc;: the algorithm so that we build only what we need.

4. The Cocke—Ka;sa.mi—Younger Algorithm

The following is-a rational reconstruction of work by various people that is usually
referred to as the CKY algorithm. The idea is to use a triangular matrix, from 0 to n,
where n is the length of the string being parsed. This matrix is called a chart, or well-
formed substring table (wfst), and its indices correspond to the positions between the
words in the sentence. The process of recognition is one of systematically filling in this
matrix, so that there is an entry C € chart(i,j) if there is a constituent of type C spanning
from position i to' position j. The matrix is triangular since no constituent ends before it
starts. Obviously, then, recognition is successful if the final chart has the distinguished
symbol s € chart(O,n). ‘

‘To illustrate the Qorkings of the algorithm, we first assume that the grammar is in a form
in which all rules have at most two symbols on their right hand sides. Later, we will see
how this constraint can be relaxed. A , :

[TR el B e - .
To compute an entry in the chart we use the equation:

Natural Languagef Processing:HOS o ' _ Page 2

Z'D’c N / & 6/4 5" o ﬁ & jmmwwf

\AV\\OV‘
» \

| C}Zdrt‘(t.j)— Uchart(r.,k)*chart(k,j)
l' ' R L iy ._7‘/l¢<} L .)

where ‘a * B’ combines « and 8 accordmg to the rules of the grammar. That is, it returns
the set of phrases whose left daughter is from o and whose right daughter is from 8. This
algorithm can be performed in O(n3) time by choosing all combinations of i,j and k, each
of which has n possxble values. The complexity of the invariant is constant in the length
of the input strmg Since it depends only on-the size of the grammar, it is known as the
grammar constant

One formulation of the algonthm is as follows

for j <—1tondo
chart(j-1,j) <- (Al A > word ;)
fori < j-1 dowxlno 0 do
chart(i,j) <- chart(i,j) U*chart(i.j)
for k <- i+l to j-1 do
chart(i,j) < chart(l,J) U {chart(l k) * chart(k,j)}

if s € chart(0,n) then _accep_t else reject

[T o R NN AR W P » e s 4T
Obviously one carfl envisage alternativeenurneratiori orders, but in practice this makes lit-
tle difference to the efficiency of the algorithm.

An interesting pomt to notice in passmg is the strong sxmxlarxty between this algorithm
and matrix multlphcatxon. whxch orxgmates in the sxmllarxty of the invariants, viz:

; , e
|

- cha_r‘t'(i ,j)='Uchart(uc)*chart(k.j)
: k

¢y =2auby
Sk
|

Also note that nothing hmg&s on any particular way that we may care to represent the
chart pictorially. Typically, computer scientists draw the matrix as such; computational
linguists use a graph notation, in which the spaces between words are the vertices of the
graph, and an edge labelled with C spans from vertex i to vertex j just in case C €
chart(i,j). '
This algorithm is breadth—ﬁrst that 1s. it bullds all constituents spannmg a glven portion
of the input strmg before usmg any of them to buxld a larger constltuent

In fact, one of the drawbacks of the bottom—up strategy is that all constxtuents that are
licensed by the grammar are built, regardless of whether they could be incorporated into a
complete parse, that is, the algorithm is insufficently goal-driven. This problem will be
rectified in a later section.

I will give an exarrilplecbf ‘this algorithm running on the following grammar:

n—they v-—rare n = flying

v = flying a=— ﬂymg n = planes

S = np vp vp—*vnp Vp“'VVp\-' np—'n
np = ap np np—'vp ap=a vpov

Natural Languagef Processing:ﬁOS - S _ , Page 3

Unlsz

5. Dotted Rules
This algorithm assumes grammar rules have at most two symbols on their right-hand

sides, whereas the sort of grammars that we want to write might contain rules of the
form: ' : o y

vp —> v[ditrans], inp, Pp-
vp —> Vlditrans], np, np.
vp => V[raising], np, vp.

WAL W . O

* To generalise the above algorithm to work with grammars that have more than two sym-
bols on their right hand sides, we introduce the notion of a dotted rule. The dotted rule is -

an entry in the chart, i.e. a type of edge, that embodies the idea of a partially found con-
stituent. Instead of the multiplication step combining complete constituents according to
the grammar, it combines one partial and one complete constituent according to informa-
tion in the edges themselves. ' ~

¢

' OIS - . "

So, the dotted rule indicates how much of a constituent has been found by taking a rule of
the grammar and putting a dot between what has been found and what is yet to be found.
Examples are: .

vp=.wnppp |
Vp —*V.np pp .
Vp =V np. pp i
Vp = Vv np pp. '

The first of these represents i"vp of which nothing has yet been. found, and the last a vp
which is complete{. We use .vp and vp. as abbreviations for these respectively. The other

two represent vps:in various stages of completion. The multiplication rule now just takes
the following form:

. i o - \
A-aXB*X=A-aX.p %

-yes . w1 w -

§ T T R L AR T T T T W ; ;
where A is a non-terminal, X is a terminal or non-terminal, and o and B are any string of
terminals and non-terminals, possibly empty. Possible instances of the rule are:

Vp = .vnp pp*v. - vp-*v np 'pl;
VP = V. np pp * np. = vp = v np. pp
VP =V np. pp * pp. = vp —“Vvaoppp.

. A P e T . foue e

The problem we have now is how dotted rules gét into the chart in the first place, and we

- will discuss aIterné.tive approaches to this below.

| Wt v a0

