- AI2 Natural Language Practical Exercise 1

To be handed in: Friday, 7th March 1586

The object of this exercise is to construct a program which can accept assertions like:

Bill is & student.

Fred is ambitious.

If somebody is ambitious then he is industrious.
Somebody is clever if he is & student and he is industrious.
Bill is ambitious.

and answer questions like:

Is Fred industrious? (Answer: yes)
Is he clever? (Answer: no}
Is somebody clever? (Answer: yes, Bill)

Assertions will be translated into Prolog clauses and inserted into the Prolog database, and
questions will be translated into Prolog goals and evaluated by Prolog. Since all the inference
required wili be done automatically by Proleg, your program will only have to perform the
translation from English into Prolog.

Your program should handle assertions of the following general forms:
e if Stmtl and ... and StmtN then Stmt.

e Stmt if Stmtl and ... and StmtN.
e Stmt.

where each statement (stmt) may take the forms:

» Noun is Adjective
e Noun is a Thing
e Noun is an Thing

and & noun is one of:

e a proper name (like Bill)
e somebody
e he

In English, there are many cases in which it is difficult to decide what a pronoun like “he”
refers to. For simplicity, assume that *he” will always refer to the subject (i.e. the noun) of
the most recent statement or question.

Questions may take any of the forms:

e is Noun Adjective?
e is Noun a Thing? -
e is Noun an Thing?

Don't bother checking that “a” and “an™ are used properly in statements and questions; “Is
Fred an student” should be an acceptable question. If you wish, you may require that proper

nouns, “things”, and adjectives are taken from some fixed vocabulary, as long as your program
is capable of producing the sample session below.

Step 1: Construct a context-free grammar for this language.

Step 2: Decide what the result of the translation should be for each form of Noun, Statement,

Question, etc. The sample output below should provide some clues. How will you handle
“he”? What about “somebody™?

Step 3: Write the program.

In the file /ai/ai2teack/nl/pracl.tools you will find definitions of the following handy
predicates:

assertclanes(C) Prints the clause C and adds it to the
Prolog database.

evalquery(G) Uses the term G as a goal to query the
database and prints the result.

read_in(S) Reads a sentence ending in . or 7 and
produces (in §) a list of the words in
lower case.

You will probably find Prolog grammar rules useful (see the notes from Prolog lecture 7),
although you don’t have to use them. If you do use them, you will need to use extra arguments
to hold the result of the translation (see section 7.7 of the Prolog lecture notes) and you
will probably need to add arbitrary Prolog goals (section 7.8). Try writing grammar rules to
recognize the language first and then augment them to perform the translation.

In order to translate assertions into Prolog clauses and questions into Prolog terms, you
will need to use the infix predicate “=..*. The goal: *

M =., [Functor, Argumentl, ..., ArgumentN]
instantiates M to the Prolog term:

Functor(Azgumentl,... ,ArgunentN)

(Be careful: the *..® in *=..” is part of the predicate name, while the %...” between
Argumentl and ArgumentN indicates repetition.) A clause is just a term with functor “:-"

and the “,” is also just a functor, so the clause:

bappy(P) :- man(P), rich(P)}, famous(P).

is just a convenient way of writing the following term:



*:=*(happy(P),
', " (man(P),
*,"(rich(P) .famous(P))})

(Prolog seems to dislike lists like [":-", ...], and s0 when using “=.." to build clauses
you need to say “N =.. [{":-'}, ...]".) The clause “happy(bill).” is an abbreviation for
“happy(bill) :- true.”

?- converse.

>> Bill is a student.

asserting: student(bill) :- true

»>> Fred is ambitious.

asserting: ambitious(fred) :- true

>> If somebody is ambiticus then he is industrious.

agserting: industricus(_442) :- ambitiouam(_442)

>> Somebody is clever if he is a student and he is industrious.
asserting: clever{(_744) :- student(_744), industrious{_744)

>> Bill is ambitious.

asserting: ambitious(bill) :- true

>> Is Fred industrious?

evaluating: industrious(fred) ===> yes

>> Is he clever?

evaluating: clever(fred) ===> po

>> Is somebody clever?

evaluating: clever(_1226) ===> yes, bill

>>



