" Lecture 4 Susmary Page 1 8th Oatoder

1 introduction: Wny Lesrn Prolog?
Prolby ie PROgraming in LOGLo
" Prolog s based on First Oréer Predicate Logto.
Phadioate Logio in thst St has a set of pradicate sysbols.

First Order in that there i3 no means of reasoning provided for “talking

about® the pradicstes themselves.

Prolog was originally dewloped at the University of Marseilles by Alain

Colnerauer and his group adout 1970. °

Prolog has repidly gained in popularity over the last five years. The current
interest in Prolog partly atems froa the Japaness Fifth Ganeration Project's:
declsfon to adopt DIC-10 Prolog as the core language which was to be developed

further to meet their own requiresents..
1.1 ¥nat Is So Useful Adout Programming In Logio?
A reasonable number of spplications have been found, Thess include:

Autooatic Theores Proving

Progran Verification

Program Transforsstion

Planning

Ceoapiler Writing

Intelligent Knowledgza Based Systems
Natural Langusge Proceasing

Expert Systeas

1.2 Duclarative Vs Procedural Prograsming

Procesdural programeing regquires that the programmer tell the computer what to
do. That s, how to get the output for the range of required inputs. The

programmer must know an appropridte algorithm.

Declarative programoing requires 2 more descriptive style, The prograsmer

must know wvhat relationships hold between various entities.
1.3 Program Verification

. We guarantee that a completed progras is actually correct. That (s,
‘ogram produces the desired (and only the desired) responses. This

. the sxistence of some specification of the desired behaviour.

.4 write the program specificatfon in full first order predicate Logic.
«--«111 find a Logic Interpreter wvhich executes the specification. There is a

proviso: we still need to guarantes that the specification is not faulty.

Unfortunately, Pure Prolog uses Horn Clause notation which is not as

expraasive as full first order predicate logic.

12 Program Synthests - Staple View

We write the specification in Horn Clause form. The specification is
iamodiately executadble but inefficient. We transform the program to a more

erficient form.

2 Knowledge Representation
2.1 Propositional Calculus)
Based on atatements which have truth values (True or False).

The calculus determines the truth values associated with certain statements
foraed from "atomic” statements. That is:

If p stands for "fred is rich® and q for "fred 1is tall" then we my form
statements such as:

N porq
pandq
b p logically implies q
/L | P 13 logically equivalent to q
not p
The Problem

Ir plsnnda for “All dogs are smelly® then we cannot prove that "my dog is
Smelly”™

We need to be able to get at the structure and meaning of statements.
2.2 First Order Predicate Calculus

If "The capital of France is Paris® we can represent.. thls in Predicate
Calculus form as:

france has_capital paris

We-have a binary relationship {two things are related) written in infix form.
The relationship (or predicate) has been given the name *has_capital” -hencs
We say that the predicate nase {3 “has capltu'

and in Prolog form by auch as:
has_capital(france,paris). e s

where wo write & prefix fors and say that the relationship takes two
argusenta.

Note that, if the name of an odbject starts with a lower case letter then we

refer to a aspecific object. Also, thers must bde no space dbetween the

pr.dlcato nase and the left bracket "(®. The whole thing must also end {n a
", .

2.3 Prolog Atces
1f ve have
lovea(Jjane,jim).
then "Jane® and "fio* are atces. In each case, wa refer to a specific object.

Als30, "loves®™ happens to be an atom too because it refers to a apecific
relationship.

Because Frolog 13 modelled on firat order predicate logic all predicate names
must be atoas.

Lecture 1 Sumasry Page 2 1 th Ottover

1.2 Irolog Is An "Al" Languige

Prolog is an "Artifiolal Intelligence™ programming language. Up ¢ me2s)

recently, If you used Prolog then, generally .pnl(lu. you were writing an AI

{arcifieial Intellipence) progres.

What festures sust an "AI® language have? There are two types of answers ome
descriding the features required that are not built Into such languages as
BASIC, FORTEAN, ALGOL, PASCAL and the other descriding the festures required

to do the work that interests Al researchers, |

1.6 Prograss As Data

It 13 bdelioved that one of the requiresents of lnulunnt behaviowr 1is the

ability to reflect on one's own thinking.

|
By an analogy, we may reasonably require that, for Artifiocial Intelligence
research, . we need programming languages that' can be used to reason sbext

prograns. Prolog permits the programser to do this.
1.1 Ihe Prolog Courso: Wnat You Will Learn
You are expected to learn about:

The Syntax of Prolog

The Declarative Semantics of Prolog

The Procedural Semantics of Prolog

al3o something about |

Search Strategies |

Inference)

Pattern Matching
Parsing using Prolog

1.8 Organisation Details

This series of lectures i» designed to provide an| lm‘oml introduction to the

resainder of the oeurn. 1

|

In all, there will be twelve lectures [inemdlng r.hll ont). three tutorials

and three practical nnionl.

As you probably know, towards the end of the year: you will be expected to

choose & projsct on which to work which will be wnitten in Prolog.

Lecture 2 Summary Page 2 10th October

|
|
)
Thers are other atoms -including Integers, real numbers and certain other

entities, |

|
2.3 Goals and Clauses ! -

i

love:{jana.ul 1s a
loves(Jjane,jim}. is a fo it} clause

'

2.5 Disjunctions ,

A predicate may be defined by a set of clauses with the sams prudlutc naae
and the same number of arguments. N

squared(1,1). |
squared(2,%). :
squared(3,9).

Here i3 the same written as a (sort of) OR tree

squared(1,1) asquared(2,8) squired(3,9)
2.6 Rules
The format is:

divisidble by two(x}:~
even{X).

This 1s a (Non Untt) Clause. |

The head 13 "divisible_by_two(X)" and the bdody is 'pvan[x]" . =meven(X)"
sometimes referred to as a subgoal. |

Only one goal is allowed in the head. Any number of subgoals may be In the
body of the rule. i
!

2.7 Sesantics i
i
Here 13 an informal version of the procedural smnucs for the example above:

If we can find 2 value of X that satisfies the goal “even x)" then we have
found a mnbor that satisfies the goal "divisible by tvo[x

The declarative semantics.

If ve can prove that X is “even" then we Mv:o proved that X ds
"divisible by two". i
2.8 The Logical Variable |
If an object {3 referred to by a name starting with a 'upu:al letter then the
object has the status of a logical variable. In the abovn rule thers are two

references to X. All this means {3 that the two references are to the saze
object ~whatever that object 1is. |

The scope rule for Prolog is m-t tyvo uses of an mnum naze for a logical
variable only nly refer tc the saze object if the una an within a single clause.
Therefore In i

|

7= yonan(jane).
Prolog's Search Strategy
Quaries end Disjunotions

When Irolog is entsred we are at
noraally sxpects queries It printa

at t ovel
1o lewl, Now think about how the search space might appe
reprasentation. The tree sight look like:

and expsots you to type In a single gosl. Perhips we woold like to ‘detersine

san(fr@d) woman{jane) woman(joan)
In this ocase we would type this {n and see {your typing mnderlined):

7= woman(jane).
Now "7= wossn(Jane).” 1s also a olause,

We see that the search wuld sig 2ag aorocas
ratopping when we £ind the solution.

3.2 A Siaple Conjunation

Now to look at a goal which requires the soly
set of facts and one rule.

Essentially, s olause with an eapty

We now have to f£ind out "if Jean is happy™.
the facts and rules known by Prolog to see if we can fimd out whether this is
Here are soae facts:

To do this we must gearch through

wealthy(Person).
We shall ask whether "jean is happy".

In order to solve this goal Prolog is confronted with a search problem which
How should Prolog sesrch through the set of 2~ happy(Jjean).

(dlajunctlui clauses to find that {t {s the case that "jane 13 & woman"?

ia trivial in this oase.

Such a question {s irrelevant at the level of predicate calculus. We just do
not want to know how things are done. It is sufficient that Prolog can find a
Nevertheless, Prolog {5 not pure Cirst order predicate calculus
we think it important that you face up to this fairly early on.

The ansver is simple.

Prolog aearches through the set of clauses In the same
vay that we read (in the west).

That 1is, fros top to dottom. Firat, Prolog

We call this satching process unification.
logical variable "Person® gets bound to the atom ®jean”.
*bound” as "{s temporar{ly identifled with“,

it s obvious that the next olause
>Frcm now oa we will never consider

This is fairly obvious to usl
man(fred). doesn't match either.
matching clauses whose predicate names (and arities] differ.

§ then comes to look at the third clause and {t finds what we want. All
we see (for the whole of our activity) is: .

Lecture 2 Suzmary
Lecture 2 Sumzary

wise{Person),woman(Person).

the two mentions of X do not necessarily refer to the same object.

Rules and Conjunctions
A pan 13 happy if he ia rich and famous

healthy(P) woman{P) wealthy(P) wosan(P} wise(P)

The whole of the above 13 a {non un{t) single clause.
It has three subgoals in its body.
The logical varfable "Person" refers to the same object.

Here {3 an AWD tree that represents the above.

man(Person) rich(Person) famous(Person)

2.10 Rules and Disjunctions

You are happy i{f you are healthy, wealthy or wise.

healthy(Person).

wealthy(Person).

The pradicate naze "happy" i3 known as a functor.
The functor “happy" has one argument.

It has one arguzent -we say its arity {s 1.
The pradicate *happy/i" i{s defined by thee clauses.

2.11 DBoth Disjunctions and Conjunctions

healthy(Person),wcman(Parson).

wealthy(Person),voaan(Peracn).

]
i
ar ueing the AND/OR tree "

i
|

E”" from left to rigee

ing of two subgoals. Kers is our

:tor-lnn interaction:

i
|

Now why is this the case? We said that we would m:t bother with olauses with
differing predicate names. Prolog therefors has o

nly one choice ~to try using
It has to satch: |

i

|
Wnat happens hare {5 that
You could paraphrase

| .
To solve our probles, Prolog sust aet up two subgoals. But we must make sure
*Person” is a logical variable, that ;ouryumro in the rule that
"Person” occurs we will replace "Person” by "jean".

|
|
1
|

Again, we can foras an AND/OR tree which shows the a‘truct

S N S — __.-__h — ————

ure of the definition

! waman(P)

Lecture 3 Summsry Page 3

11th Octoder

S0 the two subgoals ares

- mﬁ;ﬂn)

Hare we oome to our next prodlem. 1In whioh order should Prolog try to eolve
these sudgoals? Of oourse, in predioate loglo, thers should be no need to
worry sbout the order. 1t sakes no differance =thsrefors we should mot need
to know how Prolog does the searohing. :
Prolog is not quite first order loglo yet. 80 we will eventuslly nesd to know
what goss on., The answer 1s that the standard way to choose the sudgozl to
work on first 1s again based on the way we read (in the west)! We try to
solve the sudbgoel *woman(jean)® and then the subgoal *weaithy(Jesn)®.

There is only one possible satch for 'vmn(:nn]'n our subgoal 1s successful.
However, wa are not finished untll we can f£ind out if "wealthy(jean)*.

There {s & possidle match but we cannot unify

wealthy{fred)
with

wealthy{jean)
S0 Prolog oanoot solve our top level goal =-and reports this back to us.
Things would de wmuch more complicated {f thers were any other possibdle
matches. Now to look at the AND/OR tree representation of the search space.
Here Lt i3: .

bappy(Person)

wealthy(Person)

woman(jean) wealthy(fred) [wan(fred)}

“hat it becomes very clear that knowing that "fred
. .'n* {s not going to be of any use.
SSV. se that the way Prolog searches the tree for AND cholces is to zig
S " left to right across the page! This 13 & bit like how it processes

the _«0ices except that Prolog must satisfy all the AND choices at a node
bofore going on.

3.3 Conjunctions and Disjunctions

Wo are now ready for the whole thing: let us go back to the original set of
fagts and rules.

woman(jean).

wosan(Jane).
woman(joan).

Lecture 3 Summary Page 5
the conjunction "woman(jim)" is attempted it fails. Prolog now backtracks.

11th October

It raverses along the path through the tree until it can find a place vnefn
there vas an alternative solution.

Of course, Prolog resembers to unbind any variables at the places in the tree
where they were bound.

In the exasmple we are using we try to resolve the pgoal 'hoalthy(?]‘

=succeeding with P bound to jane. Now the conjunction can be satisfied as we

»~. . _~wan{jane)*. Return to top level with P bound to Jane to report
o Wat follows is what appears on the acreen:

. _ippy(2).

- _ine
yes
Basically, trying to follow the behaviour of Prolog around the text of the

program can be very messy. seeing how Prolog might execute the search is much
more ccherent but it requires soae effort before getting the benefit.

T e it et 14

Lecture 3 Sumasry Page & ’ 11th Ootoder
woman(pat).
vise(sqan). |

wealthy(Jane).
wealthy{jta).

hulthy[,’ln).

nealthy(jane).

healthy{jean).

and consider tho solution of the goal
tappy(Jean) :

here is the AND/OR tree again: 1

neaifhy(P) woaan(r) wealthy(?)
and the goal succeeds. |
Note that

1. Both the subgosl healthy(jean) and mn{:un)
have to succeed. i

2. We then return to the top level.]
Now consider tho top level goal of |
happy(Joan). |
After failing hoalthy[joan) Prolog does not try to solve wosan(joan). It goes
on to try to solve wealthy(joan) -uhich fails. Next, Prolog tries wise(joan)
~and fails. Now back to top level to report the failure to satisfy the goal.

Wow consider i

happy(P) |

a3 the top level goal. :
happy(P)

e{P) waaan(P)

healthy(P) wodan(P) wealthy(P) woman(P)

Much sore comifcated. First, healthy(P) succeeds binding P to Jim but when

i
|
)

- Recursion, Lists and Uniffcation

L5 R-Eur:ion
An example recursive program:

talks_about(4A,B):~ |
knows(A,B).

talks_about(P,R):~ i
knows(P,Q), |
talks_about(Q,R). |

If you look at the ARD/CR tree of the search space ylou can see that

a) There Is a subtree which {s the same shape | as the

whole tree reflecting the single ncurslvq eall to o mam m

talks_about. |
- |

b) The solution of a given problem depends on beling

able to atop recursing at some point. Because the

leftoost path down the tree is not infinite in 1léngth

1t is reasonable to hope for a solution. i

talks_about(X,Y) |

knovs(X,Y) khows{x,z) taks_lhout.(z.!)i

wndus(2,21) |

knovs(2,Y) talks_ about(z1,Y)

In searching the tree with these facts:

knows(b111, Jane).
knows|{ jane,pat).
knows(jane,fred}. -
knows|frad,bill}.

{

using the goal
talks_about{X,Y)

i
|
|
i
|

If we ask for repeated solutions to this goal, we seb + in the order shown,

)
X= bill Y= jane |
X« jane Y= pat j
X= jane Ye fred N i
X« fred Ye bill !
X bill Y« pat :

|

The search strategy implies that Prolog keep on trying to satisfy the subgoal
"knows(X,Y}* unt{l there are no more solutions to this. Prolog then finds
that, in tho gsecond clause for talks_about, | it can satlafy the
*talks_about{X, !I' ’wx by first finding a third party who X knows. It
satisfles “knows(X,Z)* with X«bill, Z=jane and then | recurses looking for a
solution to the goal “talks_about{jane,Z)*. It finds the solution by matching
againat the socond knows clause, | .

The above ARD/OR tree was formed by taking the .top 1:nu: goal and, for each

tacturo ¥ Sussary Page 2) 15th October

cleuse with the same predicste nase and erity, oresting an OR uhelonml‘ndm. 2 Ine Box Model of Execution and Lists .
the matched olauses each
to subgorls constructed from the bodies of [} . 5.1 Thetex 1 -0 1e

subgoal in & conjunotion of subgoals we create an AND cholce.

Note that we have ploked up oertsin relationships holding between the 7~ parent(X,Y),Xef.
(lollﬂl) variables but we have had to do scwe renaming to distinguish between
attempts to solve subgoals of the forw ®talks lbout(A.l)" recursively.

~tho 1ist formed by deleting the head is the TAIL FAIL: asf

L] 1]
CALI. | ot CALL I
32 Lists I i e ! | ,
) Kow to construct/deconstruot s 1ist w'on : 5: ' , I
- ! A » (S ¢ (r—
[xjx] = {£.r.0,0] . ! nzno "y l
¥i11 result in . RE00
x= ¢ Here i3 the flow of controlt i
known HEAD CALL: parent(X,Y)
«the first element of the list is as the gt parent(s,b) '
,.[r'..dl CALL: a~f {
]

REDO: parent|X,Y

b) The Bmpty List - ZXIT: parent{o,d]
Simply written . CALL: €-f |
0 FAIL: €=f !

i

. . REDO: parent(X,Y) !

o) Sowe Possible Matches FAIL: parent(X.Y) *]

. a,dj= b fails
;. b},!‘ i] fatls Below, we have a snapshot of how tha execution takes place “taken" at the
soment when control forces an attempt to backtrack to find another solution to

. t ds with
3 lh.'“'.'u] ;u::“t: ‘I‘a.l,nt] the goal "parent(X,Y)".
. a[a,b,0,d eds with
) (x.xl:l [a,b,0.0] Swessie el . parent(X,Y),Xaf
5. [xjx)-{] fails ~the empty 1list

can't be deconstructed
. lll!l-l[-.lb-e;].d] lgfm:;ﬁ‘ rela)
8) A Necursive Program Using Lists

print_a_1ist Pi!‘]]t-

bad

me s _11st !

»r ritalH parent{a,b) parent{c,d) |
print_a u-z(t) {

N3 Uniffcation 5.2 List Processing |
Unification i3 the name given to the way Prolog does {ts satching. The finfix = 5.2.1 Progras Patterns |
predicate =/2 tries to unify both its arguments. Here are some possible |
unifications a) Test for Existence |
i

1. Xefred succeeds nested llst([nudl'uu])x- |

|

2. Jancefred fails because you can't sublist{Hea
: match two distinct atoas nested nn([mc]nu];.-

3. Yefred,X=Y succesds with Xefred, Y=fred nested 1ist{Tail
. - sublist([Head[Ta11]).

u, Xehappy(jim) succeeds

Lacture 5 Suscary Page 2 17th October . .]
. Lecture 5 Summary Page 3 ’ 17th October

b) Test All Elesents
~ b) Building Structure on the "Way Down"

al)_of ' :
all okul{eadll'au] - nveru[[]

one_ ok Head), reverse({H|T},X

all ¢ ok Tail). N"rse(‘r. n]x] 1).

|
]
i
|
|
|
]
plus def{nition of one_ok/1. This {s left a3 an exaaple for you to try to undarsta;nu.
) |
i

@) Return a Result -Having Procsssed One Element

3:3 A Proof Tree t .

everything_after_a([a|Result] Result). i |
everything_ after a{[ﬂeadh’au ,Ans):- I , h‘lvle([]ﬂ]#) ;

. everything_after_a(Tail,Ans}. x=[12[12}-(3,6]) (
' | (urim]-(r.2)]
d) Return a Result -Having Processed All Elements ' H ﬂ [z] |
° |
u-lylo{[] i . . |

triple([H1{TY],{H2,T2]):~
tple procLs :(n.uz),]' 2 g3 3%H1 triple(T1,12) |
u-xpn[ﬂ 12). B2+3 : 'rz-[uzzhzz] (6]

(2| m12]e(2)
vhere process/1 takes H1 as fnput and outputs H2) 2::-%] |

5.2.2 Calling Patterns

H22 1s 3%H12 triple(T12,T22)
For any given predicate with arity greater than 0, each argument may be H22+6 T22+[]
intended to have one of three calling patterns:

Input ' : .

Output tripre((1.[1)
Indeterainate I

5.2.3 Arithmetic fl ;

To laplement a successor relation, 5.3 Conversations’ . :

auccessor(X,¥):~ talk-) see e | |

YisX ¢ 1. rna_:n{s«nance). |) i

. process Sengenca Reply), | |

whero {t s intended that /2 takes the first argument as {nput and write_out(Reply), | :

puts the arg which is to be the next largest integer. “”" | f

a) rud in/1 |

In the abore, note that X + l {s evaluated. I

/T Converts characters read in to a 1ist of Prolog atoms. Therefore "{ hope you
: are well." turns into *[1,hope,you,are,well,.]". Ho|tc the *.* as an atoa.

This means that you aust use the stated clulng ‘pattern as to :ry %o solve the
goal "successor(X,7)" will lead to trying to evaluate X ¢ | with X unbound.

Therefore 13/2 must always be called with its second argument as an arithmetic .) write out/y |
expression which has any variables already bound.

Uses write/1 to vrlu out the Reply -which s a llae. “So '[l.u.ttno,.]'
appears as "{ am fine.". |

5.2.3 Reconstructing Lists

a) Building Structure on the "Way Back® ¢) process/2
H [Does some eeapul;ary tidying using oawap/2 and :then uses a generator
- pick up_transfora/2 to produce a possidble transformation rule which enadles
ertplal i "] ["2) The SotTried Lnpus to be catched againat {ts output.| Hote that amy veriables
. h'lnh ﬂ.ﬁ) . in the form of the output rule will only be bound after the satch process.

i
:
i
i
i
i

Lectwe 5 Summery Page & gm Oatober

process{1n,0ut)s-

swap(In,Modtfledn),
. plok_up_transfora| PossidleRule,Out), '

. matofi(PGssibletule, ModifiedIn).
[1F %
Sone almple alterations.

m[[l].‘mi;.

wap(fyou},{1]).

woap({you,are),{1,0a]).
o) pick wp transtora/2

Bera 1t an exasple rule.

how, 1ong, have, you,baen,X,?]).

plok_up_tranaforaf[you,are,X,.],
] 13,X,alvays,X,?}).

piek_up_transfors([X, 18,Y.],
£) matens2

1f the wodified {nput were '[you.lro.llnyz' this would matoh the first
argumest of the first tranaformation rule *[you,are,X]" , X ought to be bound
to ®silly* and then the output half of the rule should produce
'[m.lm.mu,you.bnn.suly.7]'. An example matoher might de:

mateh(X,X).

but it cannot cope with *[you,are,very,silly]" as this matcher can only match
8 logical variadble with a single element of the list. A better one:

match([Head|Rest], Fragaent)s~
ppend(Head,Leftover,Fraguent),
match(Rest,Leftover).

mateh{[Head|Rest], [Head|Laftover])e=

match(Rest,Laftover),
waton([].[]).
g) fimalyy
Just a mote about some low level I/0 predicates:
., .‘_0(1) unifies X with next non blank printable character
{in ASCII code) froe current fnput atresa
) unifies X with next character (in°ASCII} fros
P current input stream
&) puts a character on to the current output streas.

X must be bound to a legal ASCII code

Lecture 6 Suaaary Page 2
6.2 The Probles of Negation
Coaaider

un}_ﬂl).

man(fred).

27~ man{bert).

. ok Prolog to solve a goal for which there is no clause then we assuze

A .= have provided Prolog with all the necessary data to solve the problem.
... the Closed World Assumption.

“z Dot/
This takes a Prolog goal as its argument.,
7= not(man(jim)).
vill succeed if "man{j{m)" fafls and will fail if *man(jin)" succeeds.
§6.2.2 Negatton a3 Fatlure

18th October

- . > ' =

§ tors control nd the rovien of Negatton
8.1 Zove Uneful Predicstes for Control |
8 trueg
Alvays sucaeods.

tather{jim,fred).

1
\
1
8
)
i

1s logically equivalent to
father(jin, fred):=~
4

rue. |

That is, any unit olauss is equivalent to a mon ‘m,‘ clause with a asingle
aubgoal *true® in the . :

b) fa12/0
Alvays fails. i

1tves_torever(X):-
fail,

ia intended to mean that any attempt to find an ob.io:ct X that 1ives forever
will fatl. '

gj repeat/0 |

If it 1s asked to REDO then it will keep on nuucnaliu.

testin !
repeat, 1
write(hallo), .
fail. :

|
The goal “test®™ produces the output: !

hellohellohellohellohellohellohellohellohello.. .
repeat/0 behaves as if it were defined in Prolog as:.

repoat. ' '
repeat:~ ,
repest. '
a) eall/1

The goal 'elll(i)" will call the interprater as if the systes were given the
goal "X". Therefore X must be bound to a legal Prolog goal.

2~ oall{write(hello]]. i

hello
yes

Lecture & Summary Page 3 18th October

write(even). .

plus set of ‘facts defining odd/1 i

1
Provides extra expressivity as we do not need a set of facts o define even/i.
6.3 Some Abstract Progras Schemata - !
a) Test - Process -’
happy(X):- ;
testi(x)
processt (x].)
happy(X):- i
test2(x)
prooeuzfx).

Contrast with
b) Test - Generate

select(X):=
generate(X},
test(X).

e wbn——h— §

man(jm).
man(fred).
woman(X):~

not(man(x)).

7~ wvoman(Jin).
no

To solve the goal "woman(Jim)* try solving "man(fim)". = This succeeds
rtherefore “woman{jinm)" fails. Similarly, "woman(jane)" succeeds. But there
13 a probles. Consider: '

7= wosan(X). . S

It succeeds If "man(X)* fails -but *man(X)" succeeds with X bound to jim. So
woman(X) fails and, because {t fafls, X cannot be bound to anything.

Ve czn read *?~ woman(X)* as a query "is there a woman?". Yet ws know that
voman(jane) succeeds. Therefore, this form of negation is not at all like
logical negation if the argument of not/1 is a goal with an undbound variadle.
Ser gection 6.8 for an extra cosmsent on this. :
130, *not(not(man(X)))" 1s not identical to "can(X)* aince the former will
succeed with X unbound while the latter will suscceed with X dound, in the
firat instance, to jim,

§$.2.3 Negation as a Form of Case Selection
parity(X)i=
odd{X]},
write{odd). oo
partty(¥):~
not(odd(x}),

¢) Commit

P S ——

find(x):~

. . yest(x]),
commit,
process(X).

plus clauses for find/1 etc ;
) |

d) satisfy once Only

Somet {mes, we would like a way of stopping frolog locking for other solutions.
Thart is, we want scme predicate to be deterainate. .
wemberchk(X, [X]r]):~ e e——
pake_determinate.
memberchk(X<[Y|2]):=
meaberchk(X,2).

@) Abandon Hope !

If we get to a position vhere we are certain that iwe vant to sive up trying to
find a solution: !

atteapt_solutfon(x):~ . D mmm e st cee o e
ppy(X)
dluatcrt!}.
abandon_atteapt.
We need ways of

COMMITting

Haking DETERMINATE

Lectura 6 Summary bage 3
ABANDONning & Goal

6.8 pore on Negation
The negation fsplemented 1o Prolog

18th October

not(san(x))
usually has the folloving sesantics: "it {s not the oase that thers exists an
objeot vhich is a man® shich ia equivalent to "for every object, It {8 not the

case that {t s a man". That la, the gosi "not{man(X)}* succeeds 1f thare no
known objects that were men -~thersfors no olauses for -nl

v

Lacture 7 Summary Page 1 22nd October

I Parsing in Prolog
Later on in the course, you will be involved in trying to face up to the
problem of parsing ordinary engllish language sentences. For this lecture, we
shall also be Interested In parsing sentences but we will 1look at the very
simplest examples.

First, wvhat do we vant the parser to do? We would like to know that a
sentence {3 correct according to the [reeogntsed) laws of english graammar.

The ball runs fast
is syntactically correct while

The man goes pubd
1s not as the verb “go* does {usually) not take a direct object.
Secondly, we may want to bulld up soas structure which describes the sentence
=~30 it would be worth returning, as a result of the parse, an expression which
represents the syntactic structure of the successfully parsed sentence.

Of course, we are not going to try to extract the meaning of the sentence 30
we will not consider attempting to build any sesantic structures.

7.1 Simple English Syntax

The of this siaspl will be such ies as N
nouns, verbs etc. Hore i3 a (top down) description:

Unit: sentence
Conatructed from: noun phrase followed by a verb phrase

Unit: noun phrase
Constructed froam: proper moun or -
° determiner followed by 2 noun

Unit: verbd phrase
Constructed from: verd or
verd followed by noun phrase

Unit: determiner
Exaaples: a, the

Unit: noun
Examples: man, cake

Unit verb:
Examples: ate

7.2 The Parse Tree

Here 10 a tree for
8 = the man ate the cake

with some coamon lbbl‘l:ll—t.lm in brackets.

|
|
i
|
|
i
|
i

Lecture 7 Summary Page 2

noun h/'\nrb hrase
/${) /\Qpl

22nd October

.g_‘.__.___.____.__.__ e e et et o e e e o e o e e+ e e

deterniner noun verd nounphrase
(det) I
the =an ate deterainer n
(det)

the -

7.3 First Atteapt at Parsing
We assume that we will parse sentences converted to l:lsl: format.

|
We use append/3 to glue two lists together. The idea'ls that append returns
the result of glueing takes fnput as lists in the tlrat and second argument
positions and returns the result {n the third pounnn.

sentence(s):~ |
append[NP,VPS U N,

noun, phrase NP},]
verd | _phra.u V)

P oeuoldon foun, KF),
deterainer(Det),
noun(Xoun).

verb_phrase(VP):~
append(Verb,NP,VP),
verd(Verd),
noun_phrase(NP).

deterniner(a])
do:emlner the)).
noun([man]}.
noun(| cake}).
verd nto]

Here is what happens to the query:
7= sentence([the,san,ate,the cake]). ‘

append/3 succeeds with NP=[], VP=[the,man,ate,the,cake]
noun_phrase/1 fails

append/3 succeeds with NPe{the], V P-[un.ltc.thn.uko]
noun_phrase/1 fails

append/3 succeeds with NP=[the,zan], vn-[.co.:m.ukc]
noun_phrase/! succeeds

verb_phrase/1 succeeds

I
This s all very well but the process of paraing 'lth!uilﬂ mathod is heavily
non deterministie. l .

!
Also, {t suffers from not being a very flexidle way of upruolng some
situations. For example, the problem of adjectivesi H
|
|

_____g.:'
®

- voeNesmty e] - _-pRuw vseTews" o

1.5 frolog Orasmar fules i
Prolog, a3 & convenience, will do most of the tedious work for you. What

“gture 7 Suzmary
P

s the quick fox

1s also & poun phrase, ' follows, is the vay you can take advantage of Prolog.
¥ @lght try to parse this Wind of noun phrass with the extra clause: This is hov we aan define the siwple graasar: ' 7 .
. ine - .
au_wl'll!(”)" sentence @ noun_phrase, varb_phrase. -
append(Det Bit NP}, noun_phrase —> determiner, nown.
“M::(l!‘l;" 0“::'1‘-'“] verb_phrase ==> verd, soun_pirase. '
e iNoun, 81t).) determiner . ==> [a].
adjectiva(Ads), determiner = [the]. :
noun{Xoun). noun ~> [man j i
. ' noun =) foske]. ;
A 1ittle ungainly,] : ' vard => {ate]. “ -
1.4 A Second Approach It 18 very easy to extend {f we want to inolude adjectives.
We now try an sppioach vhich 1s less non-deterministio. Ve will start by noun_phrase —> detersiner, adjectives, noun.
looking &ti adjectives ==> sdjective. I
adjectives =) esctive, adjectives.
sentence(In,0ut) ujocztn - f:guu]. L i
The 1dea is that sentence/2 takes in a 1ist of words as input, finds a legal We might later think sbout the orfdering of these rules and whether they
gsentence and returns & result consisting of the lnput list minus all the really capture the way ve use adjectives in general oonversation but not now.

that formed the legal sentence,
Essentially, the Prolog Gramsar Rule formulation is syntactic sugaring. This

Ve can dofine it: . _ seans that Prolog ensdles you to write {n:
uucw;g;lg').:‘;’ o(551). ‘ sentence - ==> noun phrase, verb_phrase. '
verb_phrase(s1,80). and Prolog turns this into:)
Here 13 0 rough semantics for sentence/2. sentence(s,S0):~ '

noun_phrase(s,st }, '

A sontence can be found at the front of a list of wards verb_phrase(81 ,%0).

if there-13 a noun phrase at the front of the list and

a verd phrese imoediately following. and
This declarative reading should help to bridge the gap between what we wmant to adjective = . 7
be a sentence and the procsdure for £inding a sentence.) {yourg} 1
into \
Here 18 the rest of the parasr: ;
adjeative(A,A0):~
roun_phrase (NP, HPO)1~ A 20).
s determiner{HP,NP1), v (A, young,%0)
noun{NP1,XPO). where 'C'/3 {3 a bullt In Prolog Predicate which 15 defined as If:
)
. hrease(VP,VPO)1~ ¢ {{ulr].8.1). 1
. " vard vrlvn}, : ¢ e s {{rjt].8,7) .
noun_phraae(VP1,vPo). 7.6 To Use the Grasmar Bules |
deterniner([a|Reat],Rest). . Set a goal of the fora :
dnun-mm‘-{[thilnont JRest). 808,
noun{ {man|Reat j,Rest). ' sentence([the,zan,ate,a,cake
noun| ukl|ﬁntLR|st). ([the,man,ate.a,¢ L) |
verd([ate{Rest],Reat). . and 2ot 88 :
As you can see, there is a rezarkable sameness about the rules vhich, once you . ' w
see what is going on, is fairly tedious to type in every time. So we turn to sentance |
& facflity that {s built in to Prolog: . |
. |
: . i ‘
|
| |
|
Lecture 7 Suamary Page 5 2204 Octoder Lecture 8 Summary Page 1 ; 24th October
or . { ‘
8 Trees and Extralogical Operations |
sentence([the,zan,ate,a,cake]) = - : |
8.1 Search Space | \
1.7 How to Extract a Parse Tree) A :
talks_about(X,¥):=]
We can add an extra argument which can be used to return a result. knows(X,Y). ,
. talks_about(X,Y):- i
sentence([[np,¥P],[vp,vP]]) - knows(X,2),]
noun_phrase{KP), talks_about(Z,Y). |
verb_phrase(VP}. |
. mun_phnul'f[det.oet ,[noun,Noun}]) —> talks about(X,Y) : -~
N deterniner(Det), . . | .
. noun(Noun). X i ; | .
,,Irllr[n.-r[ihe] - knods(X,¥) knows(X,Z) talks_about(Z,¥)
the). |
.'d 8o on !
! 1
What we have done above is declars predicates sentence/3, nocm phrase/3, knows(Z,Y) knows(Z,21) talks_about(21,Y)
verd_phrase/3, determiner/3 and so on. The explicit argument i3 the first and :
the two others are added when the clause is read in by Prolog. Basically, knows(a,b).
Prolog expands a gramzar rule with n ar into a corr ng clause knows(b,c). N\
with n+2 arguments, knows(b,d). '
So vhat structure is returned froam i . a) For a given tres, the tree has no existence prior !to the execution..
|
The result is: c) We must make it clearer as to what facts are unluablo as part of the

search space. R .
[[np.[[dnt.the].[noun.man]]].[vp,[... i
8.2 Tne Proof Tres
Not too easy to read! '
a) For Goal "talks_about(X,I)* !

sentence(Structure, [the,man,ate,a,cake],[]). b) We have only marked {n choices with possibly matching heads.
7.8 Adding Arbitrary Prolog Coals |

talks_about{X,Y) ~ e s v
Gramaar rules are simply expanded Prolog goals., We can insert arbditrary "i
Prolog subgoals on the right hand side of a gramsar rule but we mmt tell
Prolog that we do not want them expanded. For example, here {s a grammar rule knowa(X,Y) |
which parses a single character input and succeeds if the character is a X=a |
digit. It also returns the digit found. Y=d . - |

A b) For Goal “talks_about(a,c)”
{ x>a 28,
X =< 57, talks about{a,c)

D s X-18 . 1/‘\
The grammer rule locks for a character at the head of a 1list of input knonl a,c) knows(a,z) talks_about(Z,c) :

characters and succeeds {f the Prolog subgoals Jj
2=b - | -

X =< 57, ' ' : {
D is X-A8 }. know3(2Z,¢) 1

digit(p) --> ' |
succeed. Note that we assume we are working with ASCII codes for the .. |
characters and that the ASCII code for "O" {s 48 and for "9" {3 57. Also note |
the strange way of signifying "equal to or less than® as *=<", |
a) We have propagated all the top level bindings. This is fair enough.
¢ . ’

< mastas Y ragy < EEEpTRT

b) Seax that the Proof Tree does not oarry the same information as the BSearch
Tree.

0) Btriotly, we should not show the falled O ohojce.

8.1 Some Extralogical Control Predicates
We are looking for the solutions to problems posed in lecture 6.

comalt

wake_determinats

abandon_attespt
8.3.1 Commtt
Assuse we want to make Soocial Seourity Peyments. That is, “pay(X,X)* means
"pay the sum X to Y*.

pay(X,¥):-
british(x),
antitled(X,Detalls,Y).

pay(x,1)1-
eurcpean(Xx),
entitled(X,Detalls,Y).

If ycu check a person who {3 British and, for some reason, the subgoal
=gntitled(X,DFetails,Y)" falls then there is no point In checking If they are
"eurcpoan® (assuming that the sets of british and europeans are diajoint). we
want to be comaitted to the OR cholce for the pay/2 predicate.

The solution uses (cuk).

pay(x.1):

dritish(x),
1
entitled(X,Details,).
pay(X,¥):-
european(X),
1
entitied(x,Detatls,¥}.
8.3.2 Make Determinate
Conalder:
sum(1,1).
sum(N,Ans)=
N is N-1,
sun(N1,Ans1),
Ans i3 Ansi+N.
and the goal
2~ sum(2,X).

Here {a the proof tree:

Lecture 8 Summary Page A 24th Octoder

un(2,X)
lmlm]l N1 14 2-1 sum(Ni,Ans1) X i3 Ans1+2

Hi=1 é] X\~3

sus(1,1)
any attempt to resatisfy
1 will not recreate the dit . L.

of tree that went about
here previously.

8.3.3 Abandon Attempt
flere is a way of defining wcman/1 in terms of man/1.

voman(X):=
aan(X),
'.
fail. -
woman(X).
To solve for "woman(Jim)" we try *man(jim)". If that succeeds then we want to

abandon the attempt to prove *woman{jia)* without trying any other clauses for
woaan/t.

We call this the cut-fail technique,

The above i3 a special case of MNegation as Failure. Here s a possible
definition of not/1 using cut (1] and call/l.

not(Goal):=
call{Goal),
1 .

fatl,
not(Goal}.

+ & Constant 1s cne of:

Leoturs 8 Summary Page 3 2¥th Octover

{sua(f71)} M1 28 2=1 suk{Mi,Ans)) X 1s Anste2

L et / ,.,& | :
é] |

{sua(1,1)} i

]

The goalo in brackets should not atrictly be thers. | They are for explanstion
only. |

Wow 100k at the goal:) |

7= sum(2,X),fall.
0{2,X)

{sua7,1)] w1 43 2t

s

[sun{1,1)] %2 18 w1=1 m(uz.Ansz]:‘

1L

Prolog goes into a non terminating computation. We :vant to make sure that,
naving found a solution, Prolog never looks for another solution vis REDOing
the goal, Here is the solutlon. !

sun(N1,Ans1) X i3 Ansi+2

Anst s Ans2+N1

sun(1,1).
1.
sua(N,Ans)=
mn is N-1,
oun{N1,Ans1},
Ans 15 AnsieN.

The new proof tree:

|
|
l
i
|
|
i
|
|
|
]

i

Lecture 9 Summary Page 1~ . 25th October

s Prolog Syntax

Prolog Terms are one of:
Constant
Variable
Compound Term

9.1 Constants

Aton ~ o
Integer \
Real Number .

Atoss are made up of: - -

letters and digits AB...Zab...z01...9
signs =¥/, 788k
quoted s.trln;s ‘any old character'

Sormally, atoas start with a lower case letter. llot:a that, in a quoted atom,
you can include a "'" by prefixing it with another *'". So, to print a "' on
the screen you will need a goal like "write(****)n, | .

9.2 Variables |

Variadbles usually start with a capital letter. The only interesting exception
is the special anonymous variable written " _" and pronounced “underscore". In
the rule

test(_,2

2}y
avaluate

|
procesa(X,Y):= l
2,Y). i

sanerate)_. z),

the underscores refer to different unnamed vu-lableJ‘. " For example, “here’ are’
two versions of member/2. i

mbor{!.[x Y }
moaber(X,|Y{Z}):= l
meaber(X,2)
.eabcr{x. x|_1.
meader(X,| [Z)]:-
nember(X,2).
¥ote that, in the clause,

wother|{ ,X
tather(_,X

lmov_b_dt'h_pu'ontij) 1-

the underscores do not refer to the sase object. 'l’q’o reading i3 roughly that
*we know both the parents of X if lcnaom(nno nnl-wrhnt] 13 the mother of X
and scaeone olse i3 the father™.

Lecture 9 Sumary Pot 2 3%n _vusover

23 @mpound Tecws '

A Term 18 & funotor with a (fized) nuaber of argusents esch of which
u%io‘ Tera.

“ghie senne that we can arditrarily nest compound terms.

Yor somo sxseplest

fred
.0"{) principel functor = happy
1st argusent « & oonstant (atos) . .
5.X
owis) prinoipal functor e sum
18t arg t -]
2nd argusent =« variable
nat{happy(voman})
¢ principal functor = not
. 18t argument = gompound ters

Nesting ocmpound terms may be of use to the programmser. For exsaple, the
olause

fact(fred,10000).
is not as informative as
fuct(name(fred),salary(10000)).
which can be thought of as defining a PASCAL-=type record struoture.
9.4 (Compound) Terms as Trees
Take the oospound tern
santance{np(noun(frad)), vp{ verb(svixs)))
and coastruct & tree. Start by marking the root of the tree with the

principsl functor and draw a5 many arcs a3 the principle functor has
s. For sach of the arguments, repeat the above procedure.

‘ 1 1
uL.n . verd
g!-.g swins
Lecture 9 Sumsary Page A 25th October

The empty 1ist 1s referred to as [] or, sometimes, the atca *nil1" =-but the
Proleg you will use does not refer to the empty list as nil.

Familier Intersediate Campound Tern
List Motation Form - Form
] n{1
a cons(a,nt1)
b,a) . oons(h.(a” cons(b,cons{a,nt1)
c,b,a) cona(e,{b,2 eons(c,cons(b, cona{a,nf1}))

Now to represant the lists as trees -but we will distort them a 1ittle:

‘ [l {b,a] .
l b a

You will have noticed that I should have written "cons™ where I have written

".", Well, the truth is, Prolog doesn't use a meaningful nase for the

constructor cons/2. Really, the constructor is '.'/2. For explanation

purposes, I shall stick to using cons/2.

Nov for a mon—-flat list
[=,[v,c],a]
cons(a,[[b,c],a])
cona(a,cons(b.el.[d])

now |b,c] is cons(b,[c])
that s, cons(b, cons(c,nil))
cons(a,cons(cons(b,cons(c,ni1}), d]]
cons(a, cons(cons(b, cons{c,ni1)),cons(d,nt1)))
Now construct the tree using the mothod for drawing trees of compound terms.

e———{]

a | d —
i
b ¢

9.0 Bow To Glue Two Lists Together

We want to "glue”, say, [a,b] to [o,d,e] to give the result {a,b,c,d,e]. That
is, we want a predicate append/3 taking two lists as input and returning the
third argument as the required result.

Here are the two 1ists as trees:

(]

e 4 e

Lecture 9 Summary Page 3 25th October
2.5 Cospound Terss and Unificstion
Constder |

1~ hoppy(X)essd(3te).’ |

~falls, becsuse we know that it {s necessary that the| prinoipal funotors and
thelr arities are the ssee for unification to audosed.

7= data(X,salery(10000))edata(name{fred),r). |
, having the prinotpal functors (snd checked thet

the arities are the ssse] we recursively try to matoh corresponding argusents,
This generates two subgosls: d

X « name(fred)
salary(10000) & ¥

which both succeed.
8.6 The Ocours Check

This 1s an aside. If we try to unify two uvrullond we must generally avoid
situations whers the unification process tries to build infinite struotures.
Consider: 1
|
data(x,nome(X)). b
and trys '

7- data(Y,Y). .
First we succossfully satch the first arguments and Y 18 bound to X, Now we
try to satch Y with name(X)., Tnis imvolves "mf to unify nawe(X) with X.
What happens is an attespt to identify X with nase X) which yields a new
probles ~to match name(X) against name{nawe(X)) and 20 on.

To avoid this it ts Y. that, an 1s made to unify a
variable with a compound term, we check to see if the variadle 1s contained
within the struoture of the gompound term. ;
#ost prolog inplementations have deliberately missed out the occurs check
-mostly it is fonally very ve.

9.1 Lists Are Terss Too

If a 1ist 15 0 term then ft must be 2 compound term. What, then is {ts
principal functor? Lists can be any length -3d what is the arity of the
principle functor. '
for the moment only, let us suppose we have a gluing agent which glues an
element onto the front of a list. We know this lq‘ a reasonable supposition
becauss we already have a list destructor/constructor that works like this.

E:‘:ﬁ:é:l:; l[{::::uﬁl‘}lu-[b.c.d] :

Think of this constructor as a predicate cons/2. ilu:huo to build lists 1ike
this,

'

Lecture 9 Summary . Page S 25th October
]
{] i
Il |
a b

You @ight think of checking to see uhether *"cons([a,b),[c,d,e])* correctly -

represents the list * -.b.c.d,cl". Look at this scl‘utlon as a tree.
R s §| |
P .
e d e
—.—]
|

|
a b

It {s not the required

PR |

O A | !
L

a d e |
Let's try again: '
R e § |
I
o d e =

{1

|
a b

We could solve our problem in a Broadwu manner using our list deconstructor
as follows: - !
Lop off the head "a" of the first list "[t.b]"g -
Solve the subproblem of gluing *[b]* to "[c,d,e]"
Put the head "a" dack at the froat of the result
|
But we have a subprodblem to solve:

i

Lop off the head "b* of the first 1list "[b LA
Solve the subprodblem of gluing *[]* to *[c,d/e]"

_Put the head "a" back at the froat of the result

But we have a subproblem to solve: | .
Cluing "[J* to *[c.d,a]" 15 easy..the result s *[c,d,e]*

First thing to note 1s that there is a recuraive pro'cus going on. It can be

read as: !

Take the head off the first 1list and keep it until we have solved the
_ subproblem of gluing the rest of the first 1ist to the second liat. To solve

the subproblem slmply apply the same method. \

Once we are reduced to adding the espty 1ist to the second 1list, return the
solution =which 1s the second 1ist. Now, as the recuraion unwinds, the lopped

of £ heaGs are stuck back on in the correct order.
Nere 1s the code:
.pond“].l-ut? ,List2).

uualum SList2, m-as\.w.)l),-
append{Liats,List2,List3

3.9 DRsles sa Terms
Conaléer

mppy(x l:;m -

If this 1s & ters then it 1s & compound terw. Again, what is its prinoipel
funoter and its arity?

1. Principal Tunotor 12
™~

Usually, the funotor is written in infix form rather than the more usual
prefiz fora.

2. Mrity s
2
3. The above rule in prefix fors
“a=*(nappy(x),rion(x)).
But what sbout
! 1
hnnnyixi
wealth:
Tryisg to rewrite in prefix form: : .
“g=*(happy(X),vhatgoeshere?). '

Note that the coama ',' in this expresalon 13 an argument separator. In the
defixiion of happy/1 nbovo. the comsas are read as “and".

Yes,
noalthy(X),wealthy(X),wise(X).
13 also a compound tera with principal functor

and arity 2. Since we have to represent three subgoals and the arity of A

1s 2 we again have a nested compound term. The correct prefix form for ﬂll
example 18:

,(healtny(x),, * (wealthy(x),uiae{x})). .

Lecture 10 Summary Page 1 29th October

10 Input/Qutput
We will are going to discuss a nuaber of practical issues.

10,1 Testing a Predicate

Suppose that we want to test the predicate double/2.

aown(x !]:-
is 2%X.

To do this, we write a test predicate:

test:-
rnd[xl.
double(X,Y),
weite(Y),
nl.

Bere 13 a transcription of a “test™.

7= test, el oA -
la 2.

yes

M¥ote that, since we are using read/1 which only accepts valid Prolog terms
terminated by a "." followed by <RETURN> (in this case), we have to enter such

a3 “2.v.

Now to add a loop. The easy way is to recursively call test/0. We would
prefer, hovever, to put in a test so that we can abort the loop.

test:~

X \= =1,
double(X,¥),
write(Y),
nl,

test.

The predicate \=/2 is written in infix form and succeeds only if it fis
{epossible to unify the two. argusents (whxch may legitimately be any two
Prolog terms). Thus *X \e ¥", "2 \= X" and "X \= 2" all fail vhile “fred \e
Jim" succeeds.

When we quit the test above the goal 'tut" vul rau asince t.hlu are no

choices to resake.
10.2 Input/ OQutput Channels
The Standard Input atreas is taken from the keyboard and 1a knovn as “user™,

Think of the stream of characters typed in as issuing from a flle called

The Standard Output stresms 13 diracted to the terninal screen and i3 known as
“mer* too.

L S . TeEsvV ———' . -
‘Notes try tho gosl mnm(lmmy(x),mnm(x).m.(x))]- to see the |

*truth®. Also, mote that, for a resson as yet unexplained, you need an extra
pair of brackots around the goal you want printed via display/1.

Here {8 the tree: {

nealthy(x) \
PN

wealthy(x) wise(X)

1

|

1
Lecture 10 Summary Page 2 | 29th October
Think of the stream of characters issuing froa Pro).]os as going to a [file
called “user®.

i
|
10.3 Input/ Output and Files |
) |

Let us take our input data fros a file called "in". |
|

1

1

1

i

|

i

see(in),
test,
seen. .
We "wrap" the test/0 predicate into a predicate so/o: which takes f{nput fr
the specified file "in". This file should contain legal Prolog terms -for
predicate double/2 we want scmething like: |

2. f
23. .

1. ’ ‘
see/1 Take input from the named file

seen/0 Close the current input stream and take

fnput froa user

How do you find cut what the current input streaz ls’?
|
seeing/1 Returns name of current input ntronl

Now to redirect output to a file named "out®:

go:-

see(in),
test,
seen,

|
|
]
i
tell(out), |
told. ’ - _l- .._._. L e

Using the same file "in* as previously, "out™ will c?ontaln:
r |
%6 |
tell/t Send output to the named file E
told/0 Close the current output strean and 'lantl

output to user i
How do you find out what the ourrent output streaa lln
telling/t Returns naze of current output atru:u
10,3 The End of File Harker
When read/! encounters the end of a file it returns ;uu Prolog atoam
end_of_file

So we can rewrite test/0:

Lecture 10 Summary Page 3 29th October

testi~
cead(x) , e -
X \w nnd of file,
double(X7Y)7
write(Y),
nl,
test,

10.3 Input of Proiog Yerss

Both consult/1 and reconsult/! have been descrided in a handout. Prolog will
try to read & oclause at a time from the nsmed file. 80 any error sessage only
refors to the ourrent term being parsed.

Of oourse, if Prolog cannot find the end properly then we have problems. The
Prolog you are using will load all clsuses that parse as correct and throw
avay any ones that do not parae.

Some example prodlems:

a)
ar- as-
b, b,
o, 18 resd as e,
di= di~e,
..

There are problems with this reading which will be reported by Prolog

»)

.- as- .
b. b.
e, 15 read as e,d:-e.

di~ '
e

This i3 basically illegal.
10.6 Some Example Programs
10.6,1 The Predicate remove/3

.)ve all instances of a named element from a list and return the
or as a st !

.t need to use recursion.

If so, we will need to recurse down the input list, proceasing an element at a
time. Basically, the output {s a rough copy of the input.

A typical goal will be:
resove(frod, [fred, iany, fred,b112],x)
Case 1

resove(Element,[],[]).

Lecture 10 Summary Page 5 ' 29th October

10.7 Traversing a Graph
b

connected(a,b
annected(b,a

ected{a,c
nnected(c,a
_ nected(b,c

sonnected(c,b

R

trlvoru(x X)i=
connectod(x z),
traversa(2,Y).

traverse(X,Y)
connected(X,21) t verge(gl !:!]__
A=a !
Z1=d
connected(21,22) traverse(22,Y)
we are in a loop!
Z2va

So we add an extra arguzent to store information about where we have been and
try to make sure that we never revisit that place again.

traverse(X, !.Placuvlsltcd]x-
connected(X,2Z
not(-euhertl Placesvisited])
traverss(Z,Y, [ZIPuccsvlsltedh

where meaber/2 has been met before and we have the same connectivity facts.
Wo can call {t with

traverse(X,Y,[]).
It does not work. Eventually, it will mot be able to find a place to go that

it has not been. Prolog will backtrack and fail to find an answer. As an
exercise, you can write a version that will work! -

Lecovu, & 1Y . "', rage ¢ 1 <yih Octovar
1

the empty 1ist is the result of remoring “Element” froam the empty list.

Case 2

rexove(Element, {E1ement [Reat), Ana)s-
remove(Zlement,Rest,Ana).

The result of removing the sleaent from the whole xflt is the same 383 the
result of resoving the slesent fros the beheaded ‘14st if the element 1s the
head of the 1list. .

case 3

I
rnou(nmnt.[xlnur.].[Xllna]h; ;
resove{ Elesent,Rest,Ans). |

i

Otherwise, the result is the head of the fnput 1ist upunﬂoa to the result of
removing the eleasnt from tho beheaded 1fst.

We found the anawer by duilding "dits” of the nnttJ result and mlnl off to
look for the rest.

¥e can als0 solve the same problem by carrying the partial answer along with
the various subgoals until the whole answer has bun found. We will have to
carry around 8 fourth argument which will be unlmuntund until all the
answer has besen gathered.

10 6.2 The Predicate remove/3 j

ru--z. we define the predicate remove/d A typical pu will be:
remove(rred,{rred,J1mmy, fred,bi11),[].X)

We can package it to be like remove/3 by: n

resove(EL,Inlist,Outlist]):~ .
remove{E1,Inliat, |],0ut1iat). !

Lase) {
resove(Element,[], Ans,Ans).
the answer {3 the acounulator i{f we have no more xufr. to process,
Case 2
resove(Eleaent, [Elesent|Rest],Acc,Ans)i~
reaove(Element,Rest,Acc,Ans).
the same as before
Case 3

renove(Element, [X|Rest],Acc,Ans):=
remvn[nuenb Rest, 1x|ue] Ans).

Note how we say that the accuzulator has the head of the input added to {it.
In this version of "rexove", structure is being built up in the body of the
clause rather than the other version where the structure is bullt in the head.

Lecture 11 Summary Page 1 ' 31st Octobder

1n Operators
An operator i{s a predicate which has soae special qu‘opertus.

Here s a list of ones we have met already:

+« - w7
. \e f
< =< > d=
qs ¢ I
(not) T |
. i
—-— |
= i
7-

Note that not/1 1s in braeker.s beeause the Prolog ypu will be ualng dou not
have not/1 built in. ——— e LN

-

1.1 The Three Forms {
)

5

nfix

I"I

1.1-1 In

Here are some examples:
3+ 2 23- 2 o8x 2 f307 2
2¢ 17 6> 2 o Yisa3
healthy(Jim),wealthy(fred) adjective ~> [o.lover]
a:=d
"

11.1.2 Prefix |

\+' man{jane) . .

not happy(fred)]

11.1.3 Postfix !

We have not seen this one -but it might have existed! . '
n ! (fractorial) i

1.2 Precedence

We will now look ne'tho structure of scme Prolog expressions:

happy(3ia):=
healthy(43a),

Lecturs 11 Summary Page 2 31st October
wealthy(Jte).

¥We aspure that It 15 siways possible to represent 8 Prolog expression = @
tree Ln an unaadbiguous way. Is this

h‘”'(.’(’\ ’
nommmu 1a)

SN

- weslthy(Jin)

happy(§im) healthy(j1a)
The insue is decided by operator precedence.

To construct a tree which desoribes a Prolog expression we first look for the
operator with the highest precedence. If thia operator is an infix one, we
oan divide the expression into & left hand one and a right hand one. The
procens is then repeated, generating left and right subtrees.

operator precedence
- 1200
- 1200
. 1000
\¢ 900
is 700
< , 700
- 700
< 700
> 700
>= 700
- 700
. 500
- 500
. . koo
/ 400

We still need to decide what to do with two operators of the sase precedence.
Should we regard .

Lecture 11 Summary Page % 31st October

3-2+1
1 lert associative {and legal) and represents (3 -2) +1.

Sometimes, we do not wish to permit left or right associativity. For example,
obvious i{nterpretations of: .

az= b :-¢

Y is 2+1 i3s3

a=->b—>¢c

do not readily spring to mind. Therefore wa make it possidle to forbid the
bulldicg of expresaions of this sort.

11.3 Associativity Notation for Infix Operators

Loft Assoclative yrx
REght Associative xty
Kot Associative xfx

Wote that x indicates that the Indicated subtree must have, as its root, an

operator of lower precedence than that of the root.

The y indicates that the root of the subtree may have the same fosvcedm as
the operator that 13 the root of the tree.

The indicates the operator itself.
11.% The Prefix Case

Here are a number of unary, prefix operators:

operator precedence
o 1200

= 1200

* 900
not ggg
umnary +

unary = 500

aving only a right hand 3subtree. We wmust

tor as h
¥e regard a profix opord fative. That fs, which of the

decide which of the above say be right assoc
following make sonse:

+ 1
not not heppy(in) R
1= = a - .

We only accept not/t and \+/1 as right associative.

11.5 Assoclativity Notation for Prefix Operators
Right Assoclative ty

. Mot Assoclative - x

Lecture 11 Smr;y ' Page 3 318t Ootober

3-2-1

L]
1
.

>.
>

and, remember, that we are not yet talking sbout arithsetio evaiuation!
We can use brackets to distinguish

(3-2)-1 fram 3-(2-1) '

|
but we have a special way of distinguishing which| interpretation we wish
Prolog to make. In the adove arithoetic exasple, §h| left hand tree has two
subtrees hanging from the root "-". The left hand one has *"-" as {ts root
while the right hand one is not so allowed. We aay that this interpretation
of "~" {s left sssoolative. i
The normal {nterpretation of "-* {s 1left asscolative. The common 1left
associative operators are: !

it eN®

div (integer division)

Are there any right asscoiative operatora? Yes =—gonsider how we are to
disambiguate

a,b,e

R NN
A A

i
|
|
|
|
i
|
]
I
e !

i
|
where "a®, "b" and "c" are all legal Prolog subgoals,
|
|

fo (ad).e o a,(v,9)
(lert associative) (right assoofative)

The answer is that ,/2 is right associative. l

In all the previous cases we have allowed exactly om;: subtree to have, as fts
root, the same operator as the "principal” root. Welcan extend this to persit
operators of the saze precedence. Thus, since *+* land *=" have the same
precedence, we know that

Lecturs 11 Summary Page 5 31st Octobder
|

11.6 Associativity Notation for Postfix Operators |

As we have no examples here at the moment, here is the table:
Right Asscciative yr
Not Asscciative xf

11.7 How to Change Operator Definitions

We will 1llustrate with an {nfix operator and/2 and |anot.her or/2. We will
choose the precedence of and/2 to be greater than that of or/2. This means

that we interpret:

she is claver and rich or healthy

)
|
|
and ’
she ia clever or ;
i

rich . healthy !

Since and/2 reminds us of ,/2 we will give it ‘the same precedence and
associatlivity: |

Precedence of and/2 = 1000 }
Asscciativity of and/2 = xfy I
The required ccamand is !
op(1000,xry,and). '

i
We could also make it like ,/2 by interpreting and/zl as fn: - . . FIeR.

X and Y 1- I
ea11(x) , ea11(x). |

For or/2 we chooss pracedence of 950 {less than lﬂd)?] and assoclativity of
xfy (the sa=mo as and/2) with:]

op(950,xty,0r) .. .
and define it as equivalent to: '

XorY¥i~

11.8 A Mors Complex Example
We now try to represent data structures that look likes

“4f aand b or o thend

Lacture 11 Sumsary Page 6 31at Cetober

72 we slready have a representation for "a and b or o, this reduces to
fepreaenting

At o then b
]
e will make "then® an infix operator of arity 2. BSecauss Doth sudtrees sight
contaln and/2 we will need to make then/2 of higher precedence than and/2
~848y,1050 and not assooiative, Hence:

9{1050, xrx, then)

Yhis meams that "4f" must de & prefix operstor. As we do not wish olprl.ulo'nn
of the form

ififa

e muet make 1f/1 of higher precedence than then/2 (say, 1075) and 1f/1 sust
e non assoclative:

op{1075,rx, 11)
We can mow represent
§f a and b or o then d
as tho tree
1r

or, as tha Prolog tern)

se{then(and(a,or(d,0}}.4)) i
This Prolog term is difficult to read but unambiguous while the representation
using cperators 1a easy to read but depends heavily on you understanding the

precedences and associativities fnvolved. ALl right If you wrote the code but
th~ _°s 13 harder for somsone else to read.

Lecture 12 Summary Page 2 1st Noveaber

o) ar/3

fact(sale(fred),23).

7- arg(1,fact(rzale(fred),23),F).

F = sale(tred)
arg/3 is used to access a specifled argusent for some Prolog term.
8 12

“3es® 18 proncunced ¥univ¥.

- Xw.. [fact,male(fred),23].

. = fact{male(fred),23)

2= (a +b) =.. X,

X = [+, a, b)

2- [a,b,¢] =.. X.

X « [*.t,8,[b,0]]

12.1.3 Powerful Features -Comparisons of Teras
a) /2

If you do not want to unify two Prelog terms but you want to know if the terms
are strictly identlcal. . .

=X == Y.
no X
7= X=X, X == ¥,
yes
B) \esr2
This 1s equivalent to the Prolog definition

X \e= Y=
\¢ (X == Y).

12.1.4 Pouerful Features -Finding All Solutions

a) setor/3

The semantics for setof/3 are unpleasant. It has to be used with care.

knows(fim,fred}.
knowa(alf,bert).

Bow do we find all the soluuons-or the form “knows(X,Y)"? Now the goal
knows(X,Y) s equivalant to asking “does there exist scme X and scae Y such

Lecture 12 Suasary Page 1 ist Novesder

12 Gonolusion: ¥ners Mext?

We discuss soms powerful festures that Prolog offers then the isportast
subject of srogramsing style. Finslly, some aspacts of Prolog are sentioned
that demonstrate that the development of Logic Programming is by no means
over, i

32.1.1 Powerful Features -Iyping

A1) these features are not striotly first order pn&s'un logio. Nevertheless
they give grest power into the hands of the programser.

]
i

predicste/srity ds 1f the ar 1s N
atow/1 atoa i
integer/1 integer :
atoafe/1 atom or integer
var/1 uninstantiated variable
nonvar/1 not an uninstantiated variable
12.1.2 Powerful Features =Spiitting Up Clauses |
a) clause/2]
nappy(x)s-
heall X},
wealthy(X). 1
happy(3ts). "

The goal "clause{nappy(X],Y)" produces i
Y = healtny{x), wealthy(x) !
on redoing, :
Y « tros '
Note the seccad answer returns a body of “true" for Qm clause *happy(Jjim)*.

The calling pstiern requires that the principal functor of the first argusent
{3 known.)

b) functor/3
fact(male{fred),23).
7- functor{fact(male(fred),23),7,K).

Fefact
N2

functor/3 can be used to find the principal functor of a compound ters
together with its arity. It can also be used to generate structures:
]

7- functor{X,example,2). . .

X = example{a,B)
except that the variables will be shown differently. '

Lecture 12 Szomary Page 3

that Imouslx.!)'. For all solutions we want to ask something like “for what
set of valves of X and set of values of Y 1s it true that for all X and al1 Y
then knows(X,¥}".

1t Novenber

|
setof({x.¥],xnows(X,Y),2). ,
z = [[31=.trec],[a2r,bert]] :

where Z {s the set of all solution pairs [X.!) such that knows(X,Y). ow
suppose we omly want to gather the first olement of the pairs.
7= setor{X,Y knows(X,¥},2). .
z = [Ji=, a1r] : N
You have to read this as *find the set Z consisting "of all values of X for
which there exists a value Y for which knovs(x.rl'l. The "Y*" {a interpreted
as "there exists a Y" and {s vital, i
Note that any repeated solutions are removed. I
b) bagof/3 ’ |
The only difference between bagof/3 and setof/3 is t:har. bagof leaves repeated

solutions {a the answer. Note that bagof/3 {s much less expensive than
|

setof/3. |

12.1.5 Powerrzl Features -Gederating Known Terss

a) current_atoe/1
7- current_atan([]). ‘
yes

b) current_functor/2 I
?- current_functor(atom,aton(fred)). |
yes

©) current_predicate/2
knows(fred}.

7- curreat _predlut.a[knowa.knovn[fred)).

yes
d) current_op/3
7- cwrrent_op(1200,xrx,{:~)).

yes

All the above can be used to generate information as welll

witita‘e 12 Sunsary Page & 1st November

122 Prolog Style
12:2.) Coments

a) Bd of Line Comments
$ the base case

«puneﬂaln].c !é':]’ -

$ reourse on the first argusent
Everything on the 1ine arfter "S" will be ignored by Prolog
b) Suction Comsents

VAl

we now define append/3 so that - '

=t oan ba used &s a generator

/

Everything Miuun the */% ... */" will be {gnored by Prolog. Best to put
this Just before the ocode discussed. This is slso' useful for program
development.
12.2.2 Progras Headers

Just a recomsendation -not at all compulsory- but you will need scmething like
it for yourself.

$ Prograa: pract2.pl

$ Author: ecmu2b

$ Date: 27 Oqtober 1985

$ Purposa: 2nd Al2 Practical
12.2.3 Side Effect Programming

Avold where possible. HMost of the time it fa possidle to avoid the worat
offences.

&) modifying the Program at Runtime

Prolog permits this but {t s generally bad programming style. For example,
Prolog will not automatically undo these changes on backtraoking.

b) Wenting to Remember Something

A subast of the previous case. It (s better to consider carrying around the
wanted information as an extra argument in all the relevant clauses.

32.2.% Some Other Pointers

a) ot

Uae cuts with great care.

b) IF .. THEN & IF ..THEN ...ELSE

Prolcg does support control structures of this form. You may be comfortadle

with them but It i{s better, if more cumbersome, to avoid them. Here is how
one might define Prolog's *if ,..then ...else",

Lecture 12 Summary Page 6 1t Noveamber

J2.3.8 Prolog and Functional Programming

Many attempts are being made to combine Prolog with functfonal prow'unlng
features.

12.3.5 Other Loglc Prograsming Languages

Prolog is not a pure logic programing language. It may be the best we have
but there {s some {nterest in buflding better languages. . ,

As Prolog 13 less expressive than first order predicate calculus, a fair
amount of work is golng on to produce systems that permi{t the user to exploit
the expressivity of full first order predicate logic -and other logics tool

Lovtura 12 Sumasry Page 5 X 13t Novezbar

(a=>b40) s~
lean s),]
(a = :’:l(la!)’);- !
ealife). "
o) 372

The semantioco of /2 are roughly equivalent to mmx or. Baat to avold fts
use.

a=b o,
is better written as:

as-b. !
a- o, H

12.3 Prolog and Logic Programming
12.3.1 Prolof and Resolutfon

There are many different Prologs but they are all based on a technique fros
theores proving known as SLD Resolution.

SLD resolution can be guaranteed to be complets in that if & solution exists
then it can bes found using some search strategy. '

SLD resolution can be guaranteed to be sound in that' if an answer 1s obtained
then it 15 a solution to the original problem for nn search strategy.

It 13 a research goal to study Prolog m-cnuuonn and check that their
search strategy preserves the and di of mo underlyicg
method of SLD resolutton. '

Kote that out affects completeness but mot sounanu:.

Note also that there is no theoretical way of dltcmlnln. whether or not ao
attempt to solve a prodles will terminate. If there i3 a solution then it can
be shown that it can be found In a finite nuamber of Bteps.

12.3.2 Prolog and Parallelisa 1
Various people are working on strategies for parlllll axecution of Prolog.

This includes Clarke and Cregory at Isperial couq-, London vhu'o such
has been done in developing PARLOG.

I
Ehud Shapiro of the Weizmann Institute, Israel has produced Concurrent Prolog.

12.3.3 Prolog and Execution Strategies i

1
John Lloyd and others have produced MUProlog at the University of Melbourne in
an attempt, inter alfa, to replace the standard Prolog left-right executico
strategy for subgoals with a strategy which can reorder the execution sequence
depending on which subgoals have enough 1nromnon to proceed with their
executfon,

)

tens

BUILT N PREDICATES

Edmburgh Prolog v1.3+ is not quue DEC-!O -but close enough for now. '

abolxsh(F,N)

. 2bort
< ancestors(L)

arg(N,T,A)
assert(C)
assert(C,R)

. asserta(C)
T asserta(CGR) T T

assertz(C)
assertz(C,R)

atom(T)

atomic(T)
bagof(X,P,B)

break

call(P)

clause(P,Q)
clause(P,Q,R)
close(F)
compare(C,X,Y)
compile(F)
consult(F)
current_atom(A)
current_functor(A,T)
current_predicate(A,P)

“current_op(P,T,A)

debug
debugging
depth(D)
display(T)
erase(R)
expand_term(T,X)
fail

fileerrors
functor(T,F,N)
8eUC)

2et0(C)

halt
instance(R,T)
integer(T)
Yis X
keysort(L,S)
leash(M)

_length(L,N) ;

listing
listing(P)
maxdepth(D)
name(A,L)
nl

nodebug
nofileerrors
nonvar(T)
nospy P
numbervars(T,M,N)
op(P,T,A)
phrase(P,L)

Abolish the interpreted procedure named F arity N..
Abort execution of the current directive, .
The ancestor list of the current clause is L.

The Nth argument of term T i is A.

Assert clause C. .

Assert clause C,reference R.

Assert C as first clause.

“Assert C as first clause, reference R

“Assert C as last clause.

Assert C as last clause, refexence R.

Term T is an atom.

Term T is an atom or integer. ’

The bag of instances of X such that P is provable is B.’
Break at the next interpreted procedure call.

Execute the interpreted procedure call P,

There is an interpreted clause, head P,body Q.
There is an interpreted clause, head P, body Q, ref R.
Close file F.

C is the result of comparing terms X and Y.
Compile the procedures in text file F.

Extend the program with clauses from file F.

One of the currently defined atoms is A.

A current functor is named A, most general term T,
A current predicate is named A, most general goal P.
Atom A is an operator type T precedence P,

Switch on debugging.

Output debugging status information.

The current invocation depth is D.

Display term T on the terminal,

Erase the clause or record, reference R,

Term T is a shorthand which expands to term X,
Backtrack immediately.

Enable reporting of file errors.

The principal functor of term T has name F, arity N,
The next non-blank character input is C.

The next character input is C.

Halt Prolog, exit to the monitor.

A most general instance of the record reference R is T.
Term T is an integer.

Y is the value of integer expression X.

The list L sorted by key yields S.

Set leashing mode to M.

The length of List L is N,

List the current interpreted program.

List the interpreted procedure(s) specified by P,
Limit invocation depth to D.

The name of atom or integer A is string L.

Output 2 new line.

Switch off debugging.

Disable reporting of file errors,

Term T is a non-variable.

Remove spy-points from the procedure(s) specified by P.

Number the variables in term T from M to N-1.
Make atom A an operator of type T precedence P.
List L can be parsed as a phrase of type P.

e !ead('l‘)"')
W, -reconsult(F)
" recorda(K,T,R)

~ PrOmpI(ALB) -

recorded(X,T,R)

4 recordz(K,TR) .
‘- reinitialise -

rename(F,G)

" repeat S iE
- xestore(S)_..

retract(C)
save(F)

~. save(E,R)
" see®)

seeing(F)
seen .
setof(X,P,S)
shell(T)
skip(C)
sort(L,S)
spy P
statistics
statistics(K, V)
subgoal of(G)
tab(N)
tell(F)
telling(F)
told

trace

true
ttyflush
ttyget(C)
ttyget0(C)
ttynl
ttyput(C)
tyskip(C)
ttytab(N)
unknown(O,N)
van(T)
version
version(A)
write(T)
writeq(T)

1]

\+P

XP

X<Y
X=<Y
XY

X=Y
X==Y
==Y
X@<Y
X@=<Y
X@>Y
X@>=Y
[FIR]

:Change the prompt from A to B.
. “The next chamcter output is C -
“_ Read term T.. ' .

* Update the progmm wuh procedum from ﬁle F

7. ‘Term T is recorded under key K, reference R.
."Make term T the last record under key K, reference R.
- " Initialisation -looks for prolog bin’ or prolog ini’,
" ‘Rename file Fto G, _- .
. Restore the state saved in file-S, —— -~ _ gt —‘~—_.—"_
. . Save the current state of Prolog in file F.

_MakcﬁleFmecumntmputsn'eam . T

Portny or else write the term-T

Make term T the first record under key K, reference R

- Succeed repeatedly.

Erase the first interpreted clause of form C,
"As save(F) but R is O first time, 1 after a "restore’.

The current input stream is named E.

Close the current input stream.

The set of instances of X such that P is provable is S.
Allows certain interactions with the operating system.
Skip input characters until after character C.

The list L sorted into order yields S. .

Set spyspoints on the procedure(s) specified by P. .
Output ¥arious execution statistics.

The execution statistic key K has value V.

An ancestor goal of the current clause is G.

Output N spaces. -

Make file F the current output stream.

The current output stream is named F.

Close the current output stream.

Switch on debugging and start tracing immediately.
Succeed.

Transmit all outstanding terminal output.

The next non-blank character from the terminal is C.
The next character input from the terminal is C.
Qutput a new line on the terminal,

The next character output to the terminal is C.

Skip over terminal input until after character C
Output N spaces to the terminal.

Change action on unknown procedures from 0 to N.
Term T is a variable,

Displays introductory/system identification messages.
Adds the atom A to the hst of introductory messages.
Write the term T,

.
£

S G o BT TP T LNy Xy

Write the term T, quoting names where necessary, - - i_;;
Cut any choices taken in the current procedure. A
Goal P is not provable. 9
There exists an X such that P is provable. :‘i:
As integer values, X is less than Y. - - ;ﬁ
As integer values, X is less than or equal to Y. e
As integer values, X is greater than Y. 2

Terms X and Y are equal (i.e. unified). ,'_'35
Terms X and Y are strictly identical. i
Terms X and Y are not strictly identical. A8
Term X precedes term Y. N
Term X precedes or is identical to term Y. P

Term X follows term Y.
Term X follows or is identical to term Y.
Perform the consult/reconsult(s) on the listed files.

