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Abstract

These notes introduce computational mechanisms for understanding nat-
ural language and answering questions. Computation models of increas-
ing power (finite state machines/regular expressions, recursive transition
networks/context-free grammars, augmented transition networks) are ex-
amined with the help of extended examples. First-order predicate calculus
is used for the representation of meaning and theorem proving is used to
support question answering. An analysis of the problems inherent in natu-
ral language processing, a discussion of several existing systems, and a brief
introduction to an alternative notation for representing meaning (Schank’s
conceptual dependency) are also included.
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Lecture |

Natural language processing -- significance and difficulties

1.1 Natural language as a medium for communication

Natural language: as opposed to invented languages like computer languages (e.g. Prolog, Pascal)
and formal languages as used in logic and mathematics (e.g. predicate calculus).

Use of language for communication is what separates humans from other animals. Clearly, the
ability to communicate via language is an important aspect of intelligence. The word "dumb"
(stupid) originates from "dumb” (unable to speak). Even so, language is universal; everybody
learns to speak their native language fluently somehow by the time they are 6 or so. Only very
severely handicapped people don't learn to speak.

A.l interest in natural language stems from:
- the practical interest of systems which can communicate; and
- the psychological interest of understanding mechanisms involved in human language.

1.2 The Turing test

The Turing test was proposed in 1950 by Alan Turing as a definition of artificial intefligence. If
a computer is able to pass the test, it deserves to be called intelligent (he claimed). The test is
heavily based on the use of language; a computer is intelligent if it can carry on a conversation
in a way indistinguishable from a human.

Test: Human A sits at a terminal connected to terminals B and C. On B or C is a human and on the
other a computer (A knows this}. A must determine which is which by carrying on a (typed)
conversation, with no restrictions on what is typed. (f A is unable to distinguish the computer
from the human, the computer is intelligent.

The dialogue could include (for example):
- general knowledge questions
Q: Where is the castle?
A: At the top of the Royal Mile.
Q: What is 243 times 4297
A: (pause) ... 104247, | think.
Q: What is the capital of Upper Volta?
A: How on earth shall | know?
- comprehension tests
Q: Once upon a time ...... Why did Bob poison Kevin?
A: He was jealous that Kevin was so good in Al2,
- emotional response tests
Q: What do you think of Al2?
A: It would be okay if only the lectures were a bit later in the day.
Q: You lazy twitl | guess you're just too stupid to understand all the profound thing
we're learning.
A: Would you like me to tell you what you can do with your profound things?

Language ability alone isn't enough to pass the Turing test: the computer also needs a large
amount of world knowledge, an ability to generate plausible emotional responses when
appropriate, etc. But language ability is a necessary requirement.



1.3 What is so difficult about language understanding?

The understanding process can be split into three steps:

sound waves

Acoustical/phonetic
processing

series of words

Morphological/syntactic
processing

syntactic structure

Semantic
processing

meaning

At each level there are big problems.

Common sense and introspection don't help much in figuring out how humans understand or
produce language; psychological experiments show this. So for example although it seems like it
is possible to start a sentence without knowing how it will end, which would indicate that at least
production is not a three-step process, maybe you just don't know that you know.

Psychological experiments can test some theories of language understanding. For example, if a
theory says that sentence A requires more work to understand than sentence B, it is possible to
test whether it takes more time to answer questions about A or about B. But there is a limit to
what can be tested in this way.

1.3.1 Acoustical/phonetic processing

A naive approach to the problem would probably be 1o separate continuous speak into words by
looking for silences in between periods of sound. Long pauses are commas, very long pauses are
ends of sentences. The sounds in a word can be analysed to decide what the word is: k a t = "cat”.

But this approach unfortunately does not work. Most of what you think you hear people saying is
not really there at all; the actual acoustic signal is noisy and ambiguous, and lots of things are
missing. For example:
- Word boundaries are not always silences.
Listen to speech and you'll realize how much words are slurred together.
- Not all pauses are word boundaries.
Voiceless consonants (k, p, t) are just silences which can only be distinguished by
thelr effects on nearby vowels.
- Length of a pause doesn't fit well with sentence structure.
- Different accents have different sounds, e.g. for vowels.
You have to learn how to understand an accent you've never heard before by trying to
figure out what the person might be saying (examples: deaf person's speech, Scottish).

There is no rigid boundary between this level and other levels; what you expect to hear
influences what you hear.

1.3.2 Morphological/syntactic processing

Many words mean several things (lexical ambiguity):
He saw her duck.



Without contextual information we don't know if "duck” here is a noun or a verb, so we cannot
parse this sentence.

Morphemes (like "s" at the end of a word to form the plural) are not dependable:
"bats” is the plural of "bat”

but
"bus” is not the plural of "bu".

Some dialects have words which are not in other dialects:
"grits", "bonnet", "messages”

How do we know who did what to whom in sentences like the following?
My aunt gave that teapot to me.
That teapot was given to me by my aunt.
My aunt gave me that teapot.
| was given that teapot by my aunt.

At the syntactic level, natural language is enormously complex compared with computer
languages:
Here comes the dog that killed the cat that ate the rat that lives in the house that Jack built.
The rat that the cat that the dog killed ate was named Percy.

Structural ambiguity is a problem; consider the following (who has the stick?):
The boy hit the dog with the stick.
How does a program know which parse to take?

There is no strict boundary between the syntactic level and the semantic level:

| saw the Forth Road Bridge flying into Edinburgh.
This has two entirely different syntactic structures depending on who is flying, but common
sense says which is the right one (based on meaning). How can a program be made to see this?

Two other examples:
| ate dinner with a friend.
| ate dinner with a fork.

Nobody has exactly the same dialect (ideolect).
The wall needs painting.
The wall needs painted.
The wall doesn't need painting anymore.
The wall needs painting anymore.

So how do we decide what is acceptable?

Why are "garden path" sentences like the following so hard to understand?
The boy scouts looked for died.

In some cases it Is not clear that syntax is so important after all. For example:

Skid, crash, hospital.
This is meaningful, although there is no way to parse it and anyway the first two words are both
verbs and nouns.

1.3.3 Semantic processing

What do pronouns refer to? Again, the ambiguity has to be resolved somehow.

Jack went to the store. He found the milk next to the cheese. He paid for it and left.
Does "it" mean the milk, the cheese, or the store? In a language with genders, there is the same
problem in deciding what "he" refers to!



The "use” of a sentence varies:
Could | have the salt?
Do you know the time?
Did you do the tutorial exercise?
Horses have four legs.

How do the following sentences compare?

Bob bought the book from Mary.

Mary sold the book to Bob.

Mary gave the book to Bob.

Bob stole the book from Mary.

Bob paid Mary for the book.

Mary charged Bob £5 for the book.
Is there some semantic representation which exposes the similarities and differences belween
these sentences? More generally: how can the meanings of sentences be represented in such a
way that use can be made of them?

What is the role of supposedly meaningless little words like "well" and "um"?
Are you sure you don't mind?
- Oh, no. {= no, | don't)
- Well, no. (= yes, | do, really)
1.4 What is so difficult about language production?
The production process can be viewed as understanding in reverse:

meaning

Semantic
processing

syntactic structure

Morphological/syntactic
processing

series of words

Acoustical/phonetic
processing

\

sound waves

The problems are perhaps not quite so difficult as for understanding. We don't have 1o cope with
ambiguity, except how to say something so that it isn't ambiguous to the listener in context, but
at the same time not including every bit of knowledge. But note that (for humans) understanding
a foreign language is easier than speaking it!

1.4.1 Semantic processing

Suppose you've read a story. How do you explain it briefly (paraphrase it}? Which details have
to be left in (important to understand the plot) and which can be omitled? How do you decide
when to use pronouns? How do you choose between "Mrs Thatcher", "the prime minister”,
"her", "the honourable member from Finchley", or something impolite? It depends on what |
want to communicate, what the situation is and what | know about the person | am speaking to.

1.4.2 Morphological/syntactic processing

Similar problems: how do | choose words and constructions to get my meaning across in a natural
way?



1.4.3 Acoustical/phonetic processing

Where do the stresses go? Where is one allowed to slur words together? Separated words sound
unnatural.

How do adjacent sounds influence each other?
"words” = wordz
"cats" = catss

1.5 Conclusions

We will concentrate mainly on understanding of printed text, leaving out phonetic/acoustical
processing. We won't worry about discourse, only about individual sentences, regarded as
statements of fact or questions.

-Some potential applications:

- Machine translation of text
This was an early application of computers (1954). In 1966 after investing about
$20 million the U.S. government decided that the problem was too hard and stopped
funding in this area (the main interest was in Russian-English translation).

- Question answering
Natural language front-end to database system (e.g. to a library catalogue or police
records).

- Speech-driven devices
Typewriter, directory enquiries, automatic bank tellers, weapons.

- Natural language front-end to expert system
Language production is more an issue here than understanding.

- Computer-aided instruction

- Natural language as a programming language



Lecture Il

A brief look at some natural language programs

2.1 ELIZA

ELIZA was written by Weizenbaum at MIT about 1965 to simulate a dialogue between a
psychologist (the computer) and a patient (the user).

A sample dialogue might begin as follows:
User: | am unhappy.
ELIZA: Why are you unhappy?
User: Because my mother never loved me.
ELIZA: Tell me more about your family.
User: It is very bad.
ELIZA: Please go on.
User: She never loved me because | am ugly.
ELIZA: Isn't there another reason?
User: Maybe | am too stupid.
ELIZA: You seem to be uncertain.
ELIZA seems to really be understanding what the user is saying and makes reasonable responses.

How does ELIZA work? Perhaps surprisingly, it is just a trick: the program just looks for key
phrases in the user's input and produces a "canned"response, with appropriate bits of the input
inserted. For example, the exchange above arises from the following rules:

lam X = Why are you X?

X mother Y = Tell me more about your family.

Xfather Y = Tell me more about your family.

Xbrother Y = Tell me more about your family.

Xbecause Y = Isn't there another reason?

Maybe X = You seem to be uncertain.

No match = Please goon.

Another rule might be:

| Xthatyou Yme. = What makes you Xthat| Yyou?
This produces:

User: | feal that you distrust me.

ELIZA: What makes you feel that | distrust you?
But also:

User: | think that you are mad at me.

ELIZA: What makes you think that | are mad at you?

It would be possible to correct this example by using a more elaborate pattern:

| Xthat you are Yme. = What makes you Xthat | am Yyou?
But there is no way in general to tell ELIZA about inflection, i.e. that "I" goes with "am" and
"you" goes with "are". So ELIZA includes a simple mechanism for converting "am" to "are™ and
SO on.

ELIZA includes dozens of rules. Each rule has several possible responses so that responses will
not be repeated too often.



The algorithm used in ELIZA is thus the following (which repeats until the user types something
like "goodbye"):

1. Accept input

2. Perform conversion of "am" to "are” etc.

3. Match against patterns In table; select response pattern

4. Use matching to give values to variables in response pattern

5. Output response

Weizenbaum's reason for writing ELIZA was to demonstrate that it is possible to avoid doing deep
analyses of inputs in order to produce a reasonable response.

This was possible because people don't expect a psychologist to respond directly to statements.
At a superficial level, a psychologist does seem to respond to keywords (or at least themes). If
you talk about somebody’'s mother he may well ask about your family, since he knows that talk
about even other peoples' families reflects concern about one’s own family situation.

Criticisms which can be made of ELIZA include:

- Lack of memory.
There is no relation between the current response and any previous stimulus or
response.

- ELIZA doesn't understand in any sense of the word.

- No knowledge of sentence structure.
An input which is total nonsense with appropriate keywords would produce a response.

- No world knowledge.

ELIZA can only get away with these limitations because of the restriction to a rather strange
domain.

Moral: Be suspicious of impressive-looking Al systems!

One thing which can be said aboul the validity of this approach: some stimuli should provoke
stereotyped responses. It would be a mistake for a program to map "Good morning™ into some
deep representation and then carry out a complicated series of inferences in order to determine
that the correct response Is "Good morning"!

Reference: Artificial Intelligence and Natural Man by M. Boden.
2.2 PARRY

PARRY was written by Colby about 1974. PARRY Is like ELIZA, except that now the user is the
psychologist and the computer is the patient. PARRY is supposed to simulate a person suffering
from paranoid psychosis.

A sample dialogue might run as follows:
User: Tell me something about yourself.
PARRY: | went to the race track at Bay Meadows a while back.
User: What happened there?
PARRY: There's a lot of crooked gambling going on there.
User: Why do you think the gambling is crooked?
PARRY: | worry that gangsters have too much power in this country.

User: How do you like the hospital?

PARRY: | don't communicate very much with the others.
User: Do other people at the hospital get on your nerves?
PARRY: | shouldn't have come here.

User: Why do you say you shouldn't have come here?
PARRY: They made me come here.



PARRY Is supposed to model a particular imaginary person who has grossly delusive beliefs
about being persecuted. He connects betting on horses with dishonest bookmakers who falsely
claim that he owes them money and set the Mafia after him.

Colby tried a version of the Turing test with PARRY. He showed a number of psychologists
interviews with PARRY, interviews with real paranoid patients and interviews with
non-paranoid people, and asked them to rate the degree of paranoia. In general, they rated
PARRY as paranoid along with the real paranoids. But he didn't tell them that some of the
interviews were with a computer and so this is not really the Turing test.

How does PARRY work? Briefly:
- It has a "belief system” modelied as a directed graph of concepts (bookies, Mafia, etc.)
with edges indicating "logical® connections.
- It has a limited number of canned responses for each topic, many more than ELIZA.
- Pattern matching on the input is used to detect the topic of questions, after first throwing
away "unimportant” . words (l.e. most of them).
- It has "monitors” to detect fear, anger, hostility, etc.
- It has some memory of the previous conversaticn.
Again, the program carries on a plausible-sounding conversation because the domain rules out
questions which could test knowledge and understanding, and because slightly strange responses
reinforce the image of craziness.

Weizenbaum didn't expect people to take ELIZA seriously, but many people did (and still do).
Colby seems to have been one of these: PARRY is very ELIZA-like, but he argues with great
seriousness that it is an accurate model of paranoid behaviour, and helps to understand paranoia
in humans, and so help real patients.

Reference: Computer Models of Thought and Language by R. Schank and K. Colby (editors).
2.3 SHRDLU

SHRDLU was written by Winograd at MIT about 1872, It carries on a dialogue with the user
about a simple world containing a number of coloured toy blocks and pyramids and a box. It
moves things around on request and answers questions about its world and the actions it has
performed.

A sample dialogue might run as follows:
User: Pick up the big red block.
SHRDLU: OK.
User: Find a block which is taller than the one you are holding and put it into the box.
SHRDLU: By "it", | assume you mean the block which Is taller than the one | am holding.
OK.
User: What does the box contain?
SHRDLU: The blue pyramid and the blue block.
User: Had you touched any pyramid before you put the green one on the little cube?
SHRDLU: Yes, the green one.
User: When did you pick it up?
SHRDLU: While | was stacking up the red cube, a large red block and a large green cube.
User: Why?
SHRDLU: To get rid of it.
The performance of SHRDLU is impressive: it can understand and answer quite complex
questions, remember what it had done before, and so on. It was seen as a breakthrough at the
time, and got Natural Language research flourishing again after the Machine Translation debacle.

How could it perform so well?

- The simple world gives almost no possibility of ambiguity; if a request might possibly be
ambiguous then it is almost always possible to disambiguate by checking the concrete
situation and determine which possibility makes sense. If both make sense (almost
never) the system just asks which one was meant.



- The world contains no vagueness: everything is definite and deducible. In the real world,
there are lots of situations where A tends to happen if B happened, etc.
As a consequence, many of the problems discussed in lecture | don't arise. The method used for
parsing was similar to that of LUNAR (see below).

Reference: Artificial Intelligence and Natural Man by M. Boden.
2.4 LUNAR

LUNAR, written by Woods about 1972, is a natural language front end for a database containing
information about the geological content of Apollo moon rock samples. It was actually used by
geologists all over the U.S. doing research on lunar geology.

A sample dialogue might begin as follows:
User: What is the average concentration of aluminium in high-alkali rocks?
LUNAR: 8.13 %
User: Do any samples have greater than 13 percent aluminium?
LUNAR: Yes.
User: What are the samples?
LUNAR: S30084, $120063, ...
User: What is the average modal concentration of ilmenite in type A rocks?

Like SHRDLU, much of the success of LUNAR comes from limiting the world so that ambiguity
isn't possible. LUNAR didn't attempt to produce English responses, only numbers etc. Parsing
was done with augmented transition networks which we will talk about later in the course.

2.5 SAM
SAM is a story-understanding system written by Schank ef af at Yale about 1977.

Sample session:
John went to New York by bus. On the bus he talked to an old lady. When he left the bus, he
thanked the driver. He took the subway to Leone's. On the subway his pocket was picketl.
He got off the train and entered Leonea's. He had some lasagna. When the check came, he
discovered he couldn't pay. The management told him he would have to wash dishes. When
he left, he caught a bus to New Haven.

User: Why did John go to New York?

SAM: Because John wanted {0 go to Leone's.

User: Did anything unusual happen on the bus?
SAM: | don't remember anything.

User: Did anything unusual happen on the subway?
SAM: A thief picked John's pocket.

User: Why couldn't John pay the check?
SAM: Because John did not have any money.
User: How was John able to take the bus to New Haven?
SAM: Probably John had a ticket.
Also, SAM can retell (paraphrase) the story in English, Chinese, Russian, Dutch and Spanish.

The emphasis in SAM is on the semantic representation and making inferences from this
representation. It is also able to recognize stereotyped situations (bus, restaurant --- these
are the only ones it knows about). it digesis the story by converting it into its semantic
representation and making lots of inferences. Then question answering is just accessing things
which are already present in the semantic representation.



Paraphrasing amounts to converting the semantic representation back into English; it can be
verbose about this (saying all the things it was able to infer from those mentioned explicitly in
the original story) or brief. Since the semantic representation is language-independent, it isn't
any harder to do this in Chinese than it is to do it in English. This is a completely different
approach from sentence-by-sentence translation.

Parsing is completely ad hoc, and Schank claims that it isn't important in comparison with
semantic issues. So SAM makes no attempt to handle all of English.



Lecture Il

Finite state machines and regular expressions

The next several lectures will look at computational mechanisms for handling the syntactic
structure of language. We will start with quite simple structures and work towards handling
increasingly complex structures. Given a /anguage (a set of strings) the two problems we have
to solve are how to mechanically recognize the strings in the language (i.e. how to determine
whether or not & given string is in the language) and how to generate the strings in the language.
As it happens, the same mechanism can be used to solve these two problems for a given language
simultaneously. For the present we will ignore the problem of how to determine and represent
meaning and concentrate only on syntax.

3.1 A simple generator of insults

Let's look at the problem of recognizing and generating a very simple class of strings: insults of
a certain form. This class of strings forms a miniature language.

Get lost you filthy brute.

Jump in a lake you nasty swine.

Get lost you nasty swine.

All the strings in this language have a very regular structure, namely
order you label
where label is a descriptive word followed by a hame.

A procedure to generate strings like these is:
To insult: order, write "you", label
To order: Either write "get lost” or else write "jump in a lake”
To label: describe, name
To describe: Either write “filthy" or else write "nasty”
To name: Either write "swine" or else write "brute”
A similar procedure could be written to recognize the eight insults generated by this procedure.

But this approach is not very flexible. It Is specific to the particular language we want to
generate/recognize; to handle another language we would have to start all over again. Also, there
is lots of repetition ("either write ... or else write ..." occurs several times, for example). We
need a more abstract way of describing structure.

3.2 Finlte state machines

A finite state machine (FSM) is a very simple machine which is able to recognize or generate a
certain class of strings. Sometimes an FSM is referred to as a finite state automaton.

An FSM consists of:
- a finite set of states
- a rule which says when the machine is allowed to make the transition from one state to
another.
- a distinguished initial state, and a set of final or terminal states (the initial state may also
be a final state).



FSM's are usually drawn as state diagrams:
- Each state is drawn as a little circle. Sometimes states are given names, which are writien
in the circle.
- The initial state is drawn as a circle with an arrow leading into it from nowhere, and final
states are drawn as circles with dots inside.
- Transitions are drawn as arrows from one state to another, labelled with strings.

For example, here is an FSM which will generate/recognize our insult language:

Get lost you filthy _ brute _
—_ —_— ) ——— > >
Jump in a lake nasty swine

To generate a string:

Start at the initial state.

If the current state is a final state, either stop or continue.
Choose a transition from the current state to another state.
Write down the label on the arrow.

Follow the arrow to the state it points to.

Go to step 2 to generate the rest of the string.

i R

Perhaps a more intuitive way to understand finite state machines is by imagining that a FSM is a
map of some number of rooms connected by passageways.

To generate a string, we imagine a person entering the maze at the arrow (the Initial state).
Each arrow leaving a circle on the diagram represents a door leaving the room, leading via a
corridor to another room. There is a label on the door corresponding to the label on the arrow.
The little person picks a door at random, shouts out the label on that door, and walks through it
to another (or the same) room. A circle with a dot (a final state) represents a room with an exit
from the maze.

To recognize a string, that is to see whether or not the machine could generate it, our person
chooses a door each time on the basis of the next element in the string. If s/he gets to the end of
the string in a room with an exit door, we win. If the string ends and there is no exit, or s/he is
forced to exit without using up the string, or s/he Is ever trapped in a room with no door having
the next element of the string as label, we lose.

Here is this recognition algorithm in a more formal form:

1. Start at the Initial state.

2. If we are at the end of the string, then: if the current state is a final state, the recognition
succeeds; otherwise it falls.

3. Choose a transition from the current state to another state labelled by the next word of the
string. If there is no such transition, the recognition falls.

4. Follow the arrow fo the state it points to.

5. Go to step 2 to recognize the rest of the string.

Try to generate and recognize the strings "Jump in a lake you filthy swine" and "Get lost you
nasty brute" using the FSM above. This FSM fails to recognize the string "Jump in a lake you
brute"; can you see why?

A FSM always recognizes exactly the same language as it generates.

Notice that the procedures for generating and recognizing are non-deterministic, i.e. they
involve making choices about what to do next. In the case of generation this means that an FSM
may generate any of the strings specified by the machine. In the case of recognition this means
that the "right" set of choices must be made for any particular string. There may be more than
one set of choices which succeeds for a particular string.

We can allow arrows to be labelled with the empty string as well, which allows a transition
from one state to another without moving along the string. The empty string will be written #.



So we could extend the insult FSM as follows:

Get lost thoroughlg filthy brute
_you R

— 4 3

OFin0— 0= 05307:3®

It is also possible to have loops:

O Get lost O You, thorough'ly O filthy O brute @
Jump Jump n a lake nasty ? swine
very

This loop is very short; it is also possible to have longer loops. For example, one would be
necessary to handle an insult language containing strings like

Get lost and ... and jump in a lake you filthy swine.
Try constructing a FSM for such a language (where a sentence can contain cne or more orders
separated by "and").

3.3 Regular expressions

A regular expression is a simple notation for describing the same kind of languages which can be
generated/recognized by FSM's. In regular expressions:

a means repeat a zero or more times

a U b means choose either aor b

a bmeans a followed by b

Parentheses are used for grouping

The regular expression

(Get lost U Jump in a lake) you (filthy U nasty) (brute U swine)
describes the first version of our insult language. The expression

(Get lost U Jump in a lake) you (thoroughly U #) (filthy U nasty) (brute U swine)
describes the "extended" insult language. The expression

(Get lost U Jump in a lake) you very (thoroughly U #) (filthy U nasty) (brute U swine)
describes the second extended insult language. For each FSM there is a regular expression
describing the language it generates/recognizes, and vice versa.

3.4 Parts of speech and dictionaries

You may have noticed that it is possible to simplify the FSM's which generate/recognize our
insult languages. For example, in our first extended insult language the part after "you" is
always an optional adverb, followed by an adjective and a noun. If we had a dictionary which
associates words with their parts of speech, the FSM could be reduced to the following:

Get lost

050 0=202%0%@

Jump in a lake

For recognition, we would need a dictionary which says whether each word is a noun, adjective,
etc. For generation, we would need an inverted dictionary which says for each category all the
words of that category.

3.5 Conclusion

Finite state machines are the simplest in a series of machines for generating and recognizing
languages. Next time | will talk about recursive transition nets (RTN's) which are the next step
up in complexity, allowing sentences to contain nested structures. Another kind of machine is a
Turing machine.



Each kind of machine has a certain power in the sense that there are some languages can be
handled by the powerful kinds of machines which cannot be handled by the weak ones like FSM's.
The power of an machine is determined essentially by the complexity of its memory. An FSM has
no memory --- it has only its current state to keep track of how far it has proceeded in its job
of recognizing/generating a string. It can't backirack to look again at what it is in the process of
recognizing or to alter what it is in the process of generating.

RTN's amount to FSM's with an unbounded stack. Turing machines are like FSM's with an
infinite memory in the form of a tape; they have the same computational power as a computer.

Also, for each kind of machine there is a different notation for describing the kind of language it
can recognize. For FSM's we had regular expressions; for RTN's we will have context-free
grammars.



Lecture IV

Recursive transition nets and context-free grammars

4.1 Why are finite state machines not sufficlent?

Finite state machines are sufficient for languages with a very simple structure, like the insult
language of the last lecture. But if we try a slightly more complicated language we begin to see
some of the limitations of this approach.

Consider the santences:
John saw Mary.
The man likes the dog.
The dog knows John.
The man ordered a drink.
A FSM which will handle sentences of this form is:

Det Det

Note that we have to repeat the structure of the noun phrase iwice, and the fact that the
structure is the same in both cases appears to be an accident. If we increase the complexity of
our FSM to handle more sentences, the problem would become worse. There are even some kinds
of sentence structure which cannot be handled at all by a finite state machine; for example:

The rat that the cat that the dog killed ate was named Percy.
On the other hand, it is not clear that humans do very well with sentences like these either.

If we add to FSM's the ability to include not only words (or parts of speech) but also names of

other FSM's as labels on arrows, these problems can be solved. This way we can use the same
structures more than once without repeating the structure in the FSM. For example:

~O*. 0 02.@

NP:—-)O_;";""'O—N—i@
e

It is even possible to build recursive FSM's to handle the rat-cat-dog example.
A finite state machine with this extra power is called a recursive transition net (RTN).
4.2 Quick review of some linguistic terminology

The linguistic terms mentioned below will be used throughout this part of the course; this is
just to remind people who haven't thought about English grammar since school.

Lexical categories:

Noun: Person, place, thing, concept (dog, boat, justice, ...)

Verb: Action (go, make, study, ...)
Transitive verb: Verb which takes an object (hit, have, ...)
Intransitive verb: Verb which takes no object (sit, dream, ...)

Determiner or article: the, a, some, ...

Adjective: Modifies a noun (good, ugly, small, ...)

Adverb: Modifies a verb (slowly, reluctantly, ...)

Preposition: Relates two nouns (with, on, of, by, ...)

Conjunction: For putting sentences together (and, or, but, ...)



Pronoun: he, she, they, it, ...
Relative pronoun: which, that, who, ...

Syntactic categories:

Noun phrase: A phrase which acts like a noun (The man with the stick hit the dog.)

Verb phrase: A phrase which acts like an intransitive verb (The man with the stick hit the
dog.)

Prepositional phrase: A phrase beginning with a preposition which qualifies a noun (The man
with the stick hit the dog.)

Relative clause: A clause beginning with a relative pronoun which qualifies a noun (The man
who was bitten hit the dog).

4.3 Recursive transition networks
A recursive transition network is a collection of named FSM's (sub-nets) in which each arrow
may be labelled with either a string (as before) or with the name of a sub-net. The following

RTN handles a reasonable fragment of English, including all those sentences handled by the last
example:

S: —DO NP :O VPﬁ_@

VP:—-)O v :O NP :@OPP

NP:—)O#O——N——)©DPP
()

Adj

PP:—)O Prep:o NP >©

This example includes recursion: a NP may contain a PP which contains a NP.

Sample sentences:
The child in the park likes hot salted peanuts.
A student in the back row snored.
The police fired into the crowd.

Now we no longer have to treat lexical categories as special abbreviations; we can just treat
them as the names of sub-nets as well.
/‘El‘l]d\_'
e o park @

likes
£ _’o snored @

The algorithms for generating and recognizing strings have to be changed to cope with arrows
labelled with names of sub-nets. The algorithms become recursive is well as iterative.



To generate a string from a sub-net:

Start at the initial state of the sub-net.

If the current state is a final state, either stop or continue.

Choose a transition from the current state to another state.

If its label names a sub-net, generate a string from that sub-net; otherwise, write down
the label.

Follow the arrow to the state it points to.

Go to step 2 to generate the rest of the string.

el

o o

To recognize a string from a sub-net:
1. Start at the initial state of the sub-net.
2. If we are at the end of the string, then: if the current state is a final state, the recognition
succeeds; otherwise it fails.
3. Choose a fransition from the current state to another state labelled by either:
- the empty string,
- the next word of the string, or
- the name of a sub-net
If there is no such transition, the recognition fails.
4. [f the chosen transition is labelled by a sub-net name, divide the string in two and try to
recognize the first half using the sub-net.
Follow the arrow chosen in 3 to the state it points to.
. Go to step 2 to recognize the rest of the string.

o o

Try using these algorithms to generate and recognize the strings "The chitd in the park likes hot
salted peanuts” and "A student in the back row snored” from the sub-net S above.

Notice that | need to keep track of my place in the cument sub-net whenever | have to generate a
string from another sub-net. | can turn the recursive generation and recognition algorithms
into non-recursive ones by maintaining a stack of net locations to keep track of all the places |
had to interrupt the use of one sub-net to refer to another. This leads to something called a
pushdown automaton.

As with FSM's, the generation and recognition procedures are non-deterministic. But now
recognition is more non-deterministic than before; we have to choose not only the correct arrow
to follow at each point but also how to divide the string. For example, we cannot recognize the
string "A student in the back row snored” from the sub-net S if we divide it at step 4 into the
strings "A student in the" and "back row snored”.

To extend the little person view of how to generate/recognize from FSM's to RTN's, we need to
change to a little people view. So for instance 1o generate, when a person traverses an arc with
the name of another net on it, s/he recruits another person to make a pass through that net,
while s/he walits. That person may in turn require others to help him/her, and so on.

Note in particular that one person may in fact pass another, because of the recursive nature of
the networks. For instance in generating the noun phrase "the child in the park" three people
are involved (supposing that we ignore the sub-nets associated with lexical categories like N and
Det). If we call them Arthur, Bseth and Charlie, the generation process looks like this:

Arthur starts out from the first room in the NP sub-net and sings out "the". He continues on
from the second room, saying “child*. From the third room, he chooses the PP arc, and so
calls on Beth.

Beth starts at the beginning of the PP sub-net, and says "in". Confronted with the NP arc,
she calls on Charlie.

Charlie runs through the NP sub-net, saying first "the" and then "park”, tips his hat o
Arthur who is still waiting for word from Beth, and exits, telling Beth that he has

finished.



Beth, who has been waiting to traverse the NP arc in the PP net, does so on getting the OK
from Charlie, and then herself exits and report success to Arthur.

Arthur, on hearing from Beth, completes his traversal of the PP arc, and then exits himself,
bringing the whole process to an end.

4.4 Context-free grammars

Regular expressions are a declarative notation for describing languages generated/recognized by
FSM's. Context-free grammars do the same for RTN's.

A context-free grammar is a collection of rules of the form nt — s; ... s,,. Each rule is called a
production. For example, a context-free grammar for our first RTN is:

S 5 NPVNP

NP - N

NP — DetN

N -dog

N — John

V o knows
Det — the

The symbols on the lefi-hand side of the productions are called non-terminals {normally
written in upper case), and those which appear only on the right-hand side are called terminals
(normally written in lower case). In this example S, NP, N, V, Det are non-terminals and dog,
John, knows, the, ... are terminals. Notice that the non-terminals correspond directly to
sub-net names in the associated RTN. Often the symbol ::= is used in place of —, and a list of
productions for a nonterminal is written as one production using ['s.

A context-free grammar can be read as telling you what counls as what. Thus, the above
grammar says that an NP followed by a V followed by a NP counts as an S, and that either an N or
a Det followed by an N counts as an NP,

A context-free grammar can be used for generation by treating each production as a rewrite
rule. Any string containing a non-terminal can be rewritten by replacing that non-terminal
with the right-hand side of some rule of which it is the left-hand side. The process comes to an
end when the string contains only terminals. So, for example, we can generate the sentence "The
dog knows John" using this grammar as follows:
S - NPVNP

— DetN VNP

- the NV NP

— the dog V NP

— the dog knows NP

-» the dog knows N

— the dog knows John
The rewriting has been done right to left but it could have been done in any order.

In order to write a context-free grammar for our other RTN it is convenient to introduce a little
extra notation: square brackets on the right-hand side of a production will indicate that
something is optional, and * will be used to indicate repetition as in regular expressions. Then a
grammar for the RTN is:



S 5SNPVP

VPV

VP VNP PP’

NP - [Det] Ad]" N PP
PP — Prep NP

N - dog

V = knows

Adj — big

Det — the

Prep — with

Grammars written in this richer language have a clear parallel with RTN's (compare the above
grammar with the corresponding RTN) but they are no more powerful since a grammar in the
enriched notation can be converted into a grammar in the unenriched notation. For this example
we just have to treat [Det], PP and Adj as non-terminals and add the rules:

[Det] — Det

[Det] —»

PP’ - PP PP

PP" -

Adj - Adj Adj’

Adj -

Regular expressions are just another way of writing context-free grammars in which every
production has the form nt - a nt'or nt — a.



Lecture V

Tree structure and parsing

5.1 Context-free grammars, continued

Recognizing strings using a contexi-free grammar is just the reverse of generation. |In
generating strings we regarded the production rules of the grammar as rewrite rules. We
generated a sentence by starting with an S and repeatedly applying rules, each time replacing the
non-terminal on the left-hand side of the rule with the string of terminals and non-terminals
on the right-hand side.

To recognize a string we apply the production rules as reverse rewrite rules. We repeatedly
replace substrings consisting of the right-hand side of a rule by the non-terminal on the
left-hand side. This continues until we are left with just an S (success) or there are no rules
with appropriate right-hand sides (failure). So this is how to recognize the sentence "The child
in the park likes hot salted peanuts” using the grammar of the last lecture:

the child in the park likes hot salted peanuts
— the child in the park likes NP
— the child in the park V NP
— the child in the park VP
-2 ...
— [Det] Adj N PP’ VP
— NP VP
—S

This is bottom-up recognition. Top-down recognition Is basically generating sentences until the
one you are looking for comes up. In practice, it is more goal-directed than that!

Notice that since we allow rules having the empty string on the right-hand side, it is possible to
go on forever without ever succeeding or failing. But if a grammar contains rules like this it Is
always possible 1o give an equivalent grammar which doesn't contain such rules.

Recognition with CFG's is again a highly non-deterministic process. At each step we have to
choose which rule to apply and also where to apply it. The CFG recognizes a string If there is
some series of choices which succeeds.

5.2 Summing up generation and recognition with RTN's and CFG's

RTN's have been described as a generalization of FSM's and it has been shown how they can be
used to generate and recognize strings. Context-free grammars are a declarative notation for the
kind of languages which can be handled by RTN's, like regular expressions are for FSM's. That
is, for every RTN there is a CFG for the same language (actually, more than one) and vice versa.
Although CFG's are declarative (i.e. they are a static description in contrast to RTN's which are
understood as little machines which churn out sentences and recognize them), CFG's can be used
to generate and recognize strings too. CFG's are perhaps easier to construct and understand, but
for computational purposes the corresponding RTN's are more useful.

Context-free grammars are called context free because the left-hand side of each rule consists of
only one non-terminal. This means that context cannot influence whether the replacement is
allowed. If we don't have this restriction, we get context-sensitive grammars. They have more
power but are harder to work with. For example, we could change the production rule for PP in
the grammar so that PP's can only appear after the word "child™:

child PP — child Prep NP



Prolog provides a convenient notation, called definite clause grammars, tor building programs to
generate and recognize strings. A definite clause grammar is entered in a form very much like
that of a CFG; this is automatically expanded to define a sequence of predicates which can be used
1o both generate and racognize strings in the language described by the grammar. As an example,
the CFG of the last lecture can be expressed as a definite clause grammar as follows:

8 -=> np, vp.

vp -=> v,

vp --> v, np, ppstar.

n --> [dog].
v —=> [knows].

This yields the following Prolog program:

s (String,Rest) :- np(String,A), vp{A,Rest).
vp{String,Rest) :-~ v(String,Rest).

vp(String,Rest) :- v{String,A), np(A,B), ppstar(B,Rest).
n{String,Rest) :- append([dog],Resat,String).

v (String,Rest) :- append([knows],Rest,String).

The string str is recognized if the goal s (str, [1) succeeds. Strings in the language are
generated as successive instantiations of x in the goal s (x, [1). The program obtained is very
much like the RTN corresponding to the original grammar, although this is not immediately
obvious because the RTN itself is combined with the recognition/generation algorithms and also
because the implicit use of Prolog's choice and backtracking mechanisms masks part of the
control structure of the recognition/generation algorithms.

5.3 Non-determinism In recognition

Whenever a recognition procedure has been presented (for FSM's, RTN's and CFG's) it has been
pointed out that the procedure is non-deterministic, i.e. there are choices to be made at various
points. Even though some sequence of choices leads to a failure, there might be some other
sequence of choices which succeeds and so if you make random choices it will be necessary to
backirack quite a lot. This makes recognition quite inefficient, and so a real implementation will
have some kind of strategy for making the right choices most of the time or even all the time.
Efficiency depends on making the right choice reasonably often. This is another one of those
problems you encountered in the "Planning and Search” part of the course, and so the same kinds
of strategies are applicable.

The strategy used to make choices normally will depend on special features of the particular
language involved. For example, in English words like "the" always mark the beginning of a
noun phrase. That kind of information helps a lot in making the right choice. But one thing
which makes il quite difficult to choose correctly is when lots of the words in a sentence fit into
more than one lexical class. For example, consider the following sentence:
The fat orange ducks swallow flies.

"Fat" and "orange” can be either nouns or adjectives, while "ducks", "swallow" and "flies” can be
either nouns or verbs. The problem here is that it is hard to base choices on local information.

5.4 Syntactic structure

It is nice that we can generate and recognize sentences with RTN's and CFG's. But recognition of a
sentence isn't very satisfying if all we get back is the information: "Yes, that was a sentence all
rightl” We would like to know the syntactic structure. The meaning of a sentence will
eventually be determined by looking at its syntactic structure. Recognition + structure is called
parsing. The syntactic structure we build is sometimes called a parse iree or a derivation tree.

A FSM doesn't contain information about structure. But an RTN does, since named sub-nets are
responsible for taking care of particular bits of syntax. If we can just keep track of which
sub-net took care of which bit of the sentence, we will end up with a good idea of its structure.
The same goes for recognition with CFG's, where non-terminals take the place of sub-net names.



Here is the parse tree for "The dog with white paws chased the cat”, according to the RTN and CFG
in the last lecture:

""\ /‘"’\
[Det] N pp* ]
| | /7 \
Det PP [Det] N
Prep NP Det
Atlij* N
Adj

The dog with white paws chased the cat

Notice how the structure reflects our intuitions about what goes with what in the sentence.

How exactly do we get this structure? Lef's first consider CFG's. We can view a rule which says
S - NP VP as a statement that a tree of the following form is well-formed:

S
NP ¥YP

Then instead of recognizing sentences using the production rules backwards as rewrite rules, we
can parse them using the productions as tree-building rules. This just means that instead of
replacing a string of terminals and non-terminals by the non-terminal on the left-hand side of
the rule, we draw a little tree with the non-terminal at the root and the elements of the string at
the leaves.

Try using this idea to construct the above parse tree. (Note: we don't bother drawing the bits of
the tree which end in the empty string.)

With RTN's, we just have to add a step to the recognition procedure so that it builds the tree as it
goes along. Each time a transition is followed it should do one of the following extra jobs,
depending on the label on the transition:
Arrow labelled with #: Don't do anything extra;
Arrow labelled with string: Make the label into a leaf and add it to the set of branches hanging
from the "current” node (i.e. the node for this sub-net);
Arrow labelled with a sub-net name: Make the sub-net name into a node with the branches
produced by that sub-net hanging underneath it, and add it as a branch in the set of
branches hanging from the current node.

Try using the modified algorithm and the RTN from the last lecture to construct the parse tree
for "The dog with white paws chased the cat".

This is more how top-down parsing works in practice than top-down parsing from a CFG; the
string is "consumed" from left to right and so there is always a "next word" to help in choosing
the next transition.

Modifying the little person view of generation/recognition is easy: we just have to make sure
that during recognition our little people write down the labels of the arcs (except # arcs) they
traverse in order, and when they are finished, put the name of their sub-net at the top of the
page and draw lines from it to all the labels. For those arcs which name sub-nets s/he also has



to paste in the paper produced by the person who traversed the sub-net.

Definite clause grammars can also be used to produce parsers which return parse trees as well
as reporling success. This is done by adding an argument to each of the non-terminals in the
definite clause grammar to carry the parse tree of the sub-phrase, as follows:

s{stree(NP,VP)) --> np(NP), vp(VP).

vp(vptree(V)) --> v{V).

vp {(vptree (V,NP,PPstar)) --> v(V), np(NP), ppstar(PPstar).

n(ntree(dog)) --> [dog].
vivtree (knows)) —--> [knows].

This yields the following Prolog program:
s {stree(NP,VP),String,Rest) :- np(NP,String,A), vp{(VP,A,Rest).
vp (vptree (V},String,Rest) :- v(V,String,Rest).
vp (vptree (V,NP,PPstar), String,Rest) :-
v(V,String,A), np(NP,A,B), ppstar(PPstar,B,Rest).

nintree (dog),String,Rest) :-

append ( [dog], Rest, String) .
v{vtree (knows), String,Rest) :-

append{ [knows),Rest,String).

A "flat” representation for parse trees is being used here, where for example the parse tree
above would be represented as:
stree {nptree (optdettree (dettree(the)),
ntree (dog),
ppstartree (pptree (preptree (with),
nptree (adjstartree (adjtree (white)),
ntree(paws)})}),
vptree (vtree (chased),
nptree (optdettree {dettree(the)),
ntree (cat))}))

5.5 Structural ambigulty

There may be different sequences of choices which succeed in recognizing a particular sentence.
Before we started building parse this didn't matter very much, since all we got from recognition
was a yes/no answer. Now it does matter, since different ways to succeed correspond to different
parse trees. Here are two different parse trees for "I saw the man with the hat":

s
\\\\VP
el
IR NP PP

NP v NP pp*
N/
NP
VP
s””’

in the upper analysis the prepositional phrase is associated with the verb phrase, meaning that
the hat is being used to do the seeing. In the lower analysis it is associated with the noun phrase,



meaning that the man has the hat.

A sentence like this (having more than one parse tree) is called structurally ambiguous. N isn't
enough to just find one way to parse this, since if it is the wrong one then the wrong meaning
will result. We need to find all the possible parse trees; hopefully (as in this case) semantic
processing will be able to figure out which is the right one.

One way o do this is to explore the possible parses in parallel. Whenever there is a choice, we
create processes to try the different possibilities simultaneously. Another way is to use
backtracking to explore all the possible choices one at a time. This is the natural way to do it in
Prolog.

Now in order to produce a reasonably efficient parser for a language, instead of knowing which
choice Is probably right, it is necessary to know which choices are certalnly wrong and don"
need to be explored at all. This corresponds to pruning the search space. Typically, ambigulty
will only be possible in certain places and so it will be possible to produce a strategy which will
(most of the time) exclude all choices but one.



Lecture VI

A voice-controlled calculator

6.1 The problem

As an application of the material in the last few lectures and to introduce the problem of
semantics, we are going to look at what would be involved in building a voice controlled
calculator. The program should be able to carry on a dialogue like the following:

User: How much is three times four?

Program: Twelve

User: Multiply three by three.

Program: OK

User: Add to that four times four.

Program: OK

User: What's the square root of that?

Program: Five

User: Add three hundred and eighty five to fifteen thousand nine hundred eighteen.

Program: OK

User: How much is that?

Program: Sixteen thousand three hundred and three

User: What's twenty five divided into one hundred and twenty thousand?

Program: Forty eight hundred
We assume that we have a program which translates between spoken and written words and so
the problem is reduced to understanding and producing strings of written words.

This problem has two subproblems:

1. Syntax and semantics of numbers

2. Syntax and semantics of commands and questions
6.2 The syntax and semantics of numbers

We can give the syntax of numbers with a context-free grammar. This one will only handle
numbers less than a thousand:

Num — zero 0

Num — To99 To99

Num — To999 To999
To98 — Digit Digit

To99 — Teen Teen

To99 — Tens [Digit] Tens + Digit
Digit — one 1

Digit —» nine 9

Teen — ten 10

Teen — eleven 11

Teen — nineteen 19

Tens — twenty 20

Tens — ninety 90

To999 — Hun Hun

To999 — Hun [and] To99 Hun + To99
Hun — a hundred 100

Hun — Digit hundred Digit * 100



An important addition has been made to the rules in the grammar. Associated with each rule is
an expression which gives a meaning to the siructure buiit by that rule. The meaning of a
structure is built from the meaning of substructures, where a non-terminal in a meaning
exprassion stands for the meaning of that subtree.

Try using the above grammar fo parse and determine the meaning of the phrase "three hundred
and forty two".

The same sort of approach can be used to attach meaning to the corresponding RTN. We can
associate an expression to each final state which gives the meaning of the structure parsed by the
sub-net in terms of the meaning of its subsiructures. Wae just have to change the recognition
algorithm and the little person view of recognition a little bit to handle this. Alternatively, an
expression can be associated to each arc so that the meaning so far is updated each fime an arc is
traversed.

6.3 The syntax and semantics of the calculator

The dialogues we want to be able to handle consist of two kinds of input : questions and commands.
S->Q[7] print out the meaning of Q and save it
S Imp[] save the value of Imp
This gives the basic semantics for the system: the value of every computation is saved, and in the
case of questions, which will all be of the form "How much is ..." or something equivalent, we
print out the result as well.

The syntax of questions is simple:
Q — how much is NP NP
Q — what is NP NP
The syntax of NP will be given later.

The commands, like "Multiply three by two", all involve prepositions which are separated by a
NP from the verb but delermined by it:

Imp — multiply NP by NP NP1 * NP2
Imp — multiply NP and NP NP1 * NP2
Imp — divide NP by NP NP1 / NP2
Imp — divide NP into NP NP2 / NP1
Imp — add NP to NP NP1 + NP2
Imp — add NP and NP NP1 + NP2

Imp — subtract NP from NP NP2 - NP1
Note that for divide the meaning depends on the preposition.

The noun phrases are the hardest. The simple rules are:

NP — that the saved meaning of the previous computation
NP — the result [of that] the saved meaning of the previous computation
NP — Num Num

Another class of NP's are those like "three added to four". The rules can be obtained by taking
each Imp rule of the form

Imp — V NP Prep NP
(i.e. 5 out of the 7 Imp rules) and forming an NP rule of the form

NP — NP V-ed Prep NP

with the same meaning:
NP — NP multiplied by NP NP1 * NP2
NP — NP divided by NP NP1 / NP2
NP — NP divided into NP NP2 / NP1
NP — NP added to NP NP1 + NP2

NP — NP subtracted from NP NP2 - NP1



Another class of NP's are those like "the result of dividing three into four". The rules for PartP
are obtained by turning each Imp rule of the form
Imp - VNP X NP
(i.e. all of the Imp rules} into
PartP — V-ing NP X NP
with the same meaning:
NP — the result of PartP PartP
PartP —» multiplying NP by NP NP1 * NP2
PariP — multiplying NP and NP NP1 * NP2

PartP — dividing NP by NP NP1 / NP2
PartP — dividing NP into NP NP2 / NP1
PartP — adding NP to NP NP1 + NP2
PartP — adding NP and NP NP1 + NP2

PartP — subtracting NP from NP NP2 - NP1

There are two more categories of NP: ones like "three plus four" and ones like "the sum of three
and four":

NP — NP Op NP Op(NP1,NP2)
NP — the Nop of NP and NP Nop(NP1,NP2)
Op -» plus +

Op - times .

Op — over /

Nop — sum of +

Nop — difference between -

Nop — quotient of /

Nop — product of .

Now we are done. This grammar covers complex questions like: "What is thirty five divided by
the result of multiplying the sum of two and two and the product of four over five and five?”

It won't quite handle our initial dialogue, because of:
- the use of square root: this is an easy exiension requiring only one rule (and others for
sine, cosine, logarithm, etc.); and
- "Add to that four times four": we have to add a rule
imp — V Prep that NP
for every Imp rule of the form
imp — V NP Prep NP



Lecture VIl

A more ambitious example: Monopoly

7.1 The problem

We will now look at a more ambitious example than the voice-controlled calculator of the last
lecture. We will consider what would be involved in writing a program which could understand
descriptions of moves and situations in a game of Monopoly and answer questions.

We will consider a simplified Edinburgh version of Monopoly:
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The program should be able to understand statements like:
Henry owns Abercromby Place.
Robin bought Dalry Road from Leslie for two hundred pounds.
Seymour has the green monopoly.
Janet traded two airlines to Max for Royal Circus.
It should be able to answer questions like:
Who owns Dalry Road?
Who owned Dalry Road before Robin?
What properties does Seymour own?
How many airlines does Max own?
Who is the owner of Royal Circus?
Who is Royal Circus owned by?
What did Janet gel for her two airlines?

This is much more difficult than the calculator example. Although the domain is restricted, it is
much more complex than before (where the meaning of a sentence could be boiled down to just a
number). Meanings of sentences will be much more complicated things, and we will have to
work harder to extract the meaning from a sentence. More complex syntax is involved, closer to
unrestricted English. We can't consider each sentence in isolation (in conirast to the calculator
example) so a database representing the state of things will have to be maintained.



We will have to consider the following subproblems:
This lecture: Syntax
Next lecture: Semantic representation using predicate calculus
- Review of predicate calculus
- The database of assertions
- Translating sentences into predicate calculus formulae
After that: Question answering and inference
- Proofs and question answering
- Inference rules
- Representing the world
We are not going to solve the problem completely; for example, the problem of what pronouns
refer to will be glossed over.

7.2 Monopoly syntax: noun phrases

First let's consider noun phrases. We have to deal with examples like the following:
Proper names: Robin, Abercromby Place
Nouns with determiners: an airline, the owner
Numbers as modifiers: two airlines, two hundred pounds
Possessive phrases: the owner of Royal Circus, Seymour's monopoly
Colours as modifiers: the green monopoly
WH-words as modifiers: what properties, how many airlines
Pronouns: he, her airlines

Here is a grammar for noun phrases which handles these, using Num from the previous lecture:
NP — Pronoun

NP — ProperNoun

NP — [Det] [Num] Adj N [s] [PP] (s = plural)
Pronoun — he | she | her | him | who | what | ... (her = dative she)
ProperNoun — Minto Street | Janet | ...

Det — Art

Det - WH-word

Det - NP's (note the recursion)

Art - a | the | this | that | ...

WH-word — which | what | how many { ...
Adj — green | blue | ...

N — property | player | airline | pound | ...
PP — Prep NP

Prep — of | next to | before | after | ...



Here is the equivalent RTN:

S TR T A
\-- —————— — Pronoun __——-'_:_',.-}

Art ProperNoun

Det: — O/m

N A
O

PP:—)O Prep:o NP :@

This gives the following structures:

NP
Det N
/
th Adj N NIP
WH-word Pronoun
which blue property s she 's airline s

This assumes a bit of morphological pre-processing:
her (possessive) = she 's
his = he's
properties = property s

Note that this pre-processing has to be a bit context-sensitive since "her" can be either
possessive or dative (compare his/him):

Robin bought her airline = ... she 's ...

Robin traded her an airline = ... her ...
It would be possible to do without the morphological pre-processing, although the grammar
would be more complicated.

Note that the grammar will also happily handle noun phrases like:
this seventeen green airlines before owner

7.3 Monopoly syntax: statements and questions

We can build a grammar for statements and questions based on the above NP grammar. First,
declarative sentences.

There are no intransitive verbs in our domain, so sentences are basically of the form NP V NP,
possibly with one or more prepositional phrases at the end. But complex verbs are possible, so
we replace the verb by a VG (verb group):



S — Decl

Decl - NP VG NP PP

VG - Aux V [Vend]

Aux > have |be|do| ...

V — own | buy | sell | trade | ...
Vend s ed|ing|s]|...

This assumes more morphological pre-processing:
bought = buy ed
sold = sell ed

We will not try to handle passive sentences such as:
Dalry Road was bought from Leslie by Robin.

Also, the grammar of VG is not really adequate; a better one might account for the different
allowable combinations of auxiliaries and the interaction between auxiliaries and verb endings.
This one doesn't even allow auxiliaries to have endings; it should be fixed (or else the different
forms -- "did", "does", "has" etc. -- could be added to Aux).

Next, yes/no questions. These are easy, since they are all of the form Does/Did Decl:
Does Robin own Dalry Road?
Does Seymour have the green monopoly?
Did Janet own two airlines?
The only problem is that the verb endings change, but since we are not worrying about correct
endings anyway it doesn't matter. Here is the grammar:
S$-Q
Q — Aux Dec!
Again, no passives are allowed:
Was Dalry Road bought by Robin?

The other questions (WH-questions) are a serious problem. The thing which is questioned in a
WH-question may come from anywhere in the sentence, leaving a hole:

What did Leslie sell? = Did Leslie selt X ?

What was sold Robin by Leslie? = Was X sold Robin by Leslie?

What did Leslie sell to Robin? = Did Leslie sell X to Robin?

To whom did Leslie sell Dalry Road? = Did Leslie sell Dalry Road to X ?

Whom did Leslie sell Dalry Road to? = Did Leslie sell Dalry Road to X ?
On the left we have basically a WH-word followed by a yes/no question with a hole in it. The
hole may be at the top (sentence) level, or it may be inside a prepositional phrase. We could
handle this by duplicating the grammar of WH-questions several times, leaving holes in each

possible place:
S 5> WH-Q
WH-Q — WH-word Aux NP VG NP PP’ [Prep] PP" {(Whom did L sell D [to]?)
WH-Q — WH-word Aux VG NP PP’ (What was sold R [by L]?)
WH-Q — WH-word Aux NP VG PP (What did L sell [to R]?)
WH-Q — WH-Prep Aux NP VG NP PP’ (To whom did L sell D?)

WH-Prep — Prep WH-word
Instead, we m\will expand the power of the parsing mechanism a bit by adding a limited memory.
When there i3 a NP with a WH-word in it at the beginning of a sentence, it should be kept to one
side instead of‘belng added to the sentence structure. It is then used when a hole appears later in
the sentence where.a NP is expected.

We write this as follows:



Q — NP! [Aux] DeclINP
NPI means that the NP must be a WH-NP (either a WH-Pronoun like "who" or "what", or an NP
with a WH-word as determiner), and that it should be kept to one side rather than used. DeclINP
means that in looking for a Decl this stored NP can be used when an NP is found to be missing in
the string. To take care of "To whom did Leslie sell Dalry Road?" we need the additional rule:

Q — PPI [Aux] DecllPP
where PP! looks for a PP containing a WH-NP and keeps it to one side, and DecliPP means that
this stored PP can be used when looking for a PP inside a Decl.

Notice that once something is put to one side, it must be used later. Otherwise we get questions
like:

What did Janet own two airlines?
Also, it can only be used once:

What did own?

Thus we get structures like the following:

T
Q
/
Aux Decl INP
Ni’l NIP V|G NP /PP\
Pronoun ProperNoun VY Prep NIP
ProperNoun
\_ What did Leslie sell to Robin ?
T
/Q
Aux Decl{\
PP! NIP YG NIP PP
Prep NIP ProperNoun Y  ProperNoun
Pronoun

|
\to whom did Leslie sell Dalry Road ?

7.4 Conclusion

This example was really a little beyond the edge of what we can handle using RTN's and CFG's:

- We didn't handle some forms (e.g. passives);

- We required an extension to the parsing mechanism to handle WH-questions; and

- We can parse lots of garbage which shouldn't be accepted.
We really need a more powerfu! mechanism to handle this. But at least we have enough here to
consider semantics, which is the main point of this example.

In fact, the suggested extension to the parsing mechanism is a start foward augmented transition
networks (ATN's), which is yet another kind of parsing mechanism. This will come up later in
the course.



Lecture VI

Monopoly example:
using predicate calculus as a semantic representation

8.1 Review of predicate calculus

We need a way of recording the state of play within a game. We also need a representation of the
meaning of statements and questions which will interact with this record. We will use
first-order predicate calculus for both these purposes.

First-order predicate calculus is itself a language, so it has a grammar of its own. The
sentences of the language are called well-formed formuiae, or wff for short. Here is the
grammar:

Term — Constant

Term — Var

Wif - Predicate (" Term ( , Term) )"

Wif —» Wif BinOpr Wit

Wit —» — Wif

Wit o (" Wi ")"

Wff - Vv Var "(* Wif )"

Wif — 3 Var "(" Wff ")"

Constant »a|b] ... (lower-case identifiers)
Var-X|Y]|.. (upper-case identifiers)
Predicate - p|q]| ... (lower-case identifiers)

BinOpr - A|v|>
The Vv and 3 forms don't make much sense unless the variable appears "free” in the wif.

Here are some examples of constants and predicates from the Monopoly example:
Constants: leslie, robin, britishgas, georgestreet
One-place predicates: utility, property, player
Two-place predicates: own, adjoin, colour, occupy, cost

Given these, we can express the meanings of various sentences:
Henry owns George Street: own(henry,georgestreet)
Dalry Road is next to Aer Lingus: adjoin(dalryroad,aerlingus) (this is falsell)
British Gas is a utility: utility(britishgas)
Leslie is on India Street: occupy(leslie,indiastreet)
Royal Circus is a green property: property(royalcircus) A colour(royalcircus,green)

Things get more interesting with quantifiers:
All utilities are properties: V X(utility(X) o property(X))
Robin owns a green property: 3 X(colour(X,green) A property(X) A own(robin, X))
Every player occupies a property: ¥V X(player(X) > 3 Y(property(Y) A occupy(X,Y)))

Why is this called first-order predicate calculus?
First-order: Quantifiers are only over objects, e.g. all properties, some players, etc. In
second-order predicate calculus it is possible to quantify over predicates, which is
needed to express the meaning of a sentence like "Napolean had all the properties of a
great general": V P (V X (greatgeneral(X) o P(X)) > P(napolean))
Predicate: The language includes predicates which can be "applied” to variables and names
of things. Propositional logic doesn't have predicates.



Calculus: The language comes with calculation rules, which are used for manipulating wffs
to build proofs. These inference rules will be covered in the next lecture. Arithmetic
is also a calculus: there is a language (of numerals, like "274%) and rules for how to
manipulate them (like the algorithm you learned in school for subtraction).

8.2 The database of assertions

We can now think of representing the state of the game as a collection of wffs which taken
together describe the current situation. A statement adds information to the database by
asserting a new wff, and a question is answered by trying to find a proof for the wif it translates
to. The rest of this lecture will be devoted to translating sentences into wffs. The next lecture
will explain how 1o do proofs to answer questions.

8.3 Translating sentences Into predicate calculus: noun phrases

Noun phrases serve to identify referents, i.e. a noun phrase picks out some thing or set of things
in the world. Sometimes those things are definite, i.e. known things as in "British Gas" or "the
airline next to Dalry Road". Sometimes they are indefinite, i.e. not already known things as in
"an airline” or “a green properly”.

In general, proper nouns, pronouns and noun phrases beginning with "the" are definite and refer
to unique things we already know about. So in the phrase:

the airline next to Dalry Road
the determiner "the” says that there should be exactly one constant X in our database that
satisfies:

airline(X) A adjoin{X,dalryroad)
So when we encounter such a noun phrase, we should use the database to find that constant, and
use it as the meaning of the noun phrase. In this case the constant would be loganair, since
Loganair is the airline adjacent to Dalry Road.

Plural noun phrases which don't begin with "the" and noun phrases beginning with "a" are
indefinite and introduce new things into the discourse. For example, consider the following
story:

I went to a shop to buy a newspaper. A man and two women were there.
The indefinite noun phrases each add a new thing to the world, with descriptions attached. So
this story might translate as:

shop(thing1)

newspaper(thing2)

in(me,thing1)

in(thing2,thing1)

man(thing3)

woman(thing4)

woman(thing5)

in{thing3,thing1)

But in our Monopoly world, the population of the universe is fixed. Indefinite noun phrases will
usually turn up only in questions, where instead of introducing new constants they will refer to
some unknown thing which we will name with a variable. So we will translate indefinite NP's
into assertions about variables. If the NP is part of a statement we will create a new constant
and replace the variable with it. If the NP is part of a question, we will existentially quantify
the variable.

Thus the NP "a green property” translates as:

colour(X,green) A property(X)
If this is part of a question, like "Does Robin own a green property?” then we will end up trying
to prove the wif:

3 X (colour(X,green) A property(X) A own(robin,X})



If it is part of a statement, like "Leslie bought a green property” then we would assert the wifs:
colour(thing1,green)
property(thing1)
own(leslie,thing1)

8.4 Explicit translation rules for Monopoly

Recall the grammar given in the last lecture to handle the syntax of Monopoly questions and
answers.

As in the calculator example, we have to say for every rule in the grammar how the meaning of
the whole can be computed from the meaning of its component parts. The only difference is that
this time the meaning of a string is a wif, constant or variable {depending on the nonterminal
involved) instead of just a number. Also, the meaning depends on the current state of the
database and the information in a lexicon describing what words mean.

The complete set of rules for this grammar would take a long time to explain, so we are only
going to cover the main points.

For noun phrases, the meaning is different depending on whether a referent can be established
immediately or not. There are three categories:

proper nouns lexicon gives referent no description required
pronouns, definite NP's find referent in database description from lexicon
indefinite NP's unknown referent description from lexicon

Exactly what happens with indefinite NP's depends on whether they are inside yes/no questions
or assertions; details coming up.

To get the referent as the meaning for proper nouns, pronouns and definite NP's, and a
description of a hypothetical referent for indefinite NP's, we need the following meaning rules
for our NP grammar:

NP — ProperNoun ProperNoun
For example, "Robin” gives robin and "Dalry Road" gives dalryroad (taken from the lexicon).
NP — Pronoun the X that satisfies Pronoun

The lexicon has e.g. human(X} A sex(X,male) for "he" and inanimate(X) for "it". More
sophisticated approaches woyld have a condition concerning recency of participation.

NP - [Det] [Num] Adj N [s] [PP]
We have to split this rule into two cases. Let's forget about numbers to make it easier:

- if Det="a" or Det is absent, then {V, Adj(V) A N(V) A PP(V))

- otherwise Z, where Z satisfies Det(Z) A Adj(Z) A N(Z) A PP(2)
For example, "a green property” would translate to (V,colour(V,green)} A property(V)),
provided the lexicon had colour(X,green) for "green” and properly(X) for "property”. This
means "the V such that colour(V,green) and property(V)". On the other hand, "the unoccupied
green property” would give the Z which satisfies the following wif according to the database:

— 3 Y(occupy(Y,Z)) A colour(Z,green) A property(Z)
assuming the lexicon had — 3 Y{occupy(Y,X)) for "unoccupied”. We really should require that
there is just one Z satisfying the conjunction.

We will skip the meaning rules for determiners and prepositional phrases. The only interesting
one for determiners is for those of the form NP 's, which translate to something involving the
predicate own if the referent of the NP is a person; this doesn't take care of examples like "Dalry
Road's occupant”.

That takes care of noun phrases. The next problem is to build the meaning of a declarative
sentence from the meanings of the noun phrases which make it up. Prepositional phrases will be
ignored to make things simpler.

Decl - NP VG NP VG(NP1,NP2)



For example, for the sentence "Minto Street adjoins a utility" we get:
adjoin(mintostreet,(X,utility(X)))
which can be read as adjoin applied to mintostreet and an X such that utility(X).

We will not have time to treat the question of how auxiliary verbs and verb endings affect the
meaning of the main verb (taken from the lexicon) to give the meaning of the whole verb group.

Now we come to sentences, which can be either declarative sentences, yes/no questions, or
WH-questions. According to our grammar, each of these is basically a Decl, possibly dressed up
a bit. But we do different things with the meaning of the Decl depending on which of these roles
it is filling.

S - Decl Go through the components of Decl, and for each one
which is a pair (i.e. which comes from an indefinite NP)
instantiate the variable which is the first element of the
pair to a newly created constant. Using this
instantiation, assert the second element of the pair into
the database.

Then replace each pair with its associated constant, and
assert the result into the database.
For example, consider the previous example where for the sentences "Minto Street adjoins a
utility” we got the meaning:
adjoin(mintostreet,{X,utility(X))}
Interpreting this as a declarative sentence causes the following clauses to be added to the
database:
utility(thing1)
adjoin(mintostreet,thing1)

For yes/no questions, we want to leave the indefinite NP's as variables.

S - Aux Decl Go through the components of Decl, and replace each one
which is a pair with its first element (a variable), and
conjoin its second member with Decl.

Then try to prove the resulting conjunct, existentially
quantified for all the variables from the pairs.
Interpreting the previous example as a question ("Does Minto Street adjoin a utility?") we
would try to prove the following:
3 X (adjoin(mintostreet,X) A utility(X))
which in this example cannot be proved (see the next lecture) and so the answer is "no".

As another example of a declarative sentence, consider the sentence:

Robin owns the unoccupied utility.
The NP "the unoccupied utility" translates to:

Z, where Z satisfies — 3 Y(occupy(Y.Z)} A utility(Z)
This Is checked against the database to find an appropriate Z; suppose the answer is britishgas.
Then the whole sentence translates to:

own(robin,britishgas)
which is added to the database (in this case, there are no indefinite NP's so the interpretation of
the Decl as a sentence requires no extra work).

An example of a complex yes/no question is:
Does a blue property adjoin an unowned airline?
Interpreting the second part of this as a Decl gives:
adjoin({V1,property(V1) A colour(V1,blue)),(V2, airline(V2) A -3 Y (own(Y,V2))))
and then interpreting this as a yes/no question gives the following to be proved:
3 V1 (3 V2 (adjoin(V1,V2) A property{(V1) A colour(V1i,blue)
A aitine(V2) A=3 Y {own(Y,V2)) ))



Finally, we have to give an interpretation for yes/no questions. The treatment of indefinite NP's
is the same as for yes/no questions, but we also need to do something about the questicned
element. The idea is that it introduces a variable into the interpretation, for which the values
which satisfy the entire resulting wff are answers to the question.

S — NPI [Aux] DeclINP Treat the components of DeclINP as for yes/no questions.
Conjoin with the resulting description the description
associated with NP1.

Print out all the values of its variables which satisfy the

resulting conjunction.

We fudge a little by supposing that only the variable is

supplied as the meaning of NP! in its role inside DeclINP.
For example, if we consider the question:

Which green property does Robin own?
we get the following translation:
colour(Q,green) A property(Q) A own(robin,Q)
and the database is checked {o see which values of Q will satify this wif.



Lecture IX

Monopoly example:
question answering and inference

9.1 Predicate calculus, proofs and question answering

We have already discussed how the current state of play is recorded in a database of wfis.
Statement interpretation involves adding to this database. But question answering is trickier.
We have been informally appealing lo some mechanism which will determine the truth or falsity
of a wif by consulting the database, and which will search for bindings for variables in a wiff
which will cause it to be true. We need to look more closely at what this mechanism is and how
it might be automated.

The mechanism we will use to answer questions is that of proof: a wif is true with respect to the
database if we can prove it using the database and false otherwise. The following example
illustrates how we can answer the question "Does Robin own a property?" in the affirmative,
given a database containing the following facts:

Axioms
1. All green properties are owned by Robin.
Vv X {(property(X) ~ colour(X,green)) > own(X,robin))
2. All properties are orange or green.
v X (property(X) o {colour(X,orange) v colour{X,green)))
3. Royal Circus is a property.
property(royalcircus)
4. Royal Circus is nol orange.
-~ colour(royalcircus,orange)

To prove: 3 X (property(X) A own{robin,X))
Proof

a) from 3 & 2: colour(royalcircus,orange) v colour(royalcircus,green)
b) from a & 4: colour(royalcircus,green})

c) from b & 3: property(royalcircus) A colour(royalcircus,green)

d) from c & 1: own(robin,royalcircus)

e) from d & 3: property(royalcircus) A own{robin,royalcircus)

so 3 X (property(X) A own(robin,X))

This proof has been carried out by forward chaining. That is, we start from axioms, and draw
conclusions on the basis of inference rules until we reach the desired conclusion. In order to do
proofs it is necessary to know what the inference rules are; the above proof is not really a proof
since we proceeded by intuition rather than according to a set of inference rules.

9.2 Valid Inference rules

The inference rules are supposed to correspond with our understanding of what we want the
symbols in wffs fo mean. These rules are the only things which give a meaning to the language of
first-order predicate calculus; without them it would be useless to translate from English to
predicate calculus.

In the following rules, P and Q stand for any wif and X stands for any variable.



It we know this we can infer this
1. PAQ P
Q

2 P

Q PAQ
3. PvQ

-~P Q
4, P PvQ
5. Q PvQ
6. P>Q

P Q (modus ponens}
7. PoQ

-Q -P (modus tollens})
8. - P p
9. P --P
10. vX(..X..) U (for any constant c)
11. S+ I AX{(..X..) (for any constant ¢}
12, VX{~P) -3IX (P
13. IX(=P) -V X (P)

These rules work on pieces of wifs as well, so for example given 3 X (P A Q) we can use rule 1 to
infer 3 X (Q).

Given these inference rules, we can prove that rule 12 is true in reverse as well:

-3 X(P) assume this
—3IX{(==P) by rule 9
-=VX{=P) by rule 13
VX{(=P) by rule 8

9.3 Representing the Monopoly world

Let's look at some facts about the Monopoly world. First we need some facts about the layout of
the board. These are always true and would be in the database to start with:

follow(britishairways,georgestreet)

follow(princesstreet,britishairways)

property{georgestreet)

property(princesstreet)

colour{georgestreet,blue)

airline(britishairways)

At a certain stage of a game the database might include the following additional facts:
own({henry,georgestreet)
own(robin,princesstreet)
We also need some meaning postulates which relate the meanings of the different predicates.
Here are the ones which relate the meaning of follow (used to describe the layout of the board)




and the meaning of adjoin (used for the translation of "next to"):
v X (Vv Y (follow(X,Y) o adjoin(X,Y)))
vV X (V Y {follow(X,Y) o adjoin(Y,X))}

Now we can answer the question "Does Henry own a property next to an airline?" using a
backward chaining or goal-directed proof. The translation of this question is:
3 X (3 Y (own(henry,X) A property(X) A airline(Y) n adjoin(X,Y)))
If we can prove this the answer to the question is "yes", otherwise "no". (If we have a
WH-question, we require an instantiation for the variables which makes the formula provable.)
The goal-directed proof goes like this:
3 X (3 Y (own(henry,X) a property(X) A airline(Y) A adjoin(X,Y)))
< (by rule 11)
3 Y (own{henry,georgesireet) A property(georgestreet)
A airline(Y) A adjoin(georgestreet,Y))
«< (by database and rule 2)
J Y (property(georgastreet) A airline(Y} A adjoin(georgestreet,Y))
< (by database and rule 2)
3 Y (airline(Y) A adjoin(georgestreet,Y))
< (by rule 11)
airline(britishairways) A adjoin{georgestreet,britishairways)
« (by database and rule 2)
adjoin(georgestreet,britishairways) (*)
< (by meaning postulate and rules 6 and 10)
follow(georgestreet,britishairways)
FAILS!
but (*) « (by meaning postulate and rules 6 and 10)
follow(britishairways,georgestreet)
which Is true according to the database, so the answer is "yes".

This works by starting with the thing we want to prove as a goal and working backwards using
inference rules to things which are known to be true. At each step, we look around to see what
rules can be applied to prove the currect goal. Once the goal has been reduced 1o facts which are
known to be true, reading the successful path of the search backwards gives a proof.

9.4 Conclusion of Monopoly example

Wae considered three aspects of this problem:
1. Parsing the input into syntax trees
2. Translating the syntax trees into first-order predicate calculus
3. Using theorem proving to answer questions

The syntax was slightly beyond the edge of what can be handled adequately using RTN's and CFG's,
as detailed already at the end of lecture 7.

In translating we found that in general it seemed to be possible to build an adequate
representation of the meaning of a sentence using predicate calculus. We had to ignore certain
complications and handled some aspects in a superficial way (e.g. pronouns) but we managed to
build translations of sentences from the translations of their paris.

Once statements and questions were translated into predicate calculus, we encountered no
problems in using proofs to handle question answering.

Some things we didn’t cover:
- Choosing an efficient order of conjuncts in translating questions into predicate calculus;
for example, "Is a utility unoccupied?” could be translated into either of the following:
3 X (-3 Y (oceupy(Y,X)} A utility(X))
3 X (utility(X) A= 3 Y (occupy(Y,X)})




The second will take less time to answer since it will involve looking at the utilities
(there are two) and checking if one is unoccupied. The first will search through all the
spaces to find the unoccupied ones (there are perhaps 20) and check if one is a utility.

- A statement like "Robin bought India Street from Henry" involves removing an assertion
from the database (the one which says thal Henry owns India Street) as well as adding
one.

- More generally, we didn't take proper account of time; the database contains only a
snapshot of what is true at a particular time, with no information about the history of
events. This means we can't handle questions like "Who owned Dalry Road before
Robin?" or "What did Janet get for her two airlines?”



Lecture X

Introduction to augmented transition networks

10.1 What is wrong with RTN's?

We have tried using RTN's to produce parsers for two examples: a voice-controlled calculator
and a Monopoly question-answering system. The language involved in the calculator example
was simple enough that it was not too difficult to produce an RTN which would handle it
successfully. But although we managed to produce an RTN which would handle the language
involved in the Monopoly example with reasonable success, we ran into some problems. The
main ones were:

- We had to extend the RTN parsing mechanism to handle WH-questions like "What
properties does Seymour own?"; we added a limited memory to allow something ("what
properties”} to be put to one side and then used later (as the object of "own").

- Our RTN would parse lots of sentences which really shouldn't be accepted, for example
"Does Robin buy Dalry Road to blue airline?”

Looking at ordinary English, it is hard to produce an RTN which will handle the following things:
Number agreement: "Those student” and "a books™ are wrong, while "these books” is okay.
Subject-verb agreement: "He walk” and "they walks" are wrong, while "he walks" is okay.
Same structure for different sentences: The following sentences should ideally be given the

same structure:
Henry gave the book to Sally.
Henry gave Sally the book.
The book was given to Sally by Henry.
Sally was given the book by Henry.

Why is this so hard? For number agreement, the problem is that the lexical categories Noun and
Det group together different kinds of nouns/determiners (some are singular, some plural).
There is no way of distinguishing between the singular and plural nouns/determiners and so both
must be treated the same. This is also the reason why handling subject-verb agreement with an
RTN is difficult. Producing the same structure for the sentences "Henry gave the book to Sally"
and "The book was given to Sally by Henry” is impossible without adding memory to the RTN as
in the Monopoly example since the RTN parsing algorithm retains the order of the words in a
sentence and the three NP's "Henry", "Sally" and "the book™ come in a different order in the four
sentences.

It is possible to make things work to some extent by brute force. For number agreement, we
could divide the lexical category Noun into Singular-Noun and Plural-Noun and divide the

category Det into Singular-Det and Plural-Det. Note that some words would be in more than one
category, for example "sheep” and "the". Then the following simple RTN for NP's:

NP:-—)O Det ;O N :@

would be replaced by the following more complicated RTN:

s, O — s
NP: = O > ®
m-' O —plurel-N

A similar idea would work for subject-verb agreement (the categories would be things like
1st-Person-Singular-Verb). In order to get the same structure for different forms of the same
sentence, we would need to apply some kind of post-processing to convert different equivalent



forms into the same form.

All this is feasible, but the collection of lexical categories and the resulting RTN get very
complicated.

10.2 Augmenting the network

To handle these things in a nicer way, we can expand the power of RTN's by augmenting them to
give ATN's, i.e. augmented (recursive)} transition nets. We augment an RTN by adding conditions
and actions to the arcs of the network.

- the conditions restrict the circumstances under which an arc may be taken;

- the actions perform structure-building and take notes for use by later actions/conditions.
Also, instead of final nodes we use exit arcs which look like this:

---— (@) becomes ---— (O —

This is to allow conditions and actions to be associated with exit from the network just like with
any other arc.

10.3 Example: Number agreement in noun phrases

A simple RTN for NP is the following:

NP:—.O Det :O N :O-—-)

To avoid "those student” and "a books", we add the following conditions and actions:
Det action: set number to Number feature of Det
N condition: number must be the same as Number feature of N
Exit action: set Number feature of NP to number

Note that this gives two parses to the NP "the fish".

In building this ATN, two assumptions have been made:

- Each word is assoclated with various features in the dictionary, such as Number and Tense
(for verbs). Syntactic structures can be given features too; we set the Number feature
in the NP produced by the above ATN in order to allow an ATN for S which uses this one
for NP to handle subject-verb agreement.

- There are registers available for temporary storage.

10.4 Bullding parse trees

Actions will be used to build parse trees rather than leaving this to the parsing algorithm as
with RTN's. For example, consider sentences like "He gave the book to Sally" and "He gave Sally
the book"; as mentioned before, we would like these to get the same syntactic structure.

Here is an ATN which will parse sentences of this form and which handles subject-verb

agreement:
/ ‘3
NP v NP
S: O : :O ? O &y O

NP, action: set Subject to NP; set number to Number fealure of NP,

V condition: number must be the same as Number feature of V
V action: set Verbto V
NP, action: set object to NP,

NP4 action: set Indirect-Object to NP5; set Direct-Object to object
NP, action: set Indirect-Object to object; set Direct-Object to NP,




So both "He gave the book to Sally" and "He gave Sally the book” get the following structure:

Subject Yerb Direct-Object Indirect-Object

he gave the book Sally

The parsing algorithm will only form the nodes of the syntax tree; the actions on the arcs are
responsible for hanging things from the nodes. The things which "hang off* (Direct-Object,
Verb, etc.) are treated more or less like features (like Number in the NP example above).

10.5 How does parsing work now?

The parsing algorithm is comparatively simple now, since much of the work is done by the
actions on the arcs.

To parse a string from a sub-net:
1. Start at the initial state of the sub-net. Form a node labelled by the name of the sub-net.
2. Choose an exit arc from the current state or else an arc from the current state to another
state labelled by:
- the empty string,
- the next word of the string, or
- the name of a sub-net
and whose condition (if any) is satisfied. If there is no such arc, the parse fails.
3a. If the chosen arc is an exit arc, then if we are at the end of the string perform the action
on the arc (if any) and the parse succeeds; otherwise it fails.
3b. If the chosen arc is labelled by the empty string or by a word, perform the action on the
arc (if any).
3c. If the chosen arc is labelled by a sub-net name, divide the string in two and try to parse
the first half using the sub-net. Then perform the action on the arc (if any).
4. Follow the arc chosen in step 2 to the state it points to.
5. Go to step 2 to parse the rest of the string.

Try parsing the sentence "He gave the book to her" using the ATN above.
10.6 Power of ATN's

ATN's are a lot more powerful than RTN's. In fact, if we don't put strong restrictions on the
actions and conditions which can be associated with arcs, ATN's have the same power as
general-purpose computersl To see why, try constructing an ATN which adds two numbers {i.e.
which will "parse™ any string consisting of two sequences of binary digits separated by a comma,
producing a "parse tree™ containing their sum as its result).

Unfortunately, in passing from RTN's o ATN's we have lost the ability to do both parsing and
generation from the same net. Generation is not possible now because the actions are for parsing
only and cannot in general be reversed as would be necessary for generation. Dually,
transformational grammar (ask a Linguistics student to explain what it is if you are interested)
can be used to generate but is not very useful for parsing for the same reason. Transformational
grammar is {sort of) related to ATN's in the same way as context-free grammar is related to
RTN's.



Lecture Xl

Monopoly example:
using augmented transition networks

11.1 Introduction

In the last lecture it was argued that RTN's aren't quite powerful enough to handle certain
phenomena in English such as subject-verb agreement. Recall the problems we encountered in
the Monopoly example when we tried to use an RTN for parsing: we had to extend the RTN parsing
mechanism with a limited memory fo handle WH-questions, and the RTN we produced would
parse lots of ungrammatical sentences as well as grammatical ones.

In this lecture we will construct an ATN to replace the RTN of the Monopoly example, which will
handle WH-questions properly and which will reject some ungrammatical sentences which the
RTN accepted. It would be possible to reject all ungrammatical sentences, but we are only going
to concentrate on a few constructions to show how it can be done.

We will only look at the problem of parsing; since the parse trees our ATN will produce will be
the same as those produced by the RTN before, the other components (translation into predicate
calculus and theorem proving) are the same as before.

11.2 Noun phrases revisited

Recall the kind of noun phrases we have to handle:
Proper names: Robin, Abercromby Place
Nouns with determiners: an airline, the owner
Numbers as modifiers: two airlines, two hundred pounds
Possessive phrases: the owner of Royal Circus, Seymour's monopoly
Colours as modifiers: the green monopoly
WH-words as modifiers: what properties, how many airlines
Pronouns: he, her airlines

Here is the RTN which we produced to handle these:

Adj
it i N #3 *q
NP:_’O Det EO Numgo_’o s SO PP Eo_’
., A
\-..-" ———— — Pronoun ___---‘:_':.'.}
—~—_ R
Art Properioun

Det: _)O WH-word O —

5 A

O
NG Rl Wl .y g

This RTN will parse the following grammatical strings:
an airline, airlines, twenty-seven airlines, those iwenty-seven airlines




as well as the similar ungrammatical strings:
an airlines, airline, a twenty-seven airlines, twenty-seven airline

In grammatical strings, the Det (if present) can be either Singular or Plural. If it is not
present, the NP is Plural. If it is Singular, then no Num is permitted (actually "one" is
permitted, but we will pretend it isn't). On the other hand, the WH-word (which is one kind of
Det) "how many" is plural but does not take a Num; note that "how many airlines" is
grammatical while "how many airline” and "how many twenty-seven airlines” are not
grammatical.

To handle this, we can add conditions and actions as follows:
Det action: set number to Number feature of Det
#, action: set number o Plural

Num condition: number must be Plural
s condition: number must be Plural or HowMany
#4 condition: number must be Singular

Pronoun action: set number to Number feature of Pronoun
ProperNoun action: set number to Number feature of ProperNoun
Exit action: set Number feature of NP to Plurat if number is HowMany; otherwise set
Number feature of NP to number
Plural nouns are treated here by assuming a separate morphological pre-processing phase
which converts e.g. "airlines” to “airline s*. Thus the condition is on the "s" rather than on the
N. It would also be possible to make Number a feature of N and forget the pre-processing.

To get the above ATN for NP to work, appropriate actions have to be added to the Det sub-net to
give each Det a Number feature. Some Det's are both Singular and Plural, such as *his". This is
the case with possessive Det's like "the player's”. We add conditions and actions as follows:

Art action: set Number feature of Det o Number feature of Art

WH-word action: set Number feature of Det to Number feature of WH-word

‘s action: set Number feature of Det to either Singular or Plural

Other things can go wrong in NP's. For example, only some things can be coloured: "a blue
property” is okay but "a blus airline” is not. This could be caught seither during parsing
(relatively easy since the only adjectives we have in this domain are colours) or during
translation. Also, certain PP's cannot appear after certain N's: "the owner of the properly” and
"the airline after Royal Circus" are okay but "the airline of the property” and “the airline after
Henry" are not. Similarly, some possessives cannot be combined with certain N's: "the airline’s
owner" and "Henry's property" are okay but "the airline's property” and "Henry's owner" are
not.

These could all be handled without much trouble, but we won't do them here. Also, our ATN needs
actions to build the parse tree, but it isn't difficult to see what these actions would be and where
they would go.

11.3 Statements and yes/no questions revisited

There are several things which can go wrong in a statement or yes/no question. For example,
the grammar we produced originally would accept sentences with strange VG's such as: "Henry
did did own Minto Street”. This is just one example of a wrong way of combining verbs and
auxiliaries; there are many others. Verbs may optionally take certain prepositions, so for
example "Henry bought Minto street from Janet" is okay but "Henry bought Minto street to
Janet" and "Henry owned Minto street from Janet" are not. However, subject-verb agreement is
not a problem since all subjects are singular in this domain (only objects may be plural).

We won't treat any of these problems here; we also won't extend the grammar to handle passives
such as:

Dalry Road was bought from Leslie by Robin.

Was Dalry Road bought by Robin?
All of these things can be handled with ATN's.



11.4 WH-questions revisited

Recall that handling WH-questions required the ability to keep sections of parse trees (NP's and
PP's} to cne side until a gap appeared later in the sentence where the saved bit could be inserted.
This was because of the observation that WH-questions are just WH-words followed by a yes/no
question with a hole:

What did Leslie sell? = Did Leslie sell X ?

What was sold Robin by Leslie? = Was X sold Robin by Leslie?

What did Leslie sell to Robin? = Did Leslie sell X to Robin?

To whom did Leslie sell Dalry Road? = Did Leslie sell Dalry Road to X ?

Whom did Leslie sell Dalry Road to? = Did Leslie sell Dalry Road to X ?

We came up with the following CFG rules to handle questions of this kind:

Q — NPI [Aux] DeclINP

Q — PP! [Aux] DeclIPP
where NP| means that the NP must be a WH-NP (either a WH-Pronoun like "who™ or "what", or
an NP with a WH-word as determiner), and that it should be kept to one side rather than used.
DeclINP means that in looking for a Decl this stored NP can be used when an NP is found to be
missing in the string. PP! and Decl!PP are the analogous things for PP's.

Woe can do the same kind of thing now with an ATN as follows:

O Db, o Bt

Aux
NP _*2 Decl Exity ,
O 0= 2L,
\
O o o Decl o Exitz ,

Aux

Q: —»O

The actions and conditions on the arcs are as follows:
#, action: set WH-NP to emply

NP condition: NP is a WH-pronoun or has a Det which is a WH-word
NP action: set WH-NP to NP
Exit, condition: WH-NP is empty

#4 action: set WH-PP to empty

PP condition: the NP of PP is a WH-pronoun or has a Det which is a WH-word
PP action: set WH-PP to PP
Exity condition: WH-PP is empty

To make this work, the ATN's for NP and PP have to be changed. For example, here is the new
ATN for NP:

Adj
. *2 N #3 4
Q= 0 =2 O 0 =22 O == O -
.., Det Num s PP~ A
Q ———— —_— Pronoun __-—-"':j
'b\.--ﬁ- _--F-"o
T~ ProperNoun "

*5




The actions and conditions are as before, except for the new arc:
#g condition: WH-NP is not empty

#g condition: set NP 1o WH-NP and set WH-NP to empty

Note that WH-NP and WH-PP have to be registers which are global to the whole ATN since they
are used by more than one sub-net.



Lecture XlI

An alternative to the predicate calculus
for semantic representation

12.1 Introduction

We have been using predicate calculus to represent the meaning of sentences. This works
reasonably well for certain domains, as we have seen with the Monopoly example. There are
other possibilities, though. This section will discuss an allernative representation called
conceptual dependency notation, invented by Schank who works at Yals.

We have already seen an application of conceptual dependency in lecture 2, namely the SAM
story-understanding system which was built in about 1977. The main idea behind SAM is
actually not conceptual dependency notation but the idea of a script. Each script represents some
situation from everyday life which everybody is familiar with and which often involves a
stereotyped set of events. The story in lecture 2 involves three scripts: taking a bus/subway,
going to a restaurant, and being robbad.

But conceptual dependency is used for semantic representation in SAM and this is important in
that it is not clear that predicate calculus would be adequate for this purpose.

12.2 Problems with predicate calculus

Predicate calculus is quite good for expressing the meaning of some sentences. For example:
All green properties are owned by Robin.
v X ((property(X) A colour(X,green)) > own(X,robin})
All properties are orange or green.
Vv X (property(X) o (colour(X,orange) v colour(X,green)))
Royal Circus is a property.
property(royalcircus)
Royal Circus is not orange.
— colour({royalcircus,orange)
Robin owns a property.
3 X (property(X) A own(robin,X})
Another big advantage of predicate calculus is that answering questions reduces to the problem of
proving theorems which is not always easy but at least is a familiar problem.

But consider a sentence like "John threatened Fred with a broken nose”. How can that be
represented in predicate calculus? We can't do much better than introduce a predicate called
"threaten" where threaten(X,Y,Z) means that X (a person) threatens Y {(a person) with Z (a
consequence), in which case the sentence translates to:
threaten{(John,Fred,brokennosa)
This is not very useful for answering questions, particularly if the sentence occurs in the
middle of a story like the following:
Fred was fond of telling offensive jokes about midgets. John threatened Fred with a broken
nose. Fred asked if he was able to reach so high. Suddenly Mary heard a loud cracking noise
and a scream of pain.
How do we answaer a question like "Who screamed?”



Actually, these problems were already present before in the sense that our predicate calculus
representation for the Monopoly world didn't say anything very deep about the meaning of words
like "own" and "sell". These words are simple ways to represent complicated processes. For
example, in the real world if somebody says "Robin bought British Airways from Henry" it
means much more than the fact that Henry used to own British Airways and now Robin does. One
reason why predicate calculus was adequate for the Monopoly example is because in the Monopoly
world it doesn't mean anything more than this.

12.3 Conceptual dependency notation

Note: It is not intended that you learn how to represent sentences in conceptual dependency
notation (in contrast to predicate calculusl); this lecture is just supposed to give you a general
idea of how it looks.

Schank claims that conceptual dependency notation is capable of describing the entire range of
everyday human actions (although the examples Schank uses invariably involve either violence
or food) using about a dozen primitive acts. These are:
PTRANS: A physical object is moved from one place to another. For example, "John put
fertilizer on the plants™ would be represented as follows:

plants
John & PTRANS «— fertilizer (—E

MOVE: A body part is moved to a place. This is different from PTRANS because it requires
only an act of will. MOVE would be used in the representation of "John kicked Frank"
since part of the meaning of "kick" is that John moved his foot.

PROPEL: An object is moved by direct application of force, as in throwing or shooting.

GRASP: An object is grasped by a person.

ATRANS: Control (possession) of something is transferred from one owner to another. For
example, "John donated £5 to Oxfam” would be represented as follows:

Oxfam
John &= ATRANS «— £5 (—E
John

Note that "John gave 50p to the beggar” would involve both an ATRANS and a PTRANS
(of the coin itself).

EXPEL: Sweating, exhaling, efc.

INGEST: Eating, drinking, inhaling etc. For example, "John smoked a cigar® would be
represented as follows:

John
John &> INGEST ¢— smoke (—I:
cigar

MTRANS: Information is transferred from one "place” to another, e.g. from one person's
mind to another (as in the verb "tell") or from a person’s long-term memory to his
conscious mind (as in the verb "remember”).

MBUILD: A person comes to believe something (a conceptualization) is true. For example,
"I advised John to try the spaghetti” would involve an INGEST, an MTRANS (I advised
John) and an MBUILD (I think John would like eating the spaghetti):



John
| & MTRANS <-|:
|

T John & INGEST «—— spaghetti
| &= MBUILD ¢———o Mcause

mentalstate = pleased
John <—E
SPEAK: A person makes a sound.

ATTEND: A person directs a sense to an object or event (listens to, looks at, etc.).

There are also various kinds of relations between events; we saw some already in "I advised John
to try the spaghetti”". For example, one event or conceptualization can cause, prevent or enable
another event. One event can precede another event or be a sub-event of another.

Some acts (like PTRANS) take an object, a source and a destination. Some (like MOVE) involve
an object and a destination but no source. Some (like MBUILD) take an event, and some
(MTRANS) take an event, a source and a destination.

There are adjectives which are regarded as describing the state of an object, and possessive
relations between people and things. For example, here is the representation of "John's cat was
dead™

cat ¢~ health = dead
"posa- by
John

States of objects can change in the course of an event; compare the above diagram with the
following representation of "John's cat died":

— health = dead
cat (—-‘

—— health = slive
][poss-bu

John

Finally, here is the conceptual dependency representation of "John threatened Fred with a
broken nose":

Fred
John €= MTRANS 6—[:
T John

Johnh &= D0 intend
Mcauae Fred &= D0
r—> broken
nose ¢ , Fred & MBUILD &— m“use
——< unbroken
][poss-bu John & DO
fFred m“uae
—> broken
nose ¢—
—< unbroken
poss-by

Fred



In other words, John communicated to Fred the information that he will do something to break
Fred's nose, which was intended to make Fred believe that if he does some particular thing it will
cause John to break his nose. This uses the primitive acts MBUILD and MTRANS. It also uses
DO, which is really something like a placeholder for an unspecified primitive act and not an act
itself.

12.4 Advantages and disadvantages

Although we haven't gone into aspects of conceptual dependency like how to answer questions
about a story, it seems clear that most of the answers to questions which might be asked are
recorded directly in the diagrams. For example, the representation of the sentence "John's cat
died” includes the previous state of the cat (alive) and the current state (dead); all we would
need is some general rule about state changes 1o figure out the answer to the question "Is the cat
dead?”

Although the diagrams contain words like "dead”, these are really references to dictionary
entries which contain information about the meanings of words. So presumably there would be
enough information in the dictionary entry for "dead™ to enable us to answer a question like
"Will John's cat be available for chasing mice tomorrow?”

On the other hand, it is possible to argue that the notation is unwieldy. Also, although conceptual
dependency notation is more successful than predicate calculus in capturing the meaning of
sentences like "John threatened Fred with a broken nose”, it is not so good for representing
sentences like "Everything in Antarclica is cold" which can be expressed in a natural way using
predicate calculus.

For more information about conceptual dependency notation, see Introduction to Artificial
Intelligence by E. Charniak and D. McDermott, pp. 325-333 (but note that they treat conceptual
dependency much more formally than we have done and they use a LISP-like notation instead of
the diagrammatic notation Schank uses).
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