
Al2 Natural Language Notes

D. Sannella and H. Thompson

Departmentof Artificial Intelligence

University of Edinburgh

1986/87

AI-2 Natural Language
Lecture Notes

D. Sannella and H. Thompson

Departmentof Artificial Intelligence

University of Edinburgh

Abstract
These notes introduce computational mechanisms for understanding nat-

ural language and answering questions. Computation models of increas-

ing power(finite state machines/regular expressions, recursive transition
networks/context-free grammars, augmented transition networks) are ex-

amined with the help of extended examples. First-order predicate calculus

is used for the representation of meaning and theorem proving is used to

support question answering. An analysis of the problems inherent in natu-

tal language processing, a discussion of several existing systems, and a brief

introduction to an alternative notation for representing meaning (Schank’s

conceptual dependency)arealso included.

Table of contents

| Natural language processing -- significance and difficulties

1.1 Natural language as a medium for communication

1.2 The Turing test

1.3 Whatis so difficult about language understanding?

1.4 What Is so difficult about language production?
1.5 Conclusions

ll A brief look at some natural language programs
2.1 ELIZA
2.2 PARRY
2.3 SHRDLU
2.4 LUNAR
2.5 SAM

ll Finite state machines and regular expressions
A simple generator of insults

Finite state machines
Regular expressions

Parts of speech and dictionaries
Conclusiono

o
w
w
e

A
h
n

=

IV. Recursive transition nets and context-free grammars
4.1 Whyarefinite state machines not sufficient?
4.2 Quick review of somelinguistic terminology
4.3 Recursive transition networks
4.4 Context-free grammars

V_ Tree structure and parsing

5.1 Context-free grammars, continued

5.2 Summing up generation and recognition with RTN's and CFG's
5.3 Non-determinism in recognition
5.4 Syntactic structure
5.5 Structural ambiguity

VI A voice-controlled calculator
6.1 The problem
6.2 The syntax and semantics of numbers

6.3 The syntax and semantics of the calculator

vit A more ambitious example: Monopoly
7.1 The problem
7.2 Monopoly syntax: noun phrases
7.3 Monopoly syntax: statements and questions

7.4 Conclusion

Vill Monopoly example:

using predicate calculus as a semantic representation

8.1 Review of predicate calculus
8.2 The databaseof assertions
8.3 Translating sentencesinto predicate calculus: noun phrases

8.4 Explicit translation rules for Monopoly

O
a
n
o
s
c
e

O
O
A
N
D
S
D

33
33

34
35

IX

XI

xil

Monopoly example: question answering and inference
9.1 Predicate calculus, proofs and question answering
9.2 Valid inference rules
9.3 Representing the Monopoly world
9.4 Conclusion of Monopoly example

Introduction to augmented transition networks
10.1 What is wrong with RTN's?
10.2 Augmenting the network
10.3 Example: Number agreementin noun phrases
10.4 Building parse trees

10.5 How does parsing work now?
10.6 Powerof ATN's

Monopoly example: using augmented transition networks
11.1 Introduction
11.2 Noun phrasesrevisited
11.3 Statements and yes/no questions revisited

11.4 WH-questions revisited

An alternative to the predicate calculus for semantic representation
12.1 Introduction
12.2 Problems with predicate calculus
12.3 Conceptual dependency notation
12.4 Advantages and disadvantages

38
38
38
39
40

42
42
43
43
43
44
44

45
45
45
46
47

49
49
49
50
52

Lecture |

Natural language processing-- significance anddifficulties

1.1 Natural language as a medium for communication

Natural language: as opposed to invented languageslike computer languages(e.g. Prolog, Pascal)
and formal languages as usedin logic and mathematics (e.g. predicate calculus).

Use of language for communication is what separates humans from other animals. Clearly, the

ability to communicate via language is an important aspect of intelligence. The word "dumb"

(stupid) originates from "dumb" (unable to speak). Even so, language is universal; everybody

learns to speak their native language fluently somehow by the time they are 6 or so. Only very
severely handicapped people don't learn to speak.

A.|. interest in natural language stems from:

- the practical interest of systems which can communicate; and
- the psychologicalinterest of understanding mechanismsinvolved in human language.

1.2 The Turing test

The Turing test was proposed in 1950 by Alan Turing as a definition ofartificial intelligence. if
a computeris able to pass the test, it deserves to be called intelligent (he claimed). Thetest is
heavily based on the use of language; a computeris intelligentif it can carry on a conversation
in a way indistinguishable from a human.

Test: HumanA sits at a terminal connected to terminals B and C. On or C is a human and on the
other a computer (A knowsthis). A must determine which is which by carrying on a (typed)
conversation, with no restrictions on what is typed. If A is unable to distinguish the computer
from the human, the computeris intelligent.

The dialogue could include (for example):
- general knowledge questions

Q: Whereis the castle?
A: At the top of the Royal Mile.
Q: What is 243 times 429?
A: (pause) ... 104247, | think.
Q: Whatis the capital of Upper Volta?
A: How on earth shail | know?

- comprehension tests
Q: Once upona time...... Whydid Bob poison Kevin?
A: He wasjealous that Kevin was so goodin Al2.

- emotional response tests

Q: What do youthink of Al2?
A: It would be okayif only the lectures were a bit later in the day.
Q: You lazy twitl | guess you're just too stupid to understand all the profound thing

we're learning.
A: Would you tike me to tell you what you can do with your profound things?

Language ability alone isn't enough to pass the Turing test: the computer also needs a large
amount of world knowledge, an ability to generate plausible emotional responses when
appropriate, etc. But language ability is a necessary requirement.

1.3 What is so difficult about language understanding?

The understanding process canbesplit into three steps:

sound waves

Acoustical/phonetic
processing

series of words

Morphological/syntactic
processing

syntactic structure

Semantic
processing

meaning

At each level there are big problems.

Common sense andintrospection don't help muchin figuring out how humans understand or

produce language; psychological experiments show this. So for example although it seemslike it
is possible to start a sentence without knowing how it will end, which would indicate that at least
production is not a three-step process, maybe you just don't know that you know.

Psychological experiments can test some theories of language understanding. For example, if a
theory says that sentence A requires more work to understand than sentenceB,it is possible to
test whetherIt takes more time to answer questions about A or about B. But there is a limit to
what can betested in this way.

1.3.1 Acoustical/phonetic processing

A naive approach to the problem would probably be to separate continuous speak into words by
looking for silences in between periods of sound. Long pauses are commas,very long pauses are
ends of sentences. The soundsin a word can be analysed to decide what the word is: k at = “cat”.

But this approach unfortunately does not work. Most of what you think you hear people saying is
not really there at all; the actual acoustic signal is noisy and ambiguous, andlots of things are
missing. For example:

- Word boundaries are not always silences.
Listen to speech and you'll realize how much words are slurred together.

- Not all pauses are word boundaries.
Voiceless consonants (k, p, t) are just silences which can only be distinguished by
their effects on nearby vowels.

- Length of a pause doesn't fit well with sentence structure.

- Different accents have different sounds, e.g. for vowels.
You have to learn how to understand an accent you've never heard before bytrying to
figure out what the person might be saying (examples: deaf person's speech, Scottish).

There is no rigid boundary between this level and other levels; what you expect to hear
influences what you hear.

1.3.2 Morphological/syntactic processing

Many words mean severalthings (/exical ambiguity):
He saw her duck.

Without contextual information we don't know if "duck" here is a noun or a verb, so we cannot
parse this sentence.

Morphemes(like "s" at the end of a word to form the plural) are not dependable:
"bats" is the plural of “bat”

but

"bus" is not the plural of "bu".

Somedialects have words which are notin otherdialects:
"grits", "bonnet", “messages”

How do we know whodid what to whom in sentenceslike the following?
My aunt gave that teapot to me.
That teapot was given to me by my aunt.
My aunt gave methat teapot.
| was given that teapot by my aunt.

At the syntactic level, natural language is enormously complex compared with computer
languages:

Here comesthe dog that killed the cat that ate the rat thatlives in the house that Jack built.
Therat that the cat that the dogkilled ate was namedPercy.

Structural ambiguity is a problem; consider the following (who has the stick?):
The boyhit the dog with the stick.

How does a program know which parse to take?

There is no strict boundary between the syntactic level and the semantic level:
| saw the Forth Road Bridge flying into Edinburgh.

This has two entirely different syntactic structures depending on whois flying, but common
sense says whichis the right one (based on meaning). How can a program be madeto see this?

Two other examples:
| ate dinner with a friend.
1 ate dinner with a fork.

Nobody has exactly the samedialect (ideolect).
The wall needs painting.
The wall needs painted.
The wall doesn't need painting anymore.

The wall needs painting anymore.

So how do we decide whatis acceptable?

Why are "garden path" sentenceslike the following so hard to understand?

The boy scouts looked for died.

In some casesit is not clear that syntax is so importantafter all. For example:
Skid, crash, hospital.

This is meaningful, although there is no way to parse it and anywaythe first two words are both
verbs and nouns.

1.3.3 Semantic processing

What do pronounsrefer to? Again, the ambiguity has to be resolved somehow.
Jack went to the store. He found the milk next to the cheese. He paid forit and left.

Does "it" mean the milk, the cheese, or the store? In a language with genders, there is the same
problem in deciding what "he" refers to!

The "use" of a sentence varies:

Could | have the salt?
Do you know the time?
Did you do the tutorial exercise?

Horses have fourlegs.

How dothe following sentences compare?

Bob bought the book from Mary.
Mary sold the book to Bob.
Mary gave the book to Bob.

Bobstole the book from Mary.
Bob paid Mary for the book.
Mary charged Bob£5 for the book.

Is there some semantic representation which exposes the similarities and differences between

these sentences? More generally: how can the meanings of sentences be represented in such a
way that use can be made of them?

Whatis the role of supposedly meaninglesslittle words like "well" and "um"?
Are you sure you don't mind?

- Oh, no. (= no, | don't)
- Well, no. (= yes, | do, really)

1.4 What is so difficult about language production?

The production process can be viewed as understanding in reverse:

meaning

Semantic
processing

syntactic structure

Morphological/syntactic
processing

series of words

Acoustical /phonetic
processing

L
sound waves

The problems are perhaps not quite so difficult as for understanding. We don't have to cope with

ambiguity, except how to say something so that it isn't ambiguous to the listener in context, but
at the same time notincluding every bit of knowledge. But note that (for humans) understanding
a foreign language is easier than speakingit!

1.4.1 Semantic processing

Suppose you've read a story. How do you explainit briefly (paraphrase it)? Which details have
to be left in (important to understand the plot) and which can be omitted? How do you decide
when to use pronouns? How do you choose between “Mrs Thatcher", “the prime minister”,
“her", “the honourable member from Finchley", or something impolite? It depends on what|
want to communicate, what the situation is and what | know about the person | am speaking to.

1.4.2 Morphological/syntactic processing

Similar problems: how do | choose words and constructions to get my meaning acrossin a natural
way?

1.4.3 Acoustical/phonetic processing

Where do the stresses go? Where is one allowed to slur words together? Separated words sound

unnatural.

How do adjacent soundsinfluence each other?

“words” = wordz

"cats" = catss

1.5 Conclusions

Wewill concentrate mainly on understanding of printed text, leaving out phonetic/acoustical

processing. We won't worry about discourse, only about individual sentences, regarded as
statements of fact or questions.

-Some potential applications:
- Machine translation of text

This was an early application of computers (1954). In 1966 after investing about
$20 million the U.S. government decided that the problem was too hard and stopped
funding in this area (the main interest was in Russian-English translation).

- Question answering
Natural language front-end to database system (e.g. to a library catalogue or police

records).

- Speech-driven devices
Typewriter, directory enquiries, automatic bank tellers, weapons.

- Natural language front-end to expert system

Language production is more an issue here than understanding.
- Computer-aided instruction
- Natural language as a programming language

LectureIl

A brief look at some natural language programs

2.1 ELIZA

ELIZA was written by Weizenbaum at MIT about 1965 to simulate a dialogue between a
psychologist (the computer) and a patient (the user).

A sample dialogue might begin as follows:
User: | am unhappy.
ELIZA: Why are you unhappy?
User: Because my mother never loved me.
ELIZA: Tell me more about your family.
User: It Is very bad.
ELIZA: Please go on.

User: She never loved me because ! am ugly.
ELIZA: Isn't there another reason?
User: Maybe | am too stupid.
ELIZA: You seem to be uncertain.

ELIZA seemsto really be understanding what the user is saying and makes reasonable responses.

How does ELIZA work? Perhaps surprisingly, it is just a trick: the program just looks for key
phrases in the user's input and produces a “canned”response, with appropriate bits of the input
inserted. For example, the exchange above arises from the following rules:

lam X = Why are you X?

X mother Y = Tell me more about your family.

X father Y = Tell me more about yourfamily.

X brother Y = Tell me more about your family.

X because Y = Isn't there another reason?

Maybe X = You seem to be uncertain.

No match = Please go on.

Another rule might be:
|X that you Yme. = What makesyou X that! Yyou?

This produces:

User: | feel that you distrust me.
ELIZA: What makesyoufeelthat | distrust you?

Butalso:
User: | think that you are mad at me.
ELIZA: What makesyou think that | are mad at you?

It would be possible to correct this example by using a more elaborate pattern:

|X that you are Yme. = What makes you X that | am Yyou?
But there is no way in general to tell ELIZA about inflection, i.e. that "I" goes with “am" and
"you" goes with "are". So ELIZA includes a simple mechanism for converting “am” to “are” and
soon.

ELIZA includes dozensof rules. Each rule has several possible responses so that responseswill
not be repeated too often.

The algorithm used in ELIZA is thus the following (which repeats until the user types something
like “goodbye"):

1. Accept input
2. Perform conversion of "am" to “are” etc.

3. Match against patterns in table; select response pattern
4. Use matching to give values to variables in response pattern

5. Output response

Weizenbaum's reasonfor writing ELIZA was to demonstrate that it is possible to avoid doing deep
analyses of inputs in order to produce a reasonable response.

This was possible because people don't expect a psychologist to respond directly to statements.
At a superficial level, a psychologist does seem to respond to keywords (or at least themes). If
you talk about somebody's mother he may well ask about your family, since he knowsthat talk
about even other peoples’ families reflects concern about one’s own family situation.

Criticisms which can be made of ELIZA include:
- Lack of memory.

There is no relation between the current response and any previous stimulus or
response.

- ELIZA doesn't understand in any sense of the word.

- No knowledgeof sentence structure.
An input which is total nonsense with appropriate keywords would produce a response.

- No world knowledge.

ELIZA can only get away with these limitations because of the restriction to a rather strange
domain.

Moral: Be suspicious of impressive-looking Al systems!

One thing which can be said about the validity of this approach: some stimuli should provoke
stereotyped responses. It would be a mistake for a program to map “Good morning” into some
deep representation and then carry out a complicated series of inferences in order to determine
that the correct response is "Good morning"!

Reference: Artificial Intelligence and Natural Man by M. Boden.

2.2 PARRY

PARRYwaswritten by Colby about 1974. PARRYis like ELIZA, except that now the useris the
psychologist and the computeris the patient. PARRY is supposed to simulate a person suffering
from paranoid psychosis.

A sample dialogue might run as follows:
User: Tell me something about yourself.
PARRY: | wentto the race track at Bay Meadows a while back.
User: What happened there?
PARRY: There'sa lot of crooked gambling going on there.
User: Why do youthink the gambling is crooked?
PARRY: | worry that gangsters have too much powerin this country.

User: How doyoulike the hospital?
PARRY: | don't communicate very much with the others.
User: Do other people at the hospital get on your nerves?
PARRY: | shouldn't have comehere.
User: Why do you say you shouldn't have come here?
PARRY: They made me comehere.

PARRYis supposed to model a particular imaginary person who has grossly delusive beliefs
about being persecuted. He connects betting on horses with dishonest bookmakers whofalsely
claim that he owes them money andset the Mafia after him.

Colby tried a version of the Turing test with PARRY. He showed a number of psychologists

interviews with PARRY, interviews with real paranoid patients and interviews with

non-paranoid people, and asked them to rate the degree of paranoia. In general, they rated
PARRYas paranoid along with the real paranoids. But he didn't tell them that some of the
interviews were with a computer and so this is not really the Turing test.

How does PARRY work? Briefly:

- It has a “belief system” modelled as a directed graph of concepts (bookies, Mafia, etc.)
with edges indicating “logical” connections.

- It has a limited number of canned responsesfor each topic, many more than ELIZA.
- Pattern matching on the input is used to detect the topic of questions,after first throwing

away "unimportant" words (i.e. most of them).
- It has “monitors” to detect fear, anger, hostility, etc.
- It has some memory of the previous conversation.

Again, the program carries on a plausible-sounding conversation because the domain rules out
questions which could test knowledge and understanding, and becauseslightly strange responses
reinforce the image of craziness.

Weizenbaum didn't expect people to take ELIZA seriously, but many people did (andstill do).
Colby seems to have been one of these: PARRY is very ELIZA-like, but he argues with great
seriousnessthatit is an accurate model of paranoid behaviour, and helps to understand paranoia

in humans, and so helprealpatients.

Reference: Computer Models of Thought and Language by R. Schank and K. Colby (editors).

2.3 SHRDLU

SHRDLU was written by Winograd at MIT about 1972. It carries on a dialogue with the user
about a simple world containing a number of coloured toy blocks and pyramids and a box. It
movesthings around on request and answers questions about its world and the actions it has
performed.

A sample dialogue might run as follows:

User: Pick up the big red block.
SHRDLU: OK.
User: Find a block whichis taller than the one you are holding and putit into the box.
SHRDLU: By “it", | assume you meanthe block whichis taller than the one | am holding.

OK.
User: What does the box contain?
SHRDLU: The blue pyramid and the blue block.
User: Had you touched any pyramid before you put the green one onthelittle cube?
SHRDLU:Yes,the green one.
User: When did you pick it up?
SHRDLU: While | was stacking up the red cube, a large red block and a large green cube.
User: Why?
SHRDLU: Togetrid ofit.

The performance of SHRDLU is impressive: it can understand and answer quite complex
questions, remember whatit had done before, and so on. It was seen as a breakthrough at the
time, and got Natural Language research flourishing again after the Machine Translation debacle.

How could it perform so well?
- The simple world gives almost no possibility of ambiguity; if a request might possibly be

ambiguous thenit is almost always possible to disambiguate by checking the concrete
situation and determine which possibility makes sense. If both make sense (almost
never) the system just asks which one was meant.

- The world contains no vagueness: everything is definite and deducible. In the real world,

there arelots of situations where A tends to happenif B happened, etc.
As a consequence, manyof the problems discussed in lecture | don't arise. The method used for
parsing was similar to that of LUNAR (see below).

Reference: Artificial intelligence and Natural Man by M. Boden.

2.4 LUNAR

LUNAR,written by Woods about 1972,is a natural language front end for a database containing
information about the geological content of Apollo moon rock samples. It was actually used by
geologists all over the U.S. doing research on lunar geology.

A sample dialogue might begin asfollows:
User: What is the average concentration of aluminium in high-alkali rocks?
LUNAR: 8.13 %
User: Do any samples have greater than 13 percent aluminium?
LUNAR:Yes.
User: What are the samples?
LUNAR: $30084, $120063,...
User: Whatis the average modal concentration of ilmenite in type A rocks?

Like SHRDLU, much of the success of LUNAR comesfrom limiting the world so that ambiguity

isn't possible. LUNAR didn't attempt to produce English responses, only numbers etc. Parsing
was done with augmented transition networks which we will talk about later in the course.

2.5 SAM

SAMis a story-understanding system written by Schank ef a/ at Yale about 1977.

Sample session:
John went to New York by bus. On the bus hetalked to an old lady. Whenheleft the bus, he
thanked the driver. He took the subway to Leone's. On the subway his pocket was picked.
He gotoff the train and entered Leone's. He had some lasagna. When the check came, he

discovered he couldn't pay. The managementtold him he would have to wash dishes. When
he left, he caught a bus to New Haven.

User: Why did John go to.New York?

SAM: Because John wanted to go to Leone's.

User: Did anything unusual happen on the bus?
SAM: | don't rememberanything.
User: Did anything unusual happen on the subway?
SAM: A thief picked John's pocket.

User: Why couldn't John pay the check?
SAM: Because John did not have any money.
User: How was Johnableto take the bus to New Haven?
SAM: Probably John hada ticket.

Also, SAM canretell (paraphrase) the story in English, Chinese, Russian, Dutch and Spanish.

The emphasis in SAM is on the semantic representation and making inferences from this

representation. It is also able to recognize stereotyped situations (bus, restaurant --- these
are the only ones it knows about). It digests the story by converting it into its semantic
representation and making lots of inferences. Then question answering is just accessing things
which are already present in the semantic representation.

Paraphrasing amounts to converting the semantic representation back into English; it can be
verbose about this (saying all the things it was able to infer from those mentioned explicitly in
the original story) or brief. Since the semantic representation is language-independent, it isn't

any harder to do this in Chinese than it is to do it in English. This is a completely different
approach from sentence-by-sentence transiation.

Parsing is completely ad hoc, and Schank claims that it isn't important in comparison with
semantic issues. So SAM makes noattemptto handle all of English.

Lecture Ill

Finite state machines and regular expressions

The next several lectures will look at computational mechanisms for handling the syntactic
structure of language. Wewill start with quite simple structures and work towards handling
increasingly complex structures. Given a /anguage(a set of strings) the two problems we have
to solve are how to mechanically recognize the strings in the language (i.e. how to determine

whether or not a given string is in the language) and how to generatethe strings in the language.
As it happens, the same mechanism can be usedto solve these two problemsfor a given language
simultaneously. For the present we will ignore the problem of how to determine and represent
meaning and concentrate only on syntax.

3.1 A simple generator of insults

Let's look at the problem of recognizing and generating a very simple class of strings: insults of
a certain form. This class of strings forms a miniature language.

Get lost youfilthy brute.

Jumpin a lake you nasty swine.

Getlost you nasty swine.

All the strings in this language have a very regular structure, namely
orderyou label

where /abel is a descriptive word followed by a name.

A procedure to generate strings like these is:
To insult: order, write "you", label
To order: Either write “get lost" or else write "jump in a lake”
To label: describe, name
To describe: Either write “filthy” or else write “nasty”
To name: Either write “swine” or else write "brute"

A similar procedure could be written to recognize the eight insults generated by this procedure.

But this approach is not very flexible. It is specific to the particular language we want to
generate/recognize; to handle another language we would havetostart all over again. Also, there
is lots of repetition (“either write ... or else write ..." occurs several times, for example). We
need a more abstract way of describing structure.

3.2 Finite state machines

A finite state machine (FSM) is a very simple machine which is able to recognize or generate a
certain class of strings. Sometimes an FSM is referred to asa finite state automaton.

An FSMconsists of:
- @ finite set of states
- a rule which says when the machine is allowed to make the transition from one state to

another.
- a distinguished initial state, and a set of final or terminal states (theinitial state may also

be final state).

FSM's are usually drawn as state diagrams:
- Each state is drawn asa little circle. Sometimes states are given names, which are written

in the circle.
- Theinitial state is drawn as a circle with an arrow leading into it from nowhere, and final

states are drawnascircles with dots inside.
- Transitions are drawn as arrows from onestate to another, labelled with strings.

For example, here is an FSM which will generate/recognize ourinsult language:

Get lost you filthy brute
= _—_— ay os —

OR in a lakeO © nasty O swine ©

To generate string:

Start at theinitial state.
If the current state is a final state, either stop or continue.
Choosea transition from the current state to anotherstate.
Write down the label on the arrow.
Follow the arrow to the state it points to.
Go to step 2 to generate the restof the string.P

R
P
O
n
s

Perhaps a moreintuitive way to understandfinite state machines is by imagining that a FSM is a

mapof some numberof rooms connected by passageways.

To generate a string, we imagine a person entering the mazeat the arrow (the initial state).
Each arrow leaving a circle on the diagram represents a door leaving the room, leading via a

corridor to another room. There is a label on the door corresponding to the label on the arrow.
Thelittle person picks a door at random, shouts out the label on that door, and’walks throughit
to another (or the same) room. circle with a dot (a final state) represents a room with an exit
from the maze.

To recognize a string, that is to see whether or not the machine could generate it, our person

chooses a door each time on the basis of the next elementin the string. If s/he gets to the end of
the string in a room with an exit door, we win. If the string ends and there is no exit, or s/he is

forced to exit without using up the string, or s/he is ever trapped in a room with no door having
the next elementof the string as label, we lose.

Here is this recognition algorithm in a more formal form:
1. Start at the initial state.
2. If we are at the end of the string, then: if the current state is a final state, the recognition

succeeds; otherwise it fails.
3. Choosea transition from the current state to another state labelled by the next word of the

string. If there is no such transition, the recognition fails.
4. Follow the arrow to the state it points to.
5. Go to step 2 to recognizethe rest of the string.

Try to generate and recognize the strings "Jump in a fake youfilthy swine” and "Get lost you

nasty brute" using the FSM above. This FSM fails to recognize the string "Jump in a lake you
brute"; can you see why?

A FSMalways recognizes exactly the same languageasit generates.

Notice that the procedures for generating and recognizing are non-deterministic, i.e. they
involve making choices about what to do next. In the case of generation this means that an FSM

may generate any ofthe strings specified by the machine. In the case of recognition this means
that the “right” set of choices must be made for any particular string. There may be more than
one set of choices which succeedsfor a particular string.

We can allow arrows to be labelled with the empty string as well, which allows a transition
from one state to another without moving along the string. The empty string will be written #.

So we could extend the insult FSM as follows:

Get lost thoroughly filthy bruteyou, oa

FF

—_—

Omin a lakeOnO=5 nasty O swine ©

It is also possible to have loops:

30=.Get lost O#you, seoccushy filthy,Abrute.

Jumpina lake Tasty” Fine?

very

This toop is very short; it is also possible to have longer loops. For example, one would be
necessary to handle an insult language containing strings like

Getlost and ... and jumpin a lake youfilthy swine.
Try constructing a FSM for such a language (where a sentence can contain one or more orders
separated by "and").

3.3 Regular expressions

A regular expression \s a simple notation for describing the same kind of languages which can be

generated/recognized by FSM's. In regular expressions:
@ meansrepeat a zero or more times
aU bmeanschoose either aor b
a bmeansa followed by b
Parentheses are used for grouping

The regular expression
(Get lost U Jump in a take) you(filthy U nasty) (brute U swine)

describes the first version of our insult language. The expression
(Get lost U Jump in a fake) you (thoroughly U #) (filthy U nasty) (brute U swine)

describes the “extended”insult language. The expression

(Get lost U Jumpin a lake) you very (thoroughly U #) (filthy U nasty) (brute U swine)
describes the second extendedinsult language. For each FSM there is a regular expression
describing the language it generates/recognizes, and vice versa.

3.4 Parts of speech and dictionaries

You may have noticed that it is possible to simplify the FSM's which generate/recognize our
insult languages. For example, in ourfirst extended insult language the part after "you" is

always an optional adverb, followed by an adjective and a noun. If we had a dictionary which
associates words with their parts of speech, the FSM could be reduced to the following:

Getlost_lost-OS#S0404040
Jump jumpin alakea lake

For recognition, we would need a dictionary which says whether each word is a noun, adjective,
etc. For generation, we would need aninverted dictionary which says for each category all the
words of that category.

3.5 Conclusion

Finite state machines are the simplest in a series of machines for generating and recognizing
languages. Next time ! will talk about recursive transition nets (RTN's) which are the next step

up in complexity, allowing sentences to contain nested structures. Another kind of machine is a
Turing machine.

Each kind of machine has a certain powerin the sense that there are some languages can be
handled by the powerful kinds of machines which cannot be handled by the weak oneslike FSM's.
The powerof an machine is determined essentially by the complexity of its memory. An FSM has
no memory --- it has only its current state to keep track of how far it has proceededin its job

of recognizing/generating a string. It can't backtrack to look again at whatit is in the process of
recognizing or to alter what it is in the process of generating.

RTN's amount to FSM's with an unbounded stack. Turing machines are like FSM's with an
infinite memory in the form of a tape; they have the same computational power as a computer.

Also, for each kind of machine there is a different notation for describing the kind of languageit
can recognize. For FSM's we had regular expressions; for RTN's we will have context-free

grammars.

Lecture IV

Recursive transition nets and context-free grammars

4.1 Why are finite state machines not sufficient?

Finite state machines are sufficient for languages with a very simple structure, like the insult
languageof the last lecture. But if we try a slightly more complicated language we begin to see
some of the limitations of this approach.

Consider the sentences:
John saw Mary.
The manlikes the dog.
The dog knows John.

The man ordered a drink.
A FSM which will handle sentencesof this form is:

-O=30-+0—--0=30-*+0

Note that we have to repeat the structure of the noun phrase twice, and the fact that the
structure is the same in both cases appears to be an accident. If we increase the complexity of
our FSM to handle more sentences, the problem would become worse. There are even some kinds
of sentence structure which cannot be handledatall by finite state machine; for example:

Therat that the cat that the dog killed ate was named Percy.
Onthe other hand,it is not clear that humans do very well with sentenceslike these either.

Det” Det

If we add to FSM's the ability to include not only words (or parts of speech) but also namesof

other FSM's as labels on arrows, these problems can be solved. This way we can use the same
structures more than once without repeating the structure in the FSM. For example:

“Ooo©

NP: QO —3O—-+*+@

It is even possible to build recursive FSM's to handle the rat-cat-dog example.

A finite state machine with this extra poweris called a recursive transition net (RTN).

4.2 Quick review of some linguistic terminology

The linguistic terms mentioned below will be used throughout this part of the course; this is

just to remind people who haven't thought about English grammarsince school.

Lexical categories:

Noun: Person,place, thing, concept (dog, boat, justice,...)
Verb: Action (go, make, study,...)

Transitive verb: Verb which takes an object (hit, have, ...)
intransitive verb: Verb which takes no object(sit, dream, ...)

Determineror article: the, a, some,...
Adjective: Modifies a noun (good, ugly, small, ...)

Adverb: Modifies a verb (slowly,reluctantly, ...)
Preposition: Relates two nouns (with, on, of, by, ...)

Conjunction: For putting sentences together (and, or, but, ...)

Pronoun: he, she,they,it, ...
Relative pronoun: which, that, who,...

Syntactic categories:
Noun phrase: A phrase which acts like a noun (The man with the stick hit the dog.)
Verb phrase: A phrase which acts like an intransitive verb (The man with the stick hit the

dog.)

Prepositional phrase: A phrase beginning with a preposition which qualifies a noun (The man
with the stick hit the dog.)

Relative clause: A clause beginning with a relative pronoun which qualifies a noun (The man
who wasbitten hit the dog).

4.3 Recursive transition networks

A recursive transition network is a collection of named FSM's (sub-nets) in which each arrow

may be labelled with either a string (as before) or with the name of a sub-net. The following

RTN handles a reasonable fragment of English, including all those sentences handled bythe last

example:

-O-0-*@
"OO@>r
NP: -O==0@x»D»r

O)
Det”

Adj

PP: 9)APOP@
This example includes recursion: a NP may contain a PP which contains a NP.

Sample sentences:
The child in the park likes hot salted peanuts.
A studentin the back row snored.
The police fired into the crowd.

Now we no longer have to treat lexical categories as special abbreviations; we can just treat

them as the namesof sub-nets as well.

ie,
N: -OmR 0)

likes

: -O snored ©

The algorithms for generating and recognizing strings have to be changed to cope with arrows
labelled with names of sub-nets. The algorithms becomerecursive is well as iterative.

To generate a string from a sub-net:

Start at the initial state of the sub-net.
If the current state is a final state, either stop or continue.
Choosea transition from the current state to anotherstate.
If its label names a sub-net, generate a string from that sub-net; otherwise, write down

the label.
Follow the arrow to the state it points to.
Go to step 2 to generate the rest of the string.

B
O
N
S

O
n

To recognize a string from a sub-net:

1. Start at the initial state of the sub-net.
2. If we are at the end of the string, then:if the current state is a final state, the recognition

succeeds; otherwiseit fails.
3. Choosea transition from the current state to another state labelled by either:

- the empty string,
- the next word of the string, or
- the nameof a sub-net

If there is no such transition, the recognition fails.
4. If the chosentransition is labelled by a sub-net name,divide the string in two andtry to

recognize the first half using the sub-net.

Follow the arrow chosenin 3 to the state it points to.
. Go to step 2 to recognize the rest of the string.o

n

Try using these algorithms to generate and recognizethe strings "The child in the park likes hot
salted peanuts" and “A studentin the back row snored” from the sub-net S above.

Notice that | need to keep track of my place in the current sub-net whenever | have to generate a
string from another sub-net. | can turn the recursive generation and recognition algorithms
into non-recursive ones by maintaining a stack of net locations to keep track of all the places |
had to interrupt the use of one sub-net to refer to another. This leads to something called a
pushdownautomaton.

As with FSM's, the generation and recognition procedures are non-deterministic. But now

recognition is more non-deterministic than before; we have to choose not only the correct arrow

to follow at each point but also how to divide the string. For example, we cannot recognize the
string “A student in the back row snored” from the sub-net S if we divide it at step 4 into the
strings "A student in the" and "back row snored”.

To extend the little person view of how to generate/recognize from FSM's to RTN's, we need to

changeto little people view. So for instance to generate, when a person traverses an arc with
the name of another net onit, s/he recruits another person to make a pass through that net,
while s/he waits. That person mayin turn require others to help him/her, and so on.

Note in particular that one person mayin fact pass another, because of the recursive nature of
the networks. For instance in generating the noun phrase "the child in the park" three people
are involved (supposing that we ignore the sub-nets associated with lexical categories like N and

Det). If we call them Arthur, Beth and Charlie, the generation processlookslike this:

Arthur starts out from the first room in the NP sub-net and sings out "the". He continues on

from the second room, saying “child”. From the third room, he chooses the PP arc, and so
calls on Beth.

Beth starts at the beginning of the PP sub-net, and says "in". Confronted with the NP arc,

she calls on Charlie.

Charlie runs through the NP sub-net, saying first "the" and then "park", tips his hat to

Arthur who is still waiting for word from Beth, and exits, telling Beth that he has

finished.

Beth, who has been waiting to traverse the NP arc in the PP net, does so on getting the OK
from Charlie, and then herself exits and report success to Arthur.

Arthur, on hearing from Beth, completes his traversal of the PP arc, and then exits himself,
bringing the whole process to an end.

4.4 Context-free grammars

Regular expressions are a declarative notation for describing languages generated/recognized by

FSM's. Context-free grammars do the same for RTN's.

A context-free grammaris a collection of rules of the form nt — s, ... 5, Each rule Is called a

production. For example, a context-free grammar for ourfirst RTN is:

S— NP VNP

NPN

NP > DetN

N—dog

N- John

V —> knows

Det — the

The symbols on the left-hand side of the productions are called non-terminals (normally
written in upper case), and those which appear only on the right-hand side are called terminals
(normally written in lower case). In this example S, NP, N, V, Det are non-terminals and dog,
John, knows, the, ... are terminals. Notice that the non-terminals correspond directly to

sub-net namesin the associated RTN. Often the symbol ::= is used in place of >, anda list of
productions for a nonterminal is written as one production using |'s.

A context-free grammar can be read as telling you what counts as what. Thus, the above
grammar says that an NP followed by a V followed by a NP counts as an §S,andthat either an N or
a Detfollowed by an N counts as an NP.

A context-free grammar can be used for generation by treating each production as a rewrite
rule. Any string containing a non-terminal can be rewritten by replacing that non-terminal

with the right-hand side of some rule of which it is the left-hand side. The process comes to an
end whenthestring contains only terminals. So, for example, we can generate the sentence "The

dog knows John" using this grammarasfollows:

S sNPVNP

— Det N V NP

—~ the NV NP

— the dog V NP

— the dog knows NP

~ the dog knows N

— the dog knows John

The rewriting has been doneright to left but it could have been donein any order.

In order to write a context-free grammar for our other RTN it is convenient to introduce a little

extra notation: square brackets on the right-hand side of a production will indicate that
something is optional, and * will be used to indicate repetition as in regular expressions. Then a
grammarfor the RTN is:

SNP VP
VP>V

VP + V NP PP"
NP — [Det] Adj’ N PP
PP — Prep NP

N—dog

V => knows

Adj > big
Det— the

Prep — with

Grammars written in this richer language have a clear parallel with RTN's (compare the above
grammar with the corresponding RTN) but they are no more powerful since a grammar in the
enriched notation can be converted into a grammarin the unenriched notation. For this example
we just have to treat [Det], PP and Adj as non-terminals and add the rules:

[Det] — Det

[Det] >

PP’PP PP”
PP’ 4
Adj" —> Adj Adj”
Adj =

Regular expressions are just another way of writing context-free grammars in which every
production has the form nt— a nt’ or nt a.

Lecture V

Tree structure and parsing

5.1 Context-free grammars, continued

Recognizing strings using a context-free grammar is just the reverse of generation. In
generating strings we regarded the production rules of the grammar as rewrite rules. We
generated a sentence by starting with an S and repeatedly applying rules, each time replacing the
non-terminal on the left-hand side of the rule with the string of terminals and non-terminals

on the right-hand side.

To recognize a string we apply the production rules as reverse rewrite rules. We repeatedly

replace substrings consisting of the right-hand side of a rule by the non-terminal on the

left-hand side. This continues until we are left with just an S (success) or there are no rules

with appropriate right-hand sides (failure). So this is how to recognize the sentence “The child
in the park likes hot salted peanuts” using the grammarofthe last lecture:

the child in the park likes hot salted peanuts
on

— the child in the park likes NP

— the child in the park V NP

— the child in the park VP

a> wae

—» [Det] Adj" N PP” VP
— NP VP

9S

This is bottom-up recognition. Top-down recognition Is basically generating sentences until the
one you are looking for comes up. In practice, it is more goal-directed than that!

Notice that since we allow rules having the empty string on the right-hand side, it is possible to
go on forever without ever succeeding orfailing. But if a grammar contains ruleslike thisit Is

always possible to give an equivalent grammar which doesn't contain suchrules.

Recognition with CFG's is again a highly non-deterministic process. At each step we have to
choose which rule to apply and also where to apply it. The CFG recognizes a string If there is
someseries of choices which succeeds.

5.2 Summing up generation and recognition with RTN's and CFG's

RTN's have been described as a generalization of FSM's and it has been shown how they can be
used to generate and recognize strings. Context-free grammars are a declarative notation for the
kind of languages which can be handled by RTN's, like regular expressions are for FSM's. That
is, for every RTN there is a CFG for the same language (actually, more than one) and vice versa.
Although CFG's are declarative (i.e. they are a static description in contrast to RTN’s which are
understood aslittle machines which churn out sentences and recognize them), CFG's can be used
to generate and recognizestrings too. CFG's are perhaps easier to construct and understand, but

for computational purposes the corresponding RTN's are more useful.

Context-free grammars are called context free because the left-hand side of each rule consists of
only one non-terminai. This means that context cannot influence whether the replacementis
allowed. If we don't havethis restriction, we get context-sensitive grammars. They have more
powerbut are harder to work with. For example, we could change the production rule for PP in
the grammarso that PP's can only appearafter the word "child":

child PP > child Prep NP

Prolog provides a convenient notation, called definite clause grammars,for building programs to

generate and recognize strings. A definite clause grammar is entered in a form very muchlike
that of a CFG;this is automatically expanded to define a sequence of predicates which can be used
to both generate and recognize strings in the language described by the grammar. As an example,
the CFG ofthe last lecture can be expressed as a definite clause grammaras follows:

8 --> np, vp.
vp --> v.

vp --> v, np, ppstar.

n --> [dog].

v --> [knows].

This yields the following Prolog program:

s(String,Rest) :- np(String,A), vp(A,Rest).

vp(String,Rest) :- v(String,Rest).

vp(String,Rest) :- v(String,A), np(A,B), ppstar(B, Rest) .

n(String,Rest) :- append({dog],Rest, String).

v(String,Rest) :- append([{knows], Rest, String) .

The string str is recognized if the goal s (str, {1} succeeds. Strings in the language are

generated as successive instantiations of x in the goal s (x, []). The program obtained is very
much like the RTN corresponding to the original grammar, although this is not immediately

obvious because the RTNitself is combined with the recognition/generation algorithms and also

because the implicit use of Prolog's choice and backtracking mechanisms masks part of the

control structure of the recognition/generation algorithms.

5.3 Non-determinism In recognition

Whenevera recognition procedure has been presented (for FSM's, RTN's and CFG's) it has been
pointed out that the procedure is non-deterministic, i.e. there are choices to be made at various
points. Even though some sequenceof choices leads to a failure, there might be some other
sequenceof choices which succeeds and so if you make random choicesit will be necessary to
backtrack quite a lot. This makes recognition quite inefficient, and so a real implementation will
have somekind of strategy for making the right choices most of the time or even all the time.
Efficiency depends on making the right choice reasonably often. This is another one of those

problems you encountered in the “Planning and Search” part of the course, and so the same kinds
of strategies are applicable.

The strategy used to make choices normally will depend on special features of the particular
language involved. For example, in English words like “the” always mark the beginning of a

noun phrase. That kind of information helps a lot in making the right choice. But one thing
which makesit quite difficult to choose correctly is when lots of the words in a sentencefit into
more than onelexical class. For example, consider the following sentence:

The fat orange ducks swallow flies.

"Fat" and “orange” can be either nouns or adjectives, while "ducks", "swallow" and "flies" can be

either nouns or verbs. The problem here is that it is hard to base choices on local information.

5.4 Syntactic structure

It is nice that we can generate and recognize sentences with RTN's and CFG's. But recognition of a
sentence isn't very satisfying if all we get back is the information: "Yes, that was a sentenceall
right" We would like to know the syntactic structure. The meaning of a sentencewill
eventually be determined by looking at its syntactic structure. Recognition + structure is called
parsing. The syntactic structure we build is sometimes called a parse tree or a derivation tree.

A FSM doesn't contain information about structure. But an RTN does, since named sub-nets are

responsible for taking care of particular bits of syntax. If we can just keep track of which
sub-net took care of which bit of the sentence, we will end up with a good idea of its structure.

The same goesfor recognition with CFG's, where non-terminals take the place of sub-net names.

Hereis the parse tree for "The dog with white paws chased the cat", according to the RTN and CFG
in the last lecture:

—

JN, 7.
[Det] N Pe

Det Jw me N

Prep NP Det

AN
y N

Adj

The dog with white paws chased the cat

Notice how the structure reflects our intuitions about what goes with what in the sentence.

How exactly do we getthis structure? Let's first consider CFG's. We can view a rule which says

S — NP VPas a statementthat a tree of the following form is well-formed:

Ss

NP YP

Then instead of recognizing sentences using the production rules backwards as rewrite rules, we

can parse them using the productions as tree-building rules. This just means that instead of
replacing a string of terminals and non-terminals by the non-terminal on the left-hand side of
the rule, we draw little tree with the non-terminal at the root and the elements of the string at
the leaves.

Try using this idea to construct the above parse tree. (Note: we don't bother drawing the bits of
the tree which end in the empty string.)

With RTN's, we just have to add a step to the recognition procedure so thatit builds the tree asit
goes along. Each time a transition is followed it should do one of the following extra jobs,

depending on the label on thetransition:

Arrow labelled with #: Don't do anything extra;

Arrow labelled with string: Make the label into a leaf and add it to the set of branches hanging

from the "current" node (i.e. the node for this sub-net);

Arrow labelled with a sub-net name: Make the sub-net nameinto a node with the branches
produced by that sub-net hanging underneath it, and add it as a branch in the set of

branches hanging from the current node.

Try using the modified algorithm and the RTN from the last lecture to construct the parse tree

for "The dog with white paws chasedthe cat”.

This is more how top-down parsing works in practice than top-down parsing from a CFG; the
string is "consumed" from left to right and so there is always a "next word" to help in choosing
the next transition.

Modifying the little person view of generation/recognition is easy: we just have to make sure
that during recognition ourlittle people write down the labels of the arcs (except # arcs) they
traverse in order, and when they are. finished, put the nameof their sub-net at the top of the
page and drawlines from it to all the labels. For those arcs which name sub-nets s/he also has

to paste in the paper produced by the person who traversed the sub-net.

Definite clause grammars can also be used to produce parsers which return parse trees as well

as reporting success. This is done by adding an argument to each of the non-terminals in the

definite clause grammarto carry the parse tree of the sub-phrase, as follows:
s(stree(NP,VP)) --> np(NP), vp(VP).

vp(vptree(V)) --> v(V).
vp(vptree(V,NP,PPstar)) --> v(V), np(NP), ppstar(PPstar).

n(ntree(dog)) --> [dog].

vivtree(knows)) --> [knows].

This yields the following Prolog program:
s(stree(NP,VP),String,Rest) :- np(NP,String,A), vp(VP,A,Rest).

vp (vptree(V),String,Rest) :- v(V,String, Rest).

vp (vptree(V,NP,PPstar),String,Rest) :-

v(V,String,A), np(NP,A,B), ppstar(PPstar,B, Rest).

n(ntree (dog) ,String,Rest) :-

append ([dog], Rest, String) .

v{vtree (knows) ,String,Rest) :-

append [knows], Rest, String) .

A "flat" representation for parse trees is being used here, where for example the parse tree
above would be represented as:

stree (nptree (optdettree (dettree (the)),

ntree (dog),

ppstartree (pptree (preptree (with),

nptree (adjstartree (adjtree (white)),

ntree(paws))))),

vptree (vtree (chased),

nptree (optdettree (dettree (the)),

ntree (cat))))}

5.5 Structural ambiguity

There may be different sequences of choices which succeed in recognizing a particular sentence.
Before we started building parse this didn't matter very much, since all we got from recognition
was a yes/no answer. Nowit does matter, since different ways to succeed correspondto different
parse trees. Here are two different parse trees for "Il saw the man with the hat":

/or.
NP

i\
| T \7man with the hat

YY

in the upper analysis the prepositional phrase is associated with the verb phrase, meaning that
the hat is being used to do the seeing. In the lower analysis it is associated with the noun phrase,

NP

meaning that the man has the hat.

A sentence like this (having more than one parse tree) is called structurally ambiguous. \t isn't

enough to just find one way to parse this, since if it is the wrong one then the wrong meaning
will result. We need to find a// the possible parse trees; hopefully (as in this case) semantic
processing will be able to figure out which is the right one.

One way to do this is to explore the possible parses in parallel. Wheneverthere is a choice, we
create processes to try the different possibilities simultaneously. Another way is to use
backtracking to explore all the possible choices one at a time. This is the natural way to do it in
Prolog.

Now in order to produce a reasonably efficient parser for a language, instead of knowing which
choice Is probably right, it is necessary to know which choices are certainly wrong and don't
need to be explored at all. This corresponds to pruning the search space. Typically, ambigulty

will only be possible in certain places and so it will be possible to produce a strategy which will
(mostof the time) exclude all choices but one.

Lecture VI

A voice-controlled calculator

6.1 The problem

As an application of the material in the last few lectures and to introduce the problem of
semantics, we are going to look at what would be involved in building a voice controlled
calculator. The program should be able to carry on a dialoguelike the following:

User: How much is three times four?
Program: Twelve
User: Multiply three by three.
Program: OK
User: Add to that four times four.
Program: OK
User: What's the square rootof that?
Program: Five
User: Add three hundred andeighty five to fifteen thousand nine hundred eighteen.
Program: OK
User: How muchis that?
Program: Sixteen thousand three hundred and three
User: What's twenty five divided into one hundred and twenty thousand?
Program: Forty eight hundred

We assumethat we have a program which translates between spoken and written words and so
the problem is reduced to understanding and producing strings of written words.

This problem has two subproblems:
1. Syntax and semantics of numbers
2. Syntax and semantics of commands and questions

6.2 The syntax and semantics of numbers

We can give the syntax of numbers with a context-free grammar. This one will only handle
numbersless than a thousand:

Num = zero 0
Num — To99 To99

Num — To999 To939

To99 —> Digit Digit

To99 — Teen Teen

To99 — Tens[Digit] Tens + Digit

Digit > one 1

Digit > nine 9

Teen — ten 10

Teen— eleven 11

Teen — nineteen 19

Tens — twenty 20

Tens — ninety 90

To999 — Hun Hun

To999 — Hun [and] To99 Hun + To99

Hun > a hundred 100

Hun -— Digit hundred Digit * 100

An important addition has been madeto the rules in the grammar. Associated with each rule is
an expression which gives a meaning to the structure built by that rule. The meaning of a

structure is built from the meaning of substructures, where a non-terminal in a meaning

expression stands for the meaning of that subtree.

Try using the above grammar to parse and determine the meaning of the phrase “three hundred

and forty two".

The same sort of approach can be used to attach meaning to the corresponding RTN. We can
associate an expression to each final state which gives the meaning of the structure parsed by the
sub-net in terms of the meaning of its substructures. We just have to change the recognition

algorithm and thelittle person view of recognition little bit to handle this. Alternatively, an
expression can be associated to each arc so that the meaning so far is updated each time an arc is
traversed.

6.3 The syntax and semantics of the calculator

The dialogues we wantto be able to handle consist of two kinds of input : questions and commands.

$3 Q [7] print out the meaning of Q and saveit

S — Imp [.] save the value of Imp

This gives the basic semantics for the system: the value of every computation is saved, and in the
case of questions, which will all be of the form "How muchis ..." or something equivalent, we
print out the result as well.

The syntax of questions is simple:

Q > how much is NP NP

Q — whatis NP NP

The syntax of NP will be givenlater.

The commands,like “Multiply three by two”, all involve prepositions which are separated by a
NP from the verb but determined byit:

Imp — multiply NP by NP NP1 * NP2

Imp — multiply NP and NP NP1 * NP2
Imp — divide NP by NP NP1 / NP2

Imp — divide NP into NP NP2 / NP1
Imp — add NP to NP NP1 + NP2

Imp— add NP and NP NP1 + NP2

Imp — subtract NP from NP NP2 - NP1

Note that for divide the meaning depends on the preposition.

The noun phrases are the hardest. The simple rules are:

NP -> that the saved meaning of the previous computation

NP -> the result [of that] the saved meaning of the previous computation

NP > Num Num

Another class of NP's are thoselike "three added to four". The rules can be obtained by taking
each Imp rule of the form

Imp— V NP Prep NP

(i.e. 5 out of the 7 Imp rules) and forming an NPrule of the form
NP — NPV-ed Prep NP

with the same meaning:

NP = NP multiplied by NP NP1 * NP2

NP —» NP divided by NP NP1 / NP2

NP — NPdivided into NP NP2 / NP1

NP> NPadded to NP NP1 + NP2

NP > NPsubtracted from NP NP2 - NPi

Another class of NP's are thoselike “the result of dividing three into four". The rules for PartP

are obtained by turning each Imp rule of the form

Imp > V NP X NP

(i.e. all of the Imp rules) into

ParntP — V-ing NP X NP
with the same meaning:

NP = the result of PartP PartP

PartP — multiplying NP by NP NP1 * NP2

PartP — multiplying NP and NP =NP1 * NP2

PartP — dividing NP by NP NP1 / NP2

PartP —> dividing NP into NP NP2 / NP1

PartP — adding NP to NP NP1 + NP2

PartP — adding NP and NP NP1 + NP2

PartP — subtracting NP fom NP NP2 - NP1

There are two more categories of NP: oneslike "three plus four" and oneslike “the sum of three
and four":

NP -» NP Op NP Op(NP1,NP2)

NP —» the Nop of NP and NP Nop(NP1,NP2)

Op — plus +

Op - times ‘

Op- over /

Nop — sum of +

Nop — difference between -

Nop — quotientof /

Nop — product of .

Now we are done. This grammar covers complex questionslike: "What is thirty five divided by
the result of multiplying the sum of two and two and the product of four over five and five?”

It won't quite handle our initial dialogue, because of:

- the use of square root: this is an easy extension requiring only one rule (and others for

sine, cosine, logarithm, etc.); and

- "Add to that four times four": we have to add a rule
Imp —> V Prep that NP

for every Imp rule of the form
Imp— V NP Prep NP

Lecture VII

A more ambitious example: Monopoly

7.1 The problem

We will now look at a more ambitious example than the voice-controlled calculator of the last
lecture. We will consider what would be involved in writing a program which could understand
descriptions of movesandsituations in a game of Monopoly and answerquestions.

We will consider a simplified Edinburgh version of Monopoly:

eaAESae934)
.

3

: 2 [Perper| ehoy [UPA Rgoseqy (so 3Weed

|

Wea

|

YSH!48 [Gas —np 5

& 2 B
saz

a
ae ais

rao

Besg
pigasgale
rtm

238

Ss >

sf ol

Be?
azte SAID
2%

ne
$%Fh aEea te

a
Purple], _ LPurple

SSEB “cir =| con
Jah Dalry Tair

|

Hay | cottect
£150

|

£95

|

£200

|

£80

|

£200

|

The program should be able to understand statementslike:

Henry owns Abercromby Place.
Robin bought Dalry Road from Leslie for two hundred pounds.
Seymour has the green monopoly.
Janet traded two airlines to Max for Royal Circus.

It should be able to answer questions like:
Who owns Dalry Road?
Who owned Dalry Road before Robin?
What properties does Seymour own?
How manyairlines does Max own?
Whois the owner of Royal Circus?
Whois Royal Circus owned by?
Whatdid Janet get for her two airlines?

This is much more difficult than the calculator example. Although the domain is restricted,it is

much more complex than before (where the meaning of a sentence could be boiled down to just a

number). Meanings of sentences will be much more complicated things, and we will have to

work harder to extract the meaning from a sentence. More complex syntax is involved, closer to

unrestricted English. We can't consider each sentencein isolation (in contrast to the calculator

example) so a database representing the state of things will have to be maintained.

We will have to consider the following subproblems:

This lecture: Syntax
Next lecture: Semantic representation using predicate calculus

- Review of predicate caiculus
- The database of assertions
- Translating sentences into predicate calculus formulae

After that: Question answering and inference

- Proofs and question answering
- Inference rules
- Representing the world

We are not going to solve the problem completely; for example, the problem of what pronouns

refer to will be glossed over.

7.2 Monopoly syntax: noun phrases

First let's consider noun phrases. We have to deal with exampleslike the following:
Proper names: Robin, Abercromby Place
Nouns with determiners: an airline, the owner
Numbers as modifiers: two airlines, two hundred pounds
Possessive phrases: the owner of Royal Circus, Seymour's monopoly
Colours as modifiers: the green monopoly

WH-words as modifiers: what properties, how manyairlines
Pronouns: he, herairlines

Here is a grammarfor noun phrases which handles these, using Num from the previouslecture:

NP — Pronoun

NP > ProperNoun

NP > [Det] [Num] Adj" N [s] [PP] (s = plural)

Pronoun — he| she| her | him | who | what|... (her = dative she)

ProperNoun — Minto Street | Janet| ...

Det > Art

Det > WH-word

Det> NP 's (note the recursion)

Art > a | the | this | that | ...

WH-word — which | what | how many ...

Adj — green| blue| ...

N = property | player | airline | pound| ...

PP — Prep NP

Prep — of | next to | before | after | ...

Here is the equivalent RTN:

Adj

OROGIO-O=3OG®

Qe Pronoun =e
on oo _

art ProperNoun

Det:7OS WH-word

pe:>OL®

This gives the following structures:

NP

Det N
7

Det Adj oN NP

WH-word Proveun

which blue property $ she 's airline s

This assumes a bit of morphological pre-processing:

her (possessive) = she 's

his = he's

properties = property s

Note that this pre-processing has to be a bit context-sensitive since "her" can be either
possessive or dative (compare his/him):

Robin boughtherairline = ... she's ...

Robin traded her anairline = ... her...

It would be possible to do without the morphological pre-processing, although the grammar

would be more complicated.

Note that the grammarwill also happily handle noun phraseslike:
this seventeen green airlines before owner

7.3 Monopoly syntax: statements and questions

We canbuild a grammarfor statements and questions based on the above NP grammar. First,
declarative sentences.

There are no intransitive verbs in our domain, so sentences are basically of the form NP V NP,

possibly with one or more prepositional phrases at the end. But complex verbs are possible, so
we replace the verb by a VG (verb group):

S > Dect

Dec! > NP VG NP PP”
VG — Aux’ V [Vend]

Aux — have | be | do | ...

V — own| buy| sell | trade | ...

Vend > ed} ing|s|...

This assumes more morphological pre-processing:

bought => buy ed

sold = sell ed

Wewill not try to handle passive sentences such as:
Dalry Road was boughtfrom Leslie by Robin.

Also, the grammarof VG is not really adequate; a better one might account for the different
allowable combinations of auxiliaries and the interaction between auxiliaries and verb endings.

This one doesn't even allow auxiliaries to have endings; it should be fixed (or else the different

forms -- "did", "does", “has” etc. -- could be added to Aux).

Next, yes/no questions. These are easy, since they are all of the form Does/Did Decl:

Does Robin own Dalry Road?
Does Seymour have the green monopoly?
Did Janet own two airlines?

The only problem is that the verb endings change, but since we are not worrying about correct

endings anywayit doesn't matter. Here is the grammar:

$—Q

Q > Aux Decl!

Again, no passivesare allowed:
WasDalry Road bought by Robin?

The other questions (WH-questions) are a serious problem. The thing which is questioned in a
WH-question may come from anywherein the sentence, leaving a hole:

Whatdid Leslie sell? = Did Leslie sell X?

Whatwas sold Robin by Leslie? = Was X sold Robin by Leslie?

Whatdid Leslie sell to Robin? > Did Leslie sell X to Robin?

To whom did Leslie sell Dalry Road? => Did Leslie sell Dalry Road to X?

Whomdid Leslie sell Dalry Road to? = Did Leslie sell Dalry Road to X?

Onthe left we have basically a WH-word followed by a yes/no question with a hole in it. The
hole may beat the top (sentence)level, or it may be inside a prepositional phrase. We could
handle this by duplicating the grammar of WH-questions several times, leaving holes in each
possible place:

S$ — WH-Q

WH-Q -> WH-word Aux NP VG NP PP” [Prep] pp" (Whom did L sell D [to]?)

WH-Q — WH-word Aux VG NP PP” (What was sold R [by L]?)

WH-Q — WH-word Aux NP VG PP” (What did L sell [to RJ?)

WH-Q — WH-Prep Aux NP VG NP PP (To whom did L sell D?)

WH-Prép > Prep WH-word
Instead, we\will expand the power of the parsing mechanism a bit by adding a limited memory.

Whenthere i8 a NP with a WH-word in it at the beginning of a sentence, it should be kept to one
side instead ofbeing added to the sentencestructure. It is then used when hole appearslaterin
the sentence where.a NPis expected.

Wewrite this as follows:

Q— NPI [Aux] DeclINP

NP! means that the NP must be a WH-NP (either a WH-Pronoun like “who” or "what", or an NP

with a WH-word as determiner), and that it should be kept to one side rather than used. DeciINP
meansthatin looking for a Decl this stored NP can be used when an NPis found to be missing in

the string. To take care of "To whom did Leslie sell Dalry Road?" we need the additionalrule:

Q— PPI [Aux] Dect!IPP
where PPI looks for a PP containing a WH-NP and keepsit to one side, and DeclIPP meansthat

this stored PP can be used whenlooking for a PP inside a Decl.

Notice that once somethingIs put to one side, it must be used later. Otherwise we get questions

like:

Whatdid Janet own two airlines?
Also,it can only be used once:

What did own?

Thus weget structures like the following:

PP

ProperNoun Y Prep "

ProperNoun

did Leslie sell] to Robin ?

_—

Jw y , PP

Prep NP ProperNoun Y ProperNoun

Pronoun

I
to whom did Leslie sell Dalry Road ?

7.4 Conclusion

This example wasreally little beyond the edge of what we can handle using RTN's and CFG's:
- We didn't handle some forms (e.g. passives);
- We required an extension to the parsing mechanism to handle WH-questions; and
- We can parse lots of garbage which shouldn't be accepted.

Wereally need a more powerful mechanism to handle this. But at least we have enough here to

consider semantics, which is the main point of this example.

In fact, the suggested extension to the parsing mechanism is a start toward augmented transition
networks (ATN's), which is yet another kind of parsing mechanism. This will come up later in
the course.

Lecture Vill

Monopoly example:
using predicate calculus as a semantic representation

8.1 Review of predicate calculus

Weneed a wayof recording the state of play within a game. We also need a representation of the
meaning of statements and questions which will interact with this record. We will use
first-order predicate calculus for both these purposes.

First-order predicate calculus is itself a language, so it has a grammar of its own. The

sentences of the language are called well-formed formulae, or wff for short. Here is the

grammar:

Term — Constant

Term — Var

Wif > Predicate "(" Term (, Term)” ")"

Wif > Wff BinOpr Wf

Wit > — Wf

Wtf + "(" Wf ")"

Wif > V Var "(" Wf ”)"

Wif > 3 Var "(" Wff *)*

Constant > a|b]... (lower-case identifiers)

Var > X|Y|... (upper-case identifiers)

Predicate > p|q|... (lower-case identifiers)

BinOpr > a|[v [>

The V and 3 forms don't make much sense unlessthe variable appears “free” in the wff.

Here are some examples of constants and predicates from the Monopoly example:
Constants: leslie, robin, britishgas, georgestreet

One-place predicates: utility, property, player
Two-place predicates: own, adjoin, colour, occupy, cost

Given these, we can express the meanings of various sentences:

Henry owns George Street: own(henry,georgestreet)
Dalry Road is next to Aer Lingus: adjoin(dalryroad,aerlingus) {this is false!!)
British Gas is a utility: _utility(britishgas)
Leslie is on India Street: occupy(lestie,indiastreet)

Royal Circus is a green property: property(royalcircus) « colour(royalcircus,green)

Things get more interesting with quantifiers:

All utilities are properties: WV X(utility(X) > property(X))

Robin owns a green property: 3 X(colour(X,green) a property(X) ~ own(robin,X))

Every player occupies a property: V X(player(X) > 3 Y(property(Y) ~ occupy(X,Y)))

Whyis this called first-order predicate calculus?
First-order: Quantifiers are only over objects, e.g. all properties, some players, etc. In

second-order predicate calculus it is possible to quantify over predicates, which is
needed to express the meaning of a sentence like "Napolean hadall the properties of a

great general": V P (Vv X (greatgeneral(X) > P(X)) > P(napolean))
Predicate: The language includes predicates which can be “applied” to variables and names

of things. Propositional logic doesn't have predicates.

Calculus: The language comeswith calculation rules, which are used for manipulating wffs

to build proofs. These inference rules will be covered in the next lecture. Arithmetic
is also a calculus: there is a language (of numerals,like "274") and rules for how to
manipulate them (like the algorithm you learned in school for subtraction).

8.2 The database of assertions

We can now think of representing the state of the game as a collection of wffs which taken
together describe the current situation. A statement adds information to the database by
asserting a new wff, and a question is answered bytrying to find a proof for the wff it translates
to. The rest of this lecture will be devoted to translating sentences into wffs. The next lecture
will explain how to do proofs to answer questions.

8.3 Translating sentences into predicate calculus: noun phrases

Noun phrasesserveto identify referents, i.e. a noun phrase picks out something orset of things

in the world. Sometimes those things are definite, i.e. known things as in "British Gas" or “the
airline next to Dalry Road". Sometimes they are indefinite, i.e. not already known things as in
"an airline” or “a green property”.

In general, proper nouns, pronouns and noun phrases beginning with "the" are definite and refer
to unique things we already know about. So in the phrase:

the airline next to Dalry Road
the determiner “the” says that there should be exactly one constant X in our database that
satisfies:

airline(X) a adjoin(X,dalryroad)

So when we encounter such a noun phrase, we should use the database to find that constant, and
use it as the meaning of the noun phrase. In this case the constant would be loganair, since
Loganairis the airline adjacent to Dalry Road.

Plural noun phrases which don't begin with “the” and noun phrases beginning with "a" are

Indefinite and introduce new things into the discourse. For example, consider the following

story:
| went to a shop to buy a newspaper. A man and two women werethere.

The indefinite noun phrases each add a new thing to the world, with descriptions attached. So
this story might translate as:

shop(thing1)
newspaper(thing2)

in(me,thing1)

in(thing2,thing1)

man(thing3)

woman(thing4)

woman(thing5)

in(thing3,thing1)

But in our Monopoly world, the population of the universe is fixed. Indefinite noun phrases will
usually turn up only in questions, where instead of introducing new constants they will refer to
some unknownthing which we will name with a variable. So we will translate indefinite NP's
into assertions about variables. If the NP is part of a statement we will create a new constant
and replace the variable with it. If the NP is part of a question, we will existentially quantify
the variable.

Thus the NP "a green property” translates as:
colour(X,green) a property(X)

If this is part of a question, like "Does Robin own a green property?” then we will end up trying

to prove the wff:
A X (colour(X,green) a property(X) a own(robin,X))

If it is part of a statement, like "Leslie bought a green property" then we would assert the wffs:
colour(thing1,green)

property(thing1)
own(leslie,thing1)

8.4 Explicit translation rules for Monopoly

Recall the grammargiven in the last lecture to handle the syntax of Monopoly questions and
answers.

As in the calculator example, we have to say for every rule in the grammar how the meaning of

the whole can be computed from the meaning of its component parts. The only difference is that
this time the meaning of a string is a wff, constant or variable (depending on the nonterminal
involved) instead of just a number. Also, the meaning depends on the current state of the

database and the information in a lexicon describing what words mean.

The complete set of rules for this grammar would take a long time to explain, so we are only
going to cover the main points.

For noun phrases, the meaning is different depending on whether a referent can be established
immediately or not. There are three categories:

proper nouns lexicon gives referent no description required

pronouns, definite NP's find referent in database description from lexicon
indefinite NP's unknownreferent description from lexicon

Exactly what happens with indefinite NP’s depends on whether they are inside yes/no questions
or assertions; details coming up.

To get the referent as the meaning for proper nouns, pronouns and definite NP's, and a

description of a hypothetical referent for indefinite NP's, we need the following meaning rules
for our NP grammar:

NP - ProperNoun ProperNoun

For example, "Robin" gives robin and "Dalry Road" gives dalryroad (taken from the lexicon).

NP — Pronoun the X that satisfies Pronoun

The lexicon has e.g. human(X) ~ sex(X,male) for "he" and inanimate(X) for "it". More

sophisticated approaches would have a condition concerning recencyof participation.
NP > [Det] [Num] Adj" N [s] [PP]

We haveto split this rule into two cases. Let's forget about numbers to makeit easier:
- if Det="a” or Det is absent, then (V, Adj(V) ~ N(V) ~ PP(V))

- otherwise Z, where Z satisfies Det(Z) ~« Adj(Z) ~ N(Z) ~ PP(Z)

For example, "a green property” would translate to (V,colour(V,green) « property(V)),

provided the lexicon had colour(X,green) for "green" and property(X) for “property”. This
means "the V such that colour(V,green) and property(V)". On the other hand, "the unoccupied
green property” would give the Z which satisfies the following wff according to the database:

4 Y(occupy(Y,Z)) a colour(Z,green) ~ property({Z)

assuming the lexicon had — 3 Y(occupy(Y,X)) for "unoccupied". We really should require that

there is just one Z satisfying the conjunction.

Wewill skip the meaning rules for determiners and prepositional phrases. The only interesting
one for determiners is for those of the form NP 's, which translate to something involving the

predicate ownif the referent of the NP is a person; this doesn't take care of examples like “Dalry
Road's occupant”.

That takes care of noun phrases. The next problem is to build the meaning of a declarative
sentence from the meanings of the noun phrases which makeit up. Prepositional phrases will be
ignored to make things simpler.

Decl> NP VG NP VG(NP1,NP2)

For example, for the sentence "Minto Street adjoins a utility” we get:

adjoin(mintostreet,(X,utility(X)))

which can be read as adjoin applied to mintostreet and an X suchthatutility(X).

Wewill not have time to treat the question of how auxiliary verbs and verb endings affect the
meaning of the main verb (taken from the lexicon) to give the meaning of the whole verb group.

Now we come to sentences, which can be either declarative sentences, yes/no questions, or
WH-questions. According to our grammar, each of theseis basically a Decl, possibly dressed up
a bit. But we do different things with the meaning of the Dec! depending on which of these roles
it is filling.

S > Decl Go through the components of Decl, and for each one
which is a pair (i.e. which comes from an indefinite NP)

instantiate the variable which is the first element of the
pair to a newly created constant. Using this

instantiation, assert the second element of the pair into
the database.
Then replace each pair with its associated constant, and
assert the result into the database.

For example, consider the previous example where for the sentences “Minto Street adjoins a
utility” we got the meaning:

adjoin(mintostreet,(X,utility(X)))

Interpreting this as a declarative sentence causes the following clauses to be added to the
database:

utility (thing1)
adjoin(mintostreet,thing1)

For yes/no questions, we wantto leave the indefinite NP's as variables.
S > Aux Decl Go through the components of Decl, and replace each one

which is a pair with its first element (a variable), and

conjoin its second member with Decl.
Then try to prove the resulting conjunct, existentially
quantified for all the variables from the pairs.

Interpreting the previous example as a question ("Does Minto Street adjoin a utility?") we
would try to prove the following:

3 X (adjoin(mintostreet,X) a utility(X))

which in this example cannot be proved (see the next lecture) and so the answeris "no".

As another example of a declarative sentence, consider the sentence:
Robin owns the unoccupied utility.

The NP “the unoccupied utility" translates to:
Z, where Z satisfies , 3 Y(occupy(Y,Z)) ~ utility(Z)

This is checked against the database to find an appropriate Z; suppose the answeris britishgas.
Then the whole sentence translatesto:

own(robin,britishgas)
which is added to the database (in this case, there are no indefinite NP's so the interpretation of

the Decl as a sentence requires no extra work).

An example of a complex yes/no question is:
Does a blue property adjoin an unownedairline?

Interpreting the second part of this as a Decl gives:
adjoin({V1,property(V1) «a colour(V1,blue)),(V2, airline(V2) ~—3 Y (own(Y,V2))))

and theninterpreting this as a yes/no question gives the following to be proved:

3 V1 (3 V2 (adjoin(V1,V2) a property(V1) ~ colour(V1,blue)

a airline(V2) ~3 Y (own(Y,V2))))

Finally, we have to give an interpretation for yes/no questions. The treatment of indefinite NP's
is the same as for yes/no questions, but we also need to do something about the questioned
element. The idea is that it introduces a variable into the interpretation, for which the values
which satisfy the entire resulting wif are answers to the question.

S — NP! [Aux] DeclINP Treat the components of DeclINP as for yes/no questions.

Conjoin with the resulting description the description
associated with NPI.
Print out all the values of its variables which satisfy the

resulting conjunction.

Wefudgea little by supposing that only the variable is
supplied as the meaning of NPIin its role inside DeclINP.

For example,if we consider the question:
Which green property does Robin own?

we get the following translation:

colour(Q,green) a property(Q) ~ own(robin,Q)
and the database is checked to see which values of Q will satify this wif.

Lecture IX

Monopoly example:

question answering and inference

9.1 Predicate calculus, proofs and question answering

We have already discussed how the current state of play is recorded in a database of wfts.
Statement interpretation involves adding to this database. But question answering is trickier.

We have been informally appealing to some mechanism which will determine the truth orfalsity
of a wif by consulting the database, and which will search for bindings for variables in a wif
which will cause it to be true. We need to look more closely at what this mechanism is and how
it might be automated.

The mechanism we will use to answer questionsis that of proof: a wff is true with respect to the

database if we can prove it using the database and false otherwise. The following example

illustrates how we can answer the question "Does Robin own a property?" in the affirmative,
given a database containing the following facts:

Axioms
1. All green properties are owned by Robin.

V X ((property(X) ~ colour(X,green)) > own(X,robin))

2. All properties are orange or green.

V X (property(X) > (colour(X,orange) v colour(X,green)))

3. Royal Circus is a property.
Pproperty(royalcircus)

4. Royal Circus is not orange.

— colour(royalcircus,orange)

prove: 3 X (property(X) a own(robin,x))

Proof
a) from 3 & 2: colour(royalcircus,orange) v colour(royalcircus,green)

b) from a & 4: colour(royalcircus,green)

c) from b & 3: property(royalcircus) ~ colour(royalcircus,green)

d) from c & 1: own(robin,royalcircus)

6) from d & 3: property(royalcircus) ~ own(robin,royalcircus)

so 3 X (property(X) ~ own(robin,X))

This proof has been carried out by forward chaining. That is, we start from axioms, and draw
conclusions on the basis of inference rules until we reach the desired conclusion. In order to do
proofs it is necessary to know whatthe inference rules are; the above proofis not really a proof
since we proceededbyintuition rather than according to a set of inference rules.

9.2 Valid Inference rules

The Inference rules are supposed to correspond with our understanding of what we want the

symbols in wffs to mean. These rules are the only things which give a meaning to the language of
first-order predicate catcutus; without them it would be useless to translate from English to
predicate calculus.

In the following rules, P and Q stand for any wf and X stands for any variable.

know infer
1. PaQ P

Q

2 P

Q PaQ

3. PvQ

aP Q

4, P PvQ

5. Q PvQ

6. P>Q

P Q (modus ponens)

7. PQ
=Q aP (modustollens)

8. ~~ P P

9. P =~“ P

10. VX... X...) wor Cane (for any constant c)

11. we Oe AX(..X...) (for any constant c)

12. VXGP) 33 (P)

13. 3X(GP) av X (P)

These rules work on pieces of wffs as well, so for example given 3 X (P ~ Q) we can use rule 1 to

infer 3 X (Q).

Given these inference rules, we can prove that rule 12 is true in reverse as well:

= 3 X (P) assumethis

=33X (A= P) by rule 9

a-3VX(P) by rule 13

VX(G4P) by rule 8

9.3 Representing the Monopoly world

Let's look at some facts about the Monopoly world. First we need some facts about the layout of
the board. These are always true and would bein the databaseto start with:

follow(britishairways,georgestreet)
follow(princesstreet,britishairways)
property(georgestreet)
property(princesstreet)
colour(georgestreet,blue)
airline(britishairways)

At a certain stage of a game the database mightinclude the following additional facts:

own(henry,georgestreet)

own(robin,princesstreet)
We also need some meaning postulates which relate the meanings of the different predicates.
Here are the ones which relate the meaning offollow (used to describe the layout of the board)

and the meaning of adjoin (used for the translation of "next to"):
VX (V Y (follow(X,Y) > adjoin(X,Y)))

VX (Vv Y (follow(X,Y) > adjoin(Y,x))}

Now we can answerthe question “Does Henry own a property next to an airline?” using a

backward chaining or goal-directed proof. The transtation of this question is:

3X (3 Y (own(henry,X) a property(X) ~ airline(Y) a adjoin(X,Y)))

If we can prove this the answer to the question is "yes", otherwise "no". (If we have a
WH-question, we require an instantiation for the variables which makes the formula provable.)
The goal-directed proof goes like this:

4XY (own(henry,X) a property(X) « airline(Y) ~ adjoin(X,Y)))

< (by rule 11)

a Y (own(henry,georgestreet) ~ property(georgestreet)

a airline(Y) a adjoin(georgestreet,Y))

¢ (by database and rule 2)

Ja Y (property(georgestreet) « airline(Y) ~ adjoin(georgestreet,Y))

¢ (by database and rule 2)

3 (airline(Y) ~ adjoin(georgestreet,Y))

< (by rule 11)

airline(britishairways) ~ adjoin(georgestreet,britishairways)

¢= (by database and rule 2)

adjoin(georgestreet,britishairways) (*)

< (by meaning postulate and rules 6 and 10)

follow(georgestreet,britishairways)

FAILS!

but (*) <= (by meaning postulate and rules 6 and 10)
follow(britishairways,georgestreet)

which is true according to the database, so the answeris “yes”.

This works by starting with the thing we want to prove as a goal and working backwards using
inference rules to things which are known to be true. At each step, we look around to see what
rules can be applied to prove the currect goal. Once the goal has been reduced to facts which are
knownto be true, reading the successful path of the search backwardsgives a proof.

9.4 Conclusion of Monopoly example

Weconsidered three aspectsof this problem:

1. Parsing the input into syntax trees

2. Translating the syntax trees into first-order predicate calculus

3. Using theorem proving to answer questions

The syntax was slightly beyond the edge of what can be handled adequately using RTN's and CFG's,
as detailed already at the end oflecture 7.

In translating we found that in general it seemed to be possible to build an adequate
representation of the meaning of a sentence using predicate calculus. We had to ignore certain

complications and handled some aspects in a superficial way (e.g. pronouns) but we managed to
build translations of sentences from the translations of their parts.

Once statements and questions were translated into predicate calculus, we encountered no
problems in using proofs to handle question answering.

Some things we didn't cover:
- Choosing an efficient order of conjuncts in translating questions into predicate calculus;

for example, “Is a utility unoccupied?” could be translated into either of the following:
3X (4 Y (occupy(Y,X)) a utility(X))

3 X (utility(X) ~ 3 Y (occupy(Y,X)))

The second will take less time to answersince it will involve looking at the utilities
(there are two) and checking if one is unoccupied. Thefirst will search through all the
spacesto find the unoccupied ones (there are perhaps 20) and check if oneis utility.

- A statement like “Robin bought India Street from Henry” involves removing an assertion
from the database (the one which says that Henry ownsIndia Street) as well as adding
one.

- More generally, we didn't take proper account of time; the database contains only a
snapshot of what is true at a particular time, with no information about the history of
events. This means we can't handle questions like “Who owned Dalry Road before
Robin?" or "What did Janet get for her two airlines?"

Lecture X

Introduction to augmented transition networks

10.1 What is wrong with RITN's?

We havetried using RTN's to produce parsers for two examples: a voice-controlled calculator
and a Monopoly question-answering system. The language involved in the calculator example
was simple enough that it was not too difficult to produce an RTN which would handle it
successfully. But although we managed to produce an RTN which would handle the language
involved in the Monopoly example with reasonable success, we ran into some problems. The

main ones were:
- We had to extend the RTN parsing mechanism to handle WH-questions like "What

properties does Seymour own?"; we added a limited memory to allow something ("what
properties") to be put to one side and then usedlater (as the object of “own").

- Our RTN would parse lots of sentences which really shouldn't be accepted, for example
“Does Robin buy Dalry Road to blue airline?”

Looking at ordinary English,it is hard to produce an RTN which will handle the following things:

Number agreement: "Those student" and “a books" are wrong, while "these books”is okay.
Subject-verb agreement: "He walk" and "they walks" are wrong, while “he walks” is okay.
Samestructure for different sentences: The following sentences should ideally be given the

same structure:
Henry gave the book to Sally.
Henry gave Sally the book.
The book was given to Sally by Henry.
Sally was given the book by Henry.

Whyis this so hard? For number agreement, the problem is that the lexical categories Noun and

Det group together different kinds of nouns/determiners (some are singular, some plural).

There is no way of distinguishing between the singular and plural nouns/determiners and so both
mustbe treated the same. This is also the reason why handling subject-verb agreement with an

RTNis difficult. Producing the same structure for the sentences "Henry gave the book to Sally"

and "The book was given to Sally by Henry” is impossible without adding memory to the RTN as
in the Monopoly example since the RTN parsing algorithm retains the order of the words in a
sentence and the three NP's "Henry", "Sally" and "the book" comein a different order in the four
sentences.

it is possible to make things work to some extent by brute force. For number agreement, we
could divide the lexical category Noun into Singular-Noun and Plural-Noun and divide the

category Det into Singular-Det and Plural-Det. Note that some words would be in more than one
category, for example “sheep” and “the”. Then the following simple RTN for NP’s:

NP: +()Pt .O—-+©

would be replaced by the following more complicated RTN:

_

Singular

De
t

_—
5

O singular-N

"=O __®

~

pureisba— © —Piurel-N

A similar idea would work for subject-verb agreement (the categories would be things like

1st-Person-Singular-Verb). In order to get the samestructure for different forms of the same

sentence, we would need to apply some kind of post-processing to convert different equivalent

forms into the same form.

All this is feasible, but the collection of lexical categories and the resulting RTN get very
complicated.

10.2 Augmenting the network

To handle these things in a nicer way, we can expand the power of RTN's by augmenting them to
give ATN’s, i.e. augmented (recursive) transition nets. We augment an RTN by adding conditions
and actions to the arcs of the network.

- the conditions restrict the circumstances under which an arc may be taken;
- the actions perform structure-building and take notes for use by later actions/conditions.

Also, instead of final nodes we use exit arcs which looklike this:

---—©@ becomes ---—3O-

This is to allow conditions and actions to be associated with exit from the network justlike with

any other arc.

10.3 Example: Number agreement in noun phrases

A simple RTN for NPis the following:

nP:>t.O*-O-

To avoid "those student" and "a books", we add the following conditions and actions:

Det action: set number to Numberfeature of Det
N condition: number must be the same as Numberfeature of N

Exit action: set Number feature of NP to number
Note that this gives two parses to the NP "the fish".

In building this ATN, two assumptions have been made:
- Each word is associated with various features in the dictionary, such as Number and Tense

(for verbs). Syntactic structures can be given features too; we set the Numberfeature

in the NP produced by the above ATNin order to allow an ATN for S which usesthis one
for NP to handle subject-verb agreement.

- There are registers available for temporary storage.

10.4 Building parse trees

Actions will be used to build parse trees rather than leaving this to the parsing algorithm as
with RTN's. For example, consider sentenceslike “He gave the book to Sally” and "He gave Sally
the book"; as mentioned before, we would like these to get the same syntactic structure.

Here is an ATN which will parse sentences of this form and which handles subject-verb
agreement:

xNS
NP NP

s -OSt0O-4+0O%20O

NP, action: set Subject to NP,; set number to Number feature of NP,

V condition: number must be the same as Numberfeature of V
V action: set Verb to V
NP, action: set object to NP,

NPgaction: set Indirect-Object to NP; set Direct-Object to object

NP, action: set Indirect-Object to object; set Direct-Object to NP,

So both “He gave the book to Sally" and “He gave Sally the book" getthe following structure:

Subject Verb Direct-Object Indirect-Object

K A \
he gave the book Sally

The parsing algorithm will only form the nodes of the syntax tree; the actions on the arcs are

responsible for hanging things from the nodes. The things which “hang off* (Direct-Object,
Verb, etc.) are treated more or lesslike features (like Number in the NP example above).

10.5 How does parsing work now?

The parsing algorithm is comparatively simple now, since much of the work is done by the
actions on the arcs.

To parse a string from a sub-net:

1. Start at the initial state of the sub-net. Form a node labelled by the name of the sub-net.
2. Choose an exit arc from the current state or else an arc from the current state to another

state labelled by:
- the empty string,
- the next word of the string, or

- the name of a sub-net
and whosecondition (if any) is satisfied. If there is no such arc, the parse fails.

3a. If the chosenarc is an exit arc, then if we are at the end of the string perform the action
on the arc (if any) and the parse succeeds; otherwiseit fails.

3b. If the chosen arc is labelled by the empty string or by a word, perform the action on the
are (if any).

3c. If the chosen arc is labelled by a sub-net name,divide the string in two and try to parse
the first half using the sub-net. Then perform the action on the arc (if any).

4. Follow the arc chosenin step 2 to the stateit points to.
5. Go to step 2 to parse the rest of the string.

Try parsing the sentence “He gave the book to her" using the ATN above.

10.6 Power of ATN's

ATN's are a lot more powerful than RTN's. In fact, if we don't put strong restrictions on the

actions and conditions which can be associated with arcs, ATN's have the same power as
general-purpose computers! To see why, try constructing an ATN which adds two numbers{i.e.
which will “parse” any string consisting of two sequencesof binary digits separated by a comma,
producing a "parse tree" containing their sum asits result).

Unfortunately, in passing from RTN's to ATN’s we have lost the ability to do both parsing and
generation from the same net. Generation is not possible now becausethe actions are for parsing
only and cannot in general be reversed as would be necessary for generation. Dually,
transformational grammar(ask a Linguistics student to explain whatit is if you are interested)
can be used to generate but is not very useful for parsing for the same reason. Transformational

grammaris (sort of) related to ATN’s in the same way as context-free grammaris related to

RTN's.

Lecture XI

Monopoly example:

using augmentedtransition networks

11.1. Introduction

In the last lecture it was argued that RTN's aren't quite powerful enough to handle certain
phenomena in English such as subject-verb agreement. Recall the problems we encounteredin
the Monopoly example when wetried to use an RTN for parsing: we had to extend the RTN parsing

mechanism with a limited memory to handle WH-questions, and the RTN we produced would
parse lots of ungrammatical sentences as well as grammatical ones.

In this lecture we will construct an ATN to replace the RTN of the Monopoly example, which will

handle WH-questions properly and which will reject some ungrammatical sentences which the
RTN accepted. It would be possible to reject all ungrammatical sentences, but we are only going

to concentrate on a few constructions to show how it can be done.

We will only look at the problem of parsing; since the parse trees our ATN will produce will be
the same as those produced by the RTN before, the other components (translation into predicate

calculus and theorem proving) are the same as before.

11.2 Noun phrases revisited

Recall the kind of noun phrases we have to handle:
Proper names: Robin, Abercromby Place
Nouns with determiners: an airline, the owner
Numbers as modifiers: two airlines, two hundred pounds
Possessive phrases: the owner of Royal Circus, Seymour's monopoly
Colours as modifiers: the green monopoly
WH-words as modifiers: what properties, how manyairlines
Pronouns: he, herairlines

Here is the RTN which we produced to handle these:

Adj

 -O=O500-050 -
Num”

Le Pronoun nee,
a

ae -
a —_——

Art ProperNoun

Det:TOS WH-word

PP:-O—PrepOo—O-

This RTN will parse the following grammatical strings:
an airline, airlines, twenty-seven airlines, those twenty-seven airlines

as well as the similar ungrammatical strings:
an airlines, airline, a twenty-seven airlines, twenty-seven airline

In grammatical strings, the Det (if present) can be either Singular or Plural. If it is not
present, the NP is Plural. If it is Singular, then no Num is permitted (actually "one" is
permitted, but we will pretend it isn't). On the other hand, the WH-word (which is one kind of
Det) “how many” is plural but does not take a Num; note that “how manyairlines" is
grammatical while “how many airline’ and “how many twenty-seven airlines" are not
grammatical.

To handle this, we can add conditions and actions as follows:
Det action: set number to Numberfeature of Det
#, action: set numberto Plural

Num condition: number must be Plural
s condition: number must be Plural or HowMany
#, condition: number must be Singular

Pronoun action: set number to Numberfeature of Pronoun
ProperNoun action: set number to Numberfeature of ProperNoun
Exit action: set Number feature of NP to Plural if number is HowMany; otherwise set

Numberfeature of NP to number
Plural nouns are treated here by assuming a separate morphological pre-processing phase
which converts @.g. “airlines” to “airline s*. Thus the condition is on the "s" rather than on the
N. It would also be possible to make Numbera feature of N and forget the pre-processing.

To get the above ATN for NP to work, appropriate actions have to be addedto the Det sub-netto
give each Det a Numberfeature. Some Det's are both Singular and Plural, such as "his". This is

the case with possessive Det's like “the player's". We add conditions and actions as follows:
Art action: set Number feature of Det to Number feature of Art
WH-word action: set Number feature of Det to Numberfeature of WH-word
‘s action: set Number feature of Det to either Singular or Plural

Other things can go wrong in NP's. For example, only some things can be coloured: "a blue
property” is okay but “a blue airline" is not. This could be caught either during parsing
(relatively easy since the only adjectives we have in this domain are colours) or during
translation. Also, certain PP's cannot appearafter certain N's: "the owner of the property" and
“the airline after Royal Circus” are okay but “the airline of the property” and “the airline after
Henry” are not. Similarly, some possessives cannot be combined with certain N's: "the airline’s

owner" and “Henry's property" are okay but “the airline's property” and "Henry’s owner" are
not.

These could all be handled without much trouble, but we won't do them here. Also, our ATN needs
actions to build the parse tree, butit isn’t difficult to see what these actions would be and where
they would go.

11.3 Statements and yes/no questions revisited

There are several things which can go wrong in a statement or yes/no question. For example,

the grammar we producedoriginally would accept sentences with strange VG's such as: “Henry
did did own Minto Street”. This is just one example of a wrong way of combining verbs and
auxiliaries; there are many others. Verbs may optionally take certain prepositions, so for
example "Henry bought Minto street from Janet" is okay but “Henry bought Minto street to
Janet" and "Henry owned Minto street from Janet" are not. However, subject-verb agreementis
not a problem since all subjects are singular in this domain (only objects may be plural).

We won't treat any of these problems here; we also won't extend the grammarto handle passives
suchas:

Dalry Road was bought from Leslie by Robin.
WasDalry Road bought by Robin?

All of these things can be handled with ATN's.

11.4 WH-questions revisited

Recall that handling WH-questions required the ability to keep sections of parse trees (NP’s and

PP's) to one side until a gap appearedlater in the sentence where the saved bit could beinserted.
This was because of the observation that WH-questions are just WH-words followed by a yes/no
question with a hole:

Whatdid Leslie sell? = Did Leslie sell X ?

Whatwassold Robin by Leslie? = Was X sold Robin by Leslie?

Whatdid Leslie sell to Robin? = Did Leslie sell X to Robin?

To whom did Leslie sell Dalry Road? => Did Leslie sell Dalry Road to X?

Whomdid Leslie sell Dairy Road to? = Did Leslie sell Dalry Road to X?

We cameupwith the following CFG rules to handle questions of this kind:

Q ~ NPI [Aux] DecliNP

Q - PPI [Aux] DeclIPP

where NPI meansthat the NP must be a WH-NP(either a WH-Pronounlike “who” or "what", or
an NP with a WH-word as determiner), and that it should be kept to one side rather than used.

DeclINP meansthat in looking for a Decl this stored NP can be used when an NPis found to be
missing in the string. PP! and Decl!PP are the analogous things for PP's.

We can do the samekind of thing now with an ATN asfollows:

O Decl O Exits

Aux

®O08OS02hO™2
hu”

~~
O-O=S0S+0O=%

Aux

The actions and conditions onthe arcs are asfollows:
#, action: set WH-NP to empty

NP condition: NP is a WH-pronoun or has a Det which is a WH-word
NPaction: set WH-NP to NP
Exit, condition: WH-NP is empty

#, action: set WH-PP to empty

PP condition: the NP of PP is a WH-pronoun or has a Det which is a WH-word
PP action: set WH-PP to PP
Exitg condition: WH-PP is empty

To make this work, the ATN's for NP and PP have to be changed. For example, here is the new
ATNfor NP:

Adj

eee ProperNoun _—_—

*5

The actions and conditions are as before, except for the new arc:

#, condition: WH-NPis not empty

#, condition: set NP to WH-NP and set WH-NP to empty

Note that WH-NP and WH-PPhaveto be registers which are global to the whole ATN since they
are used by more than one sub-net.

Lecture XIil

An alternative to the predicate calculus
for semantic representation

12.1 Introduction

We have been using predicate calculus to represent the meaning of sentences. This works
reasonably well for certain domains, as we have seen with the Monopoly example. There are
other possibilities, though. This section will discuss an alternative representation called
conceptual dependencynotation, invented by Schank who worksat Yale.

We have already seen an application of conceptual dependency in lecture 2, namely the SAM
story-understanding system which wasbuilt in about 1977. The main idea behind SAM is
actually not conceptual dependency notation but the idea of a script. Each script represents some
situation from everyday life which everybody is familiar with and which often involves a
stereotyped set of events. The story in lecture 2 involves three scripts: taking a bus/subway,
going to a restaurant, and being robbed.

But conceptual dependency is used for semantic representation in SAM andthis is importantin
that it is not clear that predicate calculus would be adequate forthis purpose.

12.2 Problems with predicate calculus

Predicate calculus is quite good for expressing the meaning of some sentences. For example:
All green properties are owned by Robin.

Vv X ((property(X) a colour(X,green)) > own(X,robin))

All properties are orange or green.

Vv X (property(X) > (colour(X,orange) v colour(X,green)))
Royal Circus is a property.

property(royalcircus)
Royal Circus is not orange.

= colour(royalcircusorange)
Robin owns a property.

3 X (property(X) « own(robin,X))

Another big advantage of predicate calculus is that answering questions reduces to the problem of
proving theorems which is not always easy butat least is a familiar problem.

But consider a sentence like "John threatened Fred with a broken nose". How can that be
represented in predicate calculus? We can't do much better than introduce a predicate called
"threaten" where threaten(X,Y,Z) means that X (a person) threatens Y (a person) with Z (a

consequence), in which case the sentencetranslatesto:
threaten(John,Fred,brokennose)

This is not very useful for answering questions, particularly if the sentence occurs in the
middle of a story like the following:

Fred was fond oftelling offensive jokes about midgets. John threatened Fred with a broken
nose. Fred askedif he was able to reach so high. Suddenly Mary heard a loud cracking noise

and a scream of pain.
How do we answera question like "Who screamed?”

Actually, these problems were already present before in the sense that our predicate calculus
representation for the Monopoly world didn't say anything very deep about the meaning of words

like "own" and “seli". These words are simple ways to represent complicated processes. For

example, in the real world if somebody says “Robin bought British Airways from Henry” it
means much more than the fact that Henry used to own British Airways and now Robin does. One
reason why predicate calculus was adequate for the Monopoly example is because in the Monopoly
world it doesn't mean anything more thanthis.

12.3 Conceptual dependency notation

Note: It is not intended that you learn how to represent sentences in conceptual dependency
notation {in contrast to predicate calculus!); this lecture is just supposed to give you a general
idea of howit looks.

Schankclaims that conceptual dependency notation is capable of describing the entire range of

everyday humanactions (although the examples Schank uses invariably involve either violence
or food) using about a dozen primitive acts. These are:

PTRANS: physical object is moved from one place to another. For example, "John put
fertilizer on the plants" would be represented as follows:

plants
John <=> PTRANS <—- fertilizerL

MOVE: body part is moved to a place. This is different from PTRANS becauseit requires
only an act of will. MOVE would be usedin the representation of "John kicked Frank"
since part of the meaning of “kick” is that John movedhisfoot.

PROPEL: Anobject is moved by direct application of force, as in throwing or shooting.
GRASP:An object is grasped by a person.
ATRANS: Control (possession) of something is transferred from one ownerto another. For

example, “John donated £5 to Oxfam" would be represented as follows:

Oxfem
John <=> ATRANS<— £5-

John

Note that "John gave 50p to the beggar” would involve both an ATRANS and a PTRANS
(of the coin itself).

EXPEL: Sweating, exhaling, etc.
INGEST: Eating, drinking, inhaling etc. For example, "John smoked a cigar" would be

represented as follows:

John
John <=> INGEST <——- smoke4.

ciger

MTRANS: Information is transferred from one “place” to another, e.g. from one person's

mind to another (as in the verb “tell") or from a person's long-term memory to his

conscious mind (as in the verb "remember’).
MBUILD: A person comesto believe something (a conceptualization) is true. For example,

"| advised John to try the spaghetti” would involve an INGEST, an MTRANS(I advised
John) and an MBUILD (I think John would like eating the spaghetti):

John
{<> MTRANS

|

t John <=> INGEST <—— spaghetti

| <=> MBUILD <———_ fJeause

Mmentelstate = pleased
John

SPEAK: A person makes a sound.

ATTEND:A persondirects a sense to an object or event(listens to, looksat, etc.).

There are also various kinds of relations between events; we saw somealready in "I advised John

to try the spaghetti". For example, one event or conceptualization can cause, prevent or enable

another event. One event can precede another event or be a sub-event of another.

Some acts (like PTRANS) take an object, a source and a destination. Some (like MOVE) involve

an object and a destination but no source. Some(like MBUILD) take an event, and some

(MTRANS)take an event, a source and a destination.

There are adjectives which are regarded as describing the state of an object, and possessive
relations between people and things. For example, here is the representation of “John's cat was
dead":

cat<— health = dead

[poss- by

John

States of objects can change in the course of an event; compare the above diagram with the
following representation of “John's cat died”:

r—> health = dead
cat4

i—~< health = alive
poss-by

John

Finally, here is the conceptual dependency representation of “John threatened Fred with a
broken nose":

Fred
John <== MTRANS—-

1 John

John <== DO intend

fJcsuse Fred <=> DO

nose—+— broken Fred <=> MBUILD<— fJesuse

[ross-by< unbroken John <=> DO

Fred [Jesuse

-— broken
hose——

—< unbroken
poss- by

Fred

In other words, John communicated to Fred the information that he will do something to break

Fred's nose, which was Intended to make Fred believe that if he does someparticular thingit will

cause John to break his nose. This uses the primitive acts MBUILD and MTRANS. It also uses
DO, which is really something like a placeholder for an unspecified primitive act and not an act
itself.

12.4 Advantages and disadvantages

Although we haven't gone into aspects of conceptual dependency like how to answer questions

about a story, it seems clear that most of the answers to questions which might be asked are
recorded directly in the diagrams. For example, the representation of the sentence "John's cat
died” includes the previous state of the cat (alive) and the current state (dead); all we would
need is some general rule about state changesto figure out the answer to the question "Is the cat
dead?”

Although the diagrams contain words like "dead", these are really references to dictionary

entries which contain information about the meanings of words. So presumably there would be
enough information in the dictionary entry for “dead” to enable us to answer a question like
“Will John’s cat be available for chasing mice tomorrow?”

Onthe other hand, it is possible to argue that the notation is unwieldy. Also, although conceptual
dependency notation is more successful than predicate calculus in capturing the meaning of
sentences like “John threatened Fred with a broken nose",it is not so good for representing
sentenceslike "Everything in Antarctica is cold" which can be expressed in a natural way using
predicate calculus.

For more information about conceptual dependency notation, see Introduction to Artificial
Intelligence by E. Charniak and D. McDermott, pp. 325-333 (but note that they treat conceptual
dependency much more formally than we have done and they use a LISP-like notation instead of
the diagrammatic notation Schank uses).

	scan_dts_2025-06-17-16-17-38_001
	scan_dts_2025-06-17-16-17-38_002

