T i s

° EXTENDING A THEOREM PROVER

. . (/1

On Goulu. /al/atheach/prOJects/prover

Descrintion of the program ‘
It is a heuristic search resolution theorem prover.

References
"Computer Modelling of Mathematical Reasoning", A.Bundy,
hcadenmic Press, 1983, especially appendix 1 which documents
6 and lists the program. All references below refer to this
book. Copies of appendix are available from your tutor.

Spec1f1c questions/tasks: to be addressed
. a. Run the program on the smple example prov1ded.

b. Comment the program more thoroughly, i.e. roughly one
comment per line, rather than one per procedure.

c. Prepare 6 more examples and run them on the“programt
Suggestions can be found in the book. Include a non-Horn
clause example, e.g. page 73 (6.6).

. Provosals for extending the project.

1) Impose the input restriction and run the program on the
previous examples. Compare the behaviour.

2) Experiment with alternative versions of the evaluation
function, sece page 78 (6.7.3).

3) Modify the unification algorithm to.include the occurs
check: see page 241 (17.3) and Mark Uribe's 1983/4 RAI2
project. :

4) Modify the theorem prover to do paramodulation as well
as resolutlon and factorlng, _see page 62 (5 3).

5) Follow up any ideas that you may generate yourself.

{set by Alan Bundy, SB]

EXDPIRT SYSTEXS/PROLOG ‘})

On Goula. /al/atheach/prOJects/hs299

Descriotion of the program -

Simpie expert system shell - with backchaining, certainty
factors, limited help, trace, sexplanation.

- References

See the documentation on-llne in the ks299 directory.
Mycin' - in Artificial Intelligence 8 (1977) pp 15-45
by Dav1s, Buchanan and Shortliffe

Soec1f1c .guestions/tasks to be addressed

a. ¥rite a one/two page summary of how the expert system shell
Works.

"Construct and test a new knowledge base for the shell. Use
it in addition to the original one to test your modxflcatlons
to the shell.

o

c. Do exercise (b) and one of exercises (h) to (k) from Peter”
Ross's handout of projects and exercises to do with KS299
(enciosed).

weaxnesses. Show how it could be made better. (Be explicit,
Gon't make sweeping essentially. content-free general;sat1ons )

Proposals for extendlnq the proiect

1) Eiaborate the knowledge base. Interesting interaction between
the xnowledge bits,_rules, etc. counts more than simply having
lots of ‘things and lots of rules.

2) ‘Adéress questions (c) to (£f) on the sheet.
Useful features include:
conflict resolut1on strateg1es
" meta-rules -
better explanation

3) Address other exercises from .(h) to-(o). It is better to do a

few in depth rather than many superficially.

[set by Mike Uschold, South Bridge]

o

d. Do a critical analysis of your system. Describe its strengths/




* MATCHING 2D BOUNDARY DESCRIPTIONS gg FLAT POLYGOIIAL 03353C

TS

pfoaran: name and where it is to be found

. The program does not yet exist.

Descrintion of the program

This program will match 2d boundary descriptions of. flat
polygonal objects. A data description consists of a set of
straight line segments. A model description consists of
either a set of straight line segments, or line segnents

plus larger structures defined by straight line segments.
Because the data position and orientation may be different
from that of the model, the object's position and orientation
will need to be estimated. This project will match the models
to the data and extract the location and orientation.

References

AI2 vision notes.

Specific guestions/tasks to be adéressed

a. Write the program to match the above specification.

b. Define a small set of polygonal models in terms of line
segments only. Specify an instance of each model as data at
different positions and orientations.

~¢. Get your matcher program to correctly match, locate and

orient this data.

Proposals for extending the project

1) Extend the matcher to allow a specified amount of point
deviation due to noise.

2) Extend the matcher to match curved segments.
3) Change models to have hierarchical structure as:

ffhme =1 . roof = /\
house = frame + roof / o\

and get the uatcher to work with this data.

[set by Bob Fisher, FHill]

UNDERSTANDING A COHMPUTER LANGUAGE: -LOGO

Program. nanme and where it is to be found

Understanu_ng A Computer Lanquage- LOGO
(program does not exist)

Descrivption of the procria

The language LOGO is now beginning to be useé quite a lot
in UK schools. It is a language specially designed to be easy
to learn, yet powerful, and it is based loosely on LISP.
The most coamon introduction to LOGO is through using the
turtle graphics coamands it provides, Hlth some other basic
ones such as PRINT and MAKE:
FORWARD 100
RIGHT 90°
PENDOWN
REPEAT 3 [FORWARD 100 RIGHT 90]
MAKE 'X 60
REPEAT 6 [FORWARD 50 LEFT :X]
(note: LOGO does not require any form of declaratlon, e.g.
MAKE 'X 3 will if necessary create a variable called X first.)
Variables have no type - there are only three data types anyway,
namely ‘'word' (such as 'Hello)
‘nunber' (such as 23.417)
and 'list ' (an ordered collection of data, such as
- [Hello 23.417 [More stuff) 66])).
A good LOGO provides several hundred basic commands, but only
a very small subset gets used by beginners. However, beginners
do use the procedute building mechanism:
TO TRIANGLE :SIDZ
RE?ZAT 3 [FORWARD :SIDE RIGHT 120]
ZiiD )
. TRIANGLE 93 »
They tend to make sizple mistakes, such as
- u51ng a procedure before they have defined
it: TRINGLE 93
- refer:lng to a non-existant variabple:
- missing out a bracket: REPZAT o
T ="giving the wrong number of arguments: TRIANGLE 9 3
~ oxitting soame important syntactic marker, such as a
colon or quote (you'd neeé to Xnow a little more about
LOGO to know what they do)

TR;ANGLH XX

Tasx

o

Devise a Prolog program, probably devised round a Definite
Clause Gramzar, to spot a variety of such sinpie npistakes,
and perhaps offer SINSIBLE comxments.

References

- loads of books on LOGO, in the Dept. library or in Thins

- lots of local LOGO expertise; ask Peter Ross

- loads of transcripts of LOGO work by schooichildren, all
in machine-readable form

[set by Peter Ross, SB]



